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Abstract 

This document describes the concept, design and 
implementation of a high-speed floating point adder for use by 
the Solenoidal Detector Collaboration (SDC) at the Super
conducting Super Collider (SSC). The adder uses a unique 
floating point format, described herein, and is implemented 
using Orbit Semiconductor's 1.2um n-well process. 
Simulations indicate that the device will operate at 63 MHz. 

I. INTRODUCTION 

One of the primary advantages of the proposed SDC 
Calorimeter is the digitization of incoming signals at each 
beam-crossing. This allows for a wide variety of data 
manipulations in the digital domain rather than error-prone 
attempts of the same in the analog domain. Furthermore, this 
manipulation can be performed in custom designed digital 
electronics at high data rates 

One of the aforementioned manipulations is to sum the 
digitized outputs of Twenty-five Thousand photomultiplier 
tubes from the SDC Calorimeter. It is for this and for several 
other similar potential applications that the AdderChip was 
developed. 

The AdderChip is a full custom IC capable of adding 
together two floating point numbers each with 8 bit mantissa 
and 4 bit exponents. Both the Exponents and the Mantissa can 
be assumed positive in this particular design. The AdderChips 
would be arranged in a multi-tiered fashion with sums of 
previous AdderChips feeding the inputs of other AdderChips 
producing what is called the AdderTree with the ultimate 
output being the sum of many inputs. 

What follows will be a short description of the Floating 
Point format used followed by the design description. Finally, 
an Appendix is included which contains the schematic and full 
custom designs of all of the circuits and subcircuits used in the 
Chip. 

II. THE FLOATING POINT FORMAT 

The AdderChip's floating point format is roughly based on 
the standard scientific format. That is to say, 

N =(Mantissa) x iCExponent) (1) 

Thus, if the Mantissa were 101000002 and the Exponent were 
00112, then N would be equal to 101000000002 or 1280. 

Also, it is assumed that the Mantissa has been shifted to 
the left or to the right and the Exponent increased or decreased 

commensurately in order to place a 1 in the most significant bit 
of the Mantissa 

This format works well for a large number of situations, 
but improvements can be made. First of all, if it is known that 
the most significant bit of the Mantissa must be a l, then it is 
possible to assume the existence of that bit and gain an extra 
bit of accuracy. In other words if the real mantissa were 
1100101012, it could be stored as 100101012 under the 
assumption that 1000000002 must be added to 100101012 in 
order for the results to be correct. This is known as a Hidden 
Bit. 

Secondly, and more critically, the requirement that there 
be a leading 1 (Hidden or present) eliminates the possibility of 
a true 0, and, since the smallest possible Exponent in this 
design is 0 (all Exponents are assumed non-negative), this 
means that the smallest possible number would be 128 (or 256 
if Hidden Bits were used). 

The solution is to use a Conditional Hidden Bit format. A 
true Zero requires both a Zero mantissa and a Zero exponent, 
so, in the Conditional Hidden Bit format, Hidden Bits are 
always assumed to be present unless the Exponent is Zero. If 
the Exponent is Zero, then the Mantissa contains no Hidden 
Bits. 

N = Mantissa (if Exponent= 0) (2) 

N = ((Mantissa+256) x 2(Exponent-l)) (if Exponent> 0) (3) 

To demonstrate, 

Table 1: 

Exponent Mantissa Value 

0 0 0 

0 1 1 

0 255 255 

1 0 256 

1 255 511 

4 1 1028 

11 255 FF80016 

This format yields errors ranging from as little as 1 part is 511 
to as great as 1 part in 25 5 and is exact for counts less than 512. 
By way of comparison, standard scientific format yields errors 



of 1 part in 255 and is incapable of representing counts less and Mantissa Addition and Renonnalization would be 
than 128. Most importantly, it yields 24 bits of Dynamic Range accomplished in the SecondTick. 
with 8 to 9 bits of accuracy 

III. THE DESIGN 

The AdderChip was required to add two 12 bit floating 
point numbers using a two-staged pipeline operating at 
approximately 63MHz. The first task was to determine what 
functions went into each pipeline stage. In the addition of two 
floating point numbers (see Figure 1), the exponents must be 
compared to each other, the Mantissa must be shuffled relative 
to one another as dictated by the comparison of Exponents, the 
Mantissa must then be added, and if Mantissa carries out, then 
the larger of the two Exponents must be increased by one and 
the Mantissa Sum must be left shifted These steps are, for 
simplicity sake, referred to as Exponent Comparison, the 
Mantissa Shuffle, the Mantissa Addition, and the 
Renormalization. 

ExponentB MantissaB 

Shuffle 

Renormalization 

Fig. 1 The AdderChip Flow Diagram 

The use of Conditional Hidden Bits adds complexity to the 
design, but it does not change the basic data flow presented 
above. 

At 63MHz, each Tick has approximately l 6ns to perform 
its task. Since Exponent Comparison, Mantissa Shuffle, 
Mantissa Addition and Renormalization must occur in that 
order, the question of how to subdivide the Addition Flow into 
the First and Second Ticks reduces to how much of the 
Addition Flow can be completed in the first 16ns. Whatever is 
left over must be completed in the Second Tick. Therefore, it 
was rather simple to determine that the Exponent Comparison 
and Mantissa Shuffle would be accomplished in the FirstTick 

IV. THE FIRST TICK 

A. Exponent Comparison 

In the initial AdderChip designs, the Exponent 
Comparison circuitry did simultaneous subtractions of 
Exponent A from Exponent B and Exponent B from Exponent 
A. If the former was positive, then Mantissa B was shuffled by 
the Result of the fonner subtraction. If the latter was positive, 
then Mantissa A was shuffled by the Result of the latter 
subtraction. This style of Exponent Comparison was necessary 
because there was (and still is) no a' priori knowledge of which 
Exponent was larger. Unfortunately, this took up a great deal of 
space in the design and it resulted in a fixed delay of 
approximately lOns between the presentation of the two 
numbers and the start of the appropriate Mantissa Shuffle. 

In this most recent AdderChip design, a means of parallel 
Exponent Comparison and Mantissa Shuffle was attempted In 
this scheme, the initial stages of the Shuffle are begun as soon 
as partial information on the Exponent Comparison becomes 
available. 

To explain how this was done, some background 
information is necessary. In the Binary number system, the 
magnitude of a given number is represented as follows: 

N2 = BN2N+BN_ 12N-1+ ... +B323+B222+B121+B020 (4) 

where each Bx is either a Zero or a One. This number system 
has an advantage as far as version 1 of the AdderChip was 
concerned because the results of the simultaneous Exponent 
subtractions, which were expressed in Binary, could be applied 
directly to a four-staged Mantissa Shuffle section. The first 
stage either shifted by 2 

3 or it did not. The second stage shifted 
either shifted by 2 

2 or it did not. The third stage either shifted 
by 2 

1 or it did not. Finally the forth stage either shifted by 2 ° 
or it did not. Each decision to shift or not to shift was made 
based on the Nth bit of the subtraction. For example, if the 3rd 
bit was a One, then the Mantissa was shuffled by 2 

3 in the 3rd 
Stage of the Mantissa Shuffle. If this bit was Zero, no shift was 
made by the third Mantissa Shuffle Stage. 

For the most recent version of the AdderChip, a new 
numbering system has been invented and given the almost 
presumptuous name of Trinary. Magnitudes in this system are 
expressed in a similar fashion 

ITrin = BN2N+BN-l2N-l+ ... +B323+B222+B12l+Bo2 (5) 

However, in the Trinary system, 

(6) 

Thus, in Binary, 

1101 -0111 = 0110 = 610 (7) 



but in Trinary, 

1101 -0111 = 10 (-1)0 = 610 (8) 

To apply this to a four stage Mantissa Shuffle circuit, 

• a) if Bx = 1 , then right shift the smaller mantissa 

• b) if B = o, then do not shift either mantissa 
x 

• c) if Bx = -1 , then left shift the smaller mantissa. 

The significance of the Trinary Numbering System is that 
if it is known which Exponent is larger, then it is possible to do 
a bit-by-bit comparison of the two Exponents. In other words, 
Exponent A is larger than Exponent B and Bit N of Exponent 
A is a One and Bit N of Exponent B is a Zero, then Mantissa B 
should be Shuffled to the Right by 2N. If Exponent A is larger 
than Exponent B and Bit N of Exponent A is a Zero and Bit N 
of Exponent B is a One, then Mantissa B should be Shuffled to 
the Left by 2N. If Exponent A is larger than Exponent B and 
Bit N of Exponent A is equal to Bit N of Exponent B, then the 
Mantissas shouldn't be shuffled at all. 

Finally, if Exponent A is equal to Exponent B, then neither 
Mantissa should be shuffled. This is, of course, obvious, but 
important nonetheless. 

As was stated earlier, there still is no a' priori knowledge 
about the relative magnitudes of the two Exponents. However, 
neither Mantissa gets shuffled either when Exponent A is 
Larger than B and Bit N of Exponent A equals Bit N of 
Exponent B or when Exponent A is equal to Exponent B. So, 
from a Logic Design standpoint, the two states are equivalent. 
Therefore, a simple scan from the Most Significant Bits of the 
two Exponents to the Least Significant bits of the two 
Exponents will reveal the larger of the two numbers at the first 
Bit Pair that do not match. Whichever Exponent has a One in 
the same Bit location as the Most Significant Zero of the other 
Exponent is the larger number. All Bits of greater significance 
than this Bit simply leave both Mantissas unshuffied up to that 
point. All Bits of less significance than this Bit are made aware 
of the relative magnitudes of the two numbers. For example, 
consider the following figure. 

Exponent A 1 
J 

ADn 

No Shuffle 
No Shuffle 
B>A Shift 
B>A Shift AUp1 

Exponent B 1 

1 0 1 
Jl j l J l 

u 'r 1 r 

1 1 0 

Fig. 2 Exponent Comparison 

The Logic to perfonn this comparison is called MeHimLogic, 

and it uses the following inputs. 

• a) HBI = 1 if He (the other Exponent) is Larger 

• b) IBI = 1 if I'm Larger 

• c) HI= His Bit being compared 

• d) MI= My Bit being compared 

The circuitry generates the following outputs 

• a) HBO is set to One if I detennine that He is Larger 

• b) IBO is set to One if I determine that I am Larger 

• c) ShiftUp is set to One if the Mantissa is to Shift 
Left 

• d) ShiftDown is set to One if the Mantissa is to Shift 
Right 

• e) DontShift is set to One if the Mantissa is not to 
Shift. 

This circuitry is generated for each of the four bits and then 
replicated for both Exponents. The inputs are connected such 
that HI of Exponent A is connected to MI of Exponent B, etc. 
Also, ShiftUp, ShiftDown, and DontShift must be mutually 
exclusive. The following are the equations for the 
MeHimLogic. 

ShiftDown = (IBI) " (HI) " (Ml) (9) 

ShiftUp = (HSI) " (HI) " (Ml) (10) 

DontShift = (IBI) V ((HI) E9 (MI)) V ((MI)/\ (HBI)) (11) 

HBO = (HBI) v ( (IBI) " (HI) " (Ml)) (12) 

IBO = (IBI) v ((HI) " (Ml) " (HBI)) (13) 

In simulation, the worst case occurred when one Exponent 
was equal to 10002 and the other Exponent was equal to 0111 2. 

This was due to the fact that the HBO and IBO signals were 
needed to propagate from the Most Significant Bit to the Least 
Significant Bit, and change every result from "I'm Bigger'' and 
"Don't Shift" to "He's Bigger" and "Shift Up". It is possible 
that this particular situation will not be as radically different 
from the other possible scenarios in a real implementation. In 
any case, this Worst Case Situation still permits operation at 
the specified speed of 63MHz. 

One final note is that the larger of the two exponents is 
passed on to the SecondTick. Either of the two HBO signals or 
either of the two IBO signals from the last Comparison Stage 
can be used to flip a two-to-one multiplexor and choose the 
appropriate Exponent. 

B. The Mantissa Shuffle 

As indicated in the previous subsection, the Mantissa 
Shuffle is a four sectioned design in which each of the four 



sections are virtually identical. In effect, each section is a 
three-to-one multiplexor which accepts a binary number as its 
input and shifts it up, down or not at all depending on the 
output of the appropriate Exponent Comparison Bit. The fact 
that ShiftUp, ShiftDown, and DontShift are designed to be 
mutually exclusive in all cases makes the Multiplexor easier to 
design. All that is really needed is a two level and-or scheme as 
presented in Fig. 2. 

From2N 

Up 

From 
Same 
Level 

From2N 

Down 

---------! 

ShiftUp DontShift ShiftDown 

Fig. 3 One Mantissa Shuffie Stage 

The unfortunate side effect of the redesign of the Exponent 
Comparison Circuitry is that now the Mantissa Shuffle Stage 
must be larger. Previously, only down shifts were necessary, so 
once a significant bit passed below the Least Significant Bit of 
the Shuffled output, it could be forgotten. However, in the 
present design, the possibility exists that the next stage might 
be a ShiftUp, and so, 2<N-0+2<N-2)+ ... +2° bits below the Least 
Significant Bit of the Shuffled Output must be maintained at 
each stage (where N is the current bit level). This, of course, 
adds a considerable amount of additional space in the design, 
but the increase in speed makes up for this. 

C. Hidden Bits 

is set to a one. 
The final complexity comes from the Mantissa Shuffle. It 

is obvious that if both Exponents are 0, the no Hidden Bits are 
added and neither Mantissa is shifted. This presents no 
problem. Similarly, if both Exponents are greater than Zero, 
then both have Hidden Bits added and the smaller number is 
shifted by the difference between the Exponents. This presents 
no problem because 

Exp A - ExPB = (ExpA - 1) - (ExpB - 1) (16) 

In other words, Equation 15 requires that the magnitude of a 
number with an Exponent greater than Zero be scaled by 
2<Exponent - o. However, if both Exponents are greater than 
Zero, then the Mantissas will be shuffled relative to one 
another properly without any extra effort. However, if 
Exponent A is Zero and Exponent B is not, then there is a 
problem. The shifting of Mantissa A with respect to Mantissa 
B is based upon a direct comparison of their Exponents. 
However, Exponent B is not really the Exponent of the 
Number represented by the pair Exponent B/Mantissa B. 
Exponent B must be reduced by one for the Addition to be 
accurate. However, if Exponent B is reduced by one, then its 
original value must be restored before it is output from the 
AdderChip. This is gets quite complicated unless one realizes 
that if Exponent A is a Zero and Exponent B is not, then 
Mantissa A was shifted to the right by one place too many. 
Thus, a simple circuit can be designed to Left Shift either 
Mantissa in the event that one Exponent is Zero and the other 
is not. This circuit unfortunately must sit directly in the data 
flow path and it requires about 2-4ns to execute. 

V. THE SECOND TICK 

The SecondTick accepts as its inputs the Shuffled 
Mantissas and the Larger Exponent. It performs the Mantissa 
Addition and then the Renormalization. Its output is a twelve 
bit floating point number in the same Conditional Hidden Bit 
format as the two inputs. 

As stated earlier, Hidden Bits add complexity to the design A. The Mantissa Addition 
without effecting the data flow. To recall, the Conditional 
Hidden Bit format is as follows: 

ifExp = 0 N =Mantissa (14) 

"f E O . (Exponent- I) 
1 xp> N=(Mantissa+256)x2 (15) 

Thus, the first necessity of the Hidden Bits is to determine 
whether or not the Exponent is Zero. The next step is to add 
256 to the Mantissa if the Exponent is not Zero or add nothing 
if the Exponent is Zero. This is actually quite simple. 
Externally, the AdderChip adds two numbers with 8 bit 
Mantissas. Internally, it adds two numbers with 9 bit 
Mantissas. If the Exponent equals Zero, then that ninth bit (in 
the most significant bit location) is set to a Zero. Otherwise, it 

The Mantissa Addition is accomplished though a nine bit 
Binary Carry Lookahead Adder (BCLA). It is perhaps simplest 
to start with an example of binary addition, ignoring 2s 
compliment format. The numbers in this example are simple, 
positive binary number. 

11010 
00101 

+01101 
10010 

~Carries 

A 
B 
Sum 

Fig. 4 An Example of Binary Addition 

It is easily seen from the example that 

(17) 



In other words, each bit of the Sum is a 1 if an odd number of 
its respective A, B and Carry bits are a 1. Furthermore 

,(A;AB) v (A;ACarryi_ 1) A (B;ACarryi_ 1) =Carry; (18) 

In other words, there would be a carry into the next more 
significant bit addition if either bit A and bit B were 1 or either 
bit A were a 1 and there was a carry into this bit addition or B 
were 1 and there was a carry into this addition. In the design of 
adders, these two possibilities under which there is a carry into 
the next bit have special names. When both bit A and bit B are 
1, they are said to generate there own carry. When either A or 
B are 1 and the carry input to this bit is a l ,A or B are said to 
propagate their carry input into the next bit. 

The adder complexity can be reduced if two functions are 
defined based on the aforementioned two possibilities. The 
Carry Generate function is defined to be 

(25). 

Cout3 = K3 v P3 (g2 v P2 (gl v P1Ko)) (26) 

A pattern begins to emerge here, and it is exploited by the 
BCLA. For example, 

(27) 

and, 

(28) 

g. =A.AB. 
I I I 

(19) Thus, if we define two equations, 

The Carry Propagate function is defined to be (29) 

Pi= AieB; (20) and, 

Thus, the Sum equation is redefined to be · 

piecarryi-l = Sum1 

and the Carry equation is redefined to be 

pxy = Px/\Py 

(21) Then the CarryOut equations become 

(30) 

gi v (pi/\ Carry;_ 1) = Carry; (22) 

While this does help to reduce the complexity, these 
equations are still subject to what is known as the ripple carry 
effect. Bit 0, the least significant bit, has all of its input present 
immediately. However, Bit 1 must wait until Bit 0 completes 
its Carry Out before it has all of its inputs. Similarly, Bit 2 must 
wait for Bit 1, and so on. If each adder bit is exactly identical to 
all others, then it can be expected that there will be a consistent 
delay, say td, between the carry input and the sum and carry 
output. This means that if the two addends arrive at time T=O, 
then Sum0 is available at T=tct; Sum1 is available at T=2tct; and 
Sum7 is available after T=8tct. The total propagation delay 
increases linearly with the number of bits to be added. 

The goal of Binary Carry Lookahead is to provide a 
regular (i.e.repeatable and easily VLSI designed) means of 
generating sums in a fashion such that the total propagation 
delay is sub-linear. Specifically, the total propagation delay 
increases logarithmically. 

The reduction in delay is accomplished by splitting apart 
the carry propagation circuitry so that as much as possible 
occurs in parallel. Let's assume for the moment that there is a 
4-bit adder that is to be used exclusively as an adder and that 
no preceding adder stage is feeding its Carryln. In other words, 
cin is always 0. Then, 

(23) 

(24) 

Cout3 = G23 v p 23Go1 = Go123 

and the Sum equations become 

(31) 

(32) 

(33) 

(34) 

Sumi =pieG((i-l)(i- 2) ... (0)) (35) 

Brent and Kung define an operator, "o", which replaces 
the G and P equations above 

. (g,p)O (g',p') = (gv (pAg'),pAp') (36) 

This is no new information, it is simply presented so that the 
reader can better understand the next figure. It is this format 
that realizes the goals of the BCLA. First, it is regular. Only 
two subcircuits are needed - gen to generate Pi and gi from ~ 
and Bi, the incoming numbers to be added, and 0 to generate 
Ps and Gs from p and. g. Second, it has a logarithmic time 
increase with the number of gates. This is easily seen from the 
figure because Couto passes through 0 gates (after p and g are 
generated) whereas Coutl passes through 1 gate and Cout2 and 
Cout3 pass through 2 apiece. The following figures will 



hopefully clarify any remaining questions about BCLA theory. Exponent are held awaiting the Carry Out. 

Fig. 5 Binary Carry Lookahead Generation 

Cout3 CarryOut 
p3 

)D-Smn3 Cout2 
p2 

)D-Smn2 Coutl 
pl _)D-Suml Couto 
po 

~D-SumO 
~ 

Fig. 6 Addition Process given Carry Lookahead Generation 

The various subcircuits were implemented and replicated. The 
resulting Binary Carry Lookahead Adder adds the Nine Bit 
Mantissas in approximately 6-8ns. 

B. Renormalization 

Essentially, if there is a carry out from the Mantissa 
Addition, then the resulting Mantissa needs to be right shifted 
one place and the Exponent needs to be increased by one. The 
shifting of the Mantissa is quite simple. Internally, the adder is 
nine bits wide. If there is a Carry Out, the Upper 8 Bits are the 
proper output. If there is no Carry Out, the Lower 8 Bits are the 
proper output. In the case of the Exponent renormalization, 
however, waiting for the Carry Out to determine whether or not 
to Add a 1 to the Exponent would take too much time. Thus, 
while the Mantissas are being added, a One is added to the 
Exponent, and both the original Exponent and the increased 

VI. SUPPORT CIRCUITRY 

The AdderChip used straight forward Master-Slave fiip
flops for the register stages. They have no preset or clear 
capabilities, so the output of the chip for the first two clock 
ticks might be meaningless gibberish. 

The Clock circuitry was drastically altered for this design. 
In previous versions, large Clock Buffers distributed the signal 
around, but in this version, a Clock Tree distributes the signal 
in an evenly delayed fashion. Two extra pins were added to the 
design, ClockDelayed and ClockUndelayed, to show the delay 
from the beginning of the Tree to its furthest branches. 

Finally, several registers were tapped off of the signals 
between the FirstTick and the Second Tick to allow for greater 
visibility of the internal operations. 

VII. FABRICATION AND RESULTS 

The AdderChip was fabricated in a 1.2µ. n-well process. 
Testing thus far indicates proper functionality in both fall
through (no clocks necessary, registers transparent) and 
clocked modes. The following is a list of the preliminary 
testing results 

•a) The time delay along the clock tree was 
shown to be 3.5ns. 

• b) In clocked mode the chip appears to 
actually add at 200Mhz. 

• c) In fall-through mode the ADDER chip 
can easily add at 150Mhz. 

• d) In fall through mode the time from 
Datain rising edge to the Mantissa out 
data valid was between 37ns to 44ns. 

• e) Rise time of the Clockout undelayed 
was 5.85ns and the Fall time was 5.2ns. 

There was one minor design error found which related to 
the overflow bit and the Mantissas. This problem will be 
corrected in future designs. 

Testing of the AdderChip continues both at Fermilab and 
at the Superconducting Super Collider in Texas. 
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Appendix 

Circuits and Layouts 

Fig. A.1 The AdderChip 





Fig. A.3 Exponent Comparison Circuitry 



Fig. A.4 A Single Bit Shuftle Stage 



Fig. A.5 Shuffle Circuitry 



Fig. A.6 The Binary Carry Lookahead Adder (Mantissa Addition) 
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Fig. A.7 The AdderChip Pinout 


