
0 Fermi National Accelerator Laboratory

FERMILAB·TM-1779

A Full Custom, High Speed Floating Point Adder

J. Hoff and B. Foster

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

C Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of
their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.

TM-1779

A Full Custom, High Speed Floating Point Adder

Jim Hoff, Bill Foster

Fermi National Accelerator Laboratory

Abstract

This document describes the concept, design and
implementation of a high-speed floating point adder for use by
the Solenoidal Detector Collaboration (SDC) at the Super
conducting Super Collider (SSC). The adder uses a unique
floating point format, described herein, and is implemented
using Orbit Semiconductor's 1.2um n-well process.
Simulations indicate that the device will operate at 63 MHz.

I. INTRODUCTION

One of the primary advantages of the proposed SDC
Calorimeter is the digitization of incoming signals at each
beam-crossing. This allows for a wide variety of data
manipulations in the digital domain rather than error-prone
attempts of the same in the analog domain. Furthermore, this
manipulation can be performed in custom designed digital
electronics at high data rates

One of the aforementioned manipulations is to sum the
digitized outputs of Twenty-five Thousand photomultiplier
tubes from the SDC Calorimeter. It is for this and for several
other similar potential applications that the AdderChip was
developed.

The AdderChip is a full custom IC capable of adding
together two floating point numbers each with 8 bit mantissa
and 4 bit exponents. Both the Exponents and the Mantissa can
be assumed positive in this particular design. The AdderChips
would be arranged in a multi-tiered fashion with sums of
previous AdderChips feeding the inputs of other AdderChips
producing what is called the AdderTree with the ultimate
output being the sum of many inputs.

What follows will be a short description of the Floating
Point format used followed by the design description. Finally,
an Appendix is included which contains the schematic and full
custom designs of all of the circuits and subcircuits used in the
Chip.

II. THE FLOATING POINT FORMAT

The AdderChip's floating point format is roughly based on
the standard scientific format. That is to say,

N =(Mantissa) x iCExponent) (1)

Thus, if the Mantissa were 101000002 and the Exponent were
00112, then N would be equal to 101000000002 or 1280.

Also, it is assumed that the Mantissa has been shifted to
the left or to the right and the Exponent increased or decreased

commensurately in order to place a 1 in the most significant bit
of the Mantissa

This format works well for a large number of situations,
but improvements can be made. First of all, if it is known that
the most significant bit of the Mantissa must be a l, then it is
possible to assume the existence of that bit and gain an extra
bit of accuracy. In other words if the real mantissa were
1100101012, it could be stored as 100101012 under the
assumption that 1000000002 must be added to 100101012 in
order for the results to be correct. This is known as a Hidden
Bit.

Secondly, and more critically, the requirement that there
be a leading 1 (Hidden or present) eliminates the possibility of
a true 0, and, since the smallest possible Exponent in this
design is 0 (all Exponents are assumed non-negative), this
means that the smallest possible number would be 128 (or 256
if Hidden Bits were used).

The solution is to use a Conditional Hidden Bit format. A
true Zero requires both a Zero mantissa and a Zero exponent,
so, in the Conditional Hidden Bit format, Hidden Bits are
always assumed to be present unless the Exponent is Zero. If
the Exponent is Zero, then the Mantissa contains no Hidden
Bits.

N = Mantissa (if Exponent= 0) (2)

N = ((Mantissa+256) x 2(Exponent-l)) (if Exponent> 0) (3)

To demonstrate,

Table 1:

Exponent Mantissa Value

0 0 0

0 1 1

0 255 255

1 0 256

1 255 511

4 1 1028

11 255 FF80016

This format yields errors ranging from as little as 1 part is 511
to as great as 1 part in 25 5 and is exact for counts less than 512.
By way of comparison, standard scientific format yields errors

of 1 part in 255 and is incapable of representing counts less and Mantissa Addition and Renonnalization would be
than 128. Most importantly, it yields 24 bits of Dynamic Range accomplished in the SecondTick.
with 8 to 9 bits of accuracy

III. THE DESIGN

The AdderChip was required to add two 12 bit floating
point numbers using a two-staged pipeline operating at
approximately 63MHz. The first task was to determine what
functions went into each pipeline stage. In the addition of two
floating point numbers (see Figure 1), the exponents must be
compared to each other, the Mantissa must be shuffled relative
to one another as dictated by the comparison of Exponents, the
Mantissa must then be added, and if Mantissa carries out, then
the larger of the two Exponents must be increased by one and
the Mantissa Sum must be left shifted These steps are, for
simplicity sake, referred to as Exponent Comparison, the
Mantissa Shuffle, the Mantissa Addition, and the
Renormalization.

ExponentB MantissaB

Shuffle

Renormalization

Fig. 1 The AdderChip Flow Diagram

The use of Conditional Hidden Bits adds complexity to the
design, but it does not change the basic data flow presented
above.

At 63MHz, each Tick has approximately l 6ns to perform
its task. Since Exponent Comparison, Mantissa Shuffle,
Mantissa Addition and Renormalization must occur in that
order, the question of how to subdivide the Addition Flow into
the First and Second Ticks reduces to how much of the
Addition Flow can be completed in the first 16ns. Whatever is
left over must be completed in the Second Tick. Therefore, it
was rather simple to determine that the Exponent Comparison
and Mantissa Shuffle would be accomplished in the FirstTick

IV. THE FIRST TICK

A. Exponent Comparison

In the initial AdderChip designs, the Exponent
Comparison circuitry did simultaneous subtractions of
Exponent A from Exponent B and Exponent B from Exponent
A. If the former was positive, then Mantissa B was shuffled by
the Result of the fonner subtraction. If the latter was positive,
then Mantissa A was shuffled by the Result of the latter
subtraction. This style of Exponent Comparison was necessary
because there was (and still is) no a' priori knowledge of which
Exponent was larger. Unfortunately, this took up a great deal of
space in the design and it resulted in a fixed delay of
approximately lOns between the presentation of the two
numbers and the start of the appropriate Mantissa Shuffle.

In this most recent AdderChip design, a means of parallel
Exponent Comparison and Mantissa Shuffle was attempted In
this scheme, the initial stages of the Shuffle are begun as soon
as partial information on the Exponent Comparison becomes
available.

To explain how this was done, some background
information is necessary. In the Binary number system, the
magnitude of a given number is represented as follows:

N2 = BN2N+BN_ 12N-1+ ... +B323+B222+B121+B020 (4)

where each Bx is either a Zero or a One. This number system
has an advantage as far as version 1 of the AdderChip was
concerned because the results of the simultaneous Exponent
subtractions, which were expressed in Binary, could be applied
directly to a four-staged Mantissa Shuffle section. The first
stage either shifted by 2

3 or it did not. The second stage shifted
either shifted by 2

2 or it did not. The third stage either shifted
by 2

1 or it did not. Finally the forth stage either shifted by 2 °
or it did not. Each decision to shift or not to shift was made
based on the Nth bit of the subtraction. For example, if the 3rd
bit was a One, then the Mantissa was shuffled by 2

3 in the 3rd
Stage of the Mantissa Shuffle. If this bit was Zero, no shift was
made by the third Mantissa Shuffle Stage.

For the most recent version of the AdderChip, a new
numbering system has been invented and given the almost
presumptuous name of Trinary. Magnitudes in this system are
expressed in a similar fashion

ITrin = BN2N+BN-l2N-l+ ... +B323+B222+B12l+Bo2 (5)

However, in the Trinary system,

(6)

Thus, in Binary,

1101 -0111 = 0110 = 610 (7)

but in Trinary,

1101 -0111 = 10 (-1)0 = 610 (8)

To apply this to a four stage Mantissa Shuffle circuit,

• a) if Bx = 1 , then right shift the smaller mantissa

• b) if B = o, then do not shift either mantissa
x

• c) if Bx = -1 , then left shift the smaller mantissa.

The significance of the Trinary Numbering System is that
if it is known which Exponent is larger, then it is possible to do
a bit-by-bit comparison of the two Exponents. In other words,
Exponent A is larger than Exponent B and Bit N of Exponent
A is a One and Bit N of Exponent B is a Zero, then Mantissa B
should be Shuffled to the Right by 2N. If Exponent A is larger
than Exponent B and Bit N of Exponent A is a Zero and Bit N
of Exponent B is a One, then Mantissa B should be Shuffled to
the Left by 2N. If Exponent A is larger than Exponent B and
Bit N of Exponent A is equal to Bit N of Exponent B, then the
Mantissas shouldn't be shuffled at all.

Finally, if Exponent A is equal to Exponent B, then neither
Mantissa should be shuffled. This is, of course, obvious, but
important nonetheless.

As was stated earlier, there still is no a' priori knowledge
about the relative magnitudes of the two Exponents. However,
neither Mantissa gets shuffled either when Exponent A is
Larger than B and Bit N of Exponent A equals Bit N of
Exponent B or when Exponent A is equal to Exponent B. So,
from a Logic Design standpoint, the two states are equivalent.
Therefore, a simple scan from the Most Significant Bits of the
two Exponents to the Least Significant bits of the two
Exponents will reveal the larger of the two numbers at the first
Bit Pair that do not match. Whichever Exponent has a One in
the same Bit location as the Most Significant Zero of the other
Exponent is the larger number. All Bits of greater significance
than this Bit simply leave both Mantissas unshuffied up to that
point. All Bits of less significance than this Bit are made aware
of the relative magnitudes of the two numbers. For example,
consider the following figure.

Exponent A 1
J

ADn

No Shuffle
No Shuffle
B>A Shift
B>A Shift AUp1

Exponent B 1

1 0 1
Jl j l J l

u 'r 1 r

1 1 0

Fig. 2 Exponent Comparison

The Logic to perfonn this comparison is called MeHimLogic,

and it uses the following inputs.

• a) HBI = 1 if He (the other Exponent) is Larger

• b) IBI = 1 if I'm Larger

• c) HI= His Bit being compared

• d) MI= My Bit being compared

The circuitry generates the following outputs

• a) HBO is set to One if I detennine that He is Larger

• b) IBO is set to One if I determine that I am Larger

• c) ShiftUp is set to One if the Mantissa is to Shift
Left

• d) ShiftDown is set to One if the Mantissa is to Shift
Right

• e) DontShift is set to One if the Mantissa is not to
Shift.

This circuitry is generated for each of the four bits and then
replicated for both Exponents. The inputs are connected such
that HI of Exponent A is connected to MI of Exponent B, etc.
Also, ShiftUp, ShiftDown, and DontShift must be mutually
exclusive. The following are the equations for the
MeHimLogic.

ShiftDown = (IBI) " (HI) " (Ml) (9)

ShiftUp = (HSI) " (HI) " (Ml) (10)

DontShift = (IBI) V ((HI) E9 (MI)) V ((MI)/\ (HBI)) (11)

HBO = (HBI) v ((IBI) " (HI) " (Ml)) (12)

IBO = (IBI) v ((HI) " (Ml) " (HBI)) (13)

In simulation, the worst case occurred when one Exponent
was equal to 10002 and the other Exponent was equal to 0111 2.

This was due to the fact that the HBO and IBO signals were
needed to propagate from the Most Significant Bit to the Least
Significant Bit, and change every result from "I'm Bigger'' and
"Don't Shift" to "He's Bigger" and "Shift Up". It is possible
that this particular situation will not be as radically different
from the other possible scenarios in a real implementation. In
any case, this Worst Case Situation still permits operation at
the specified speed of 63MHz.

One final note is that the larger of the two exponents is
passed on to the SecondTick. Either of the two HBO signals or
either of the two IBO signals from the last Comparison Stage
can be used to flip a two-to-one multiplexor and choose the
appropriate Exponent.

B. The Mantissa Shuffle

As indicated in the previous subsection, the Mantissa
Shuffle is a four sectioned design in which each of the four

sections are virtually identical. In effect, each section is a
three-to-one multiplexor which accepts a binary number as its
input and shifts it up, down or not at all depending on the
output of the appropriate Exponent Comparison Bit. The fact
that ShiftUp, ShiftDown, and DontShift are designed to be
mutually exclusive in all cases makes the Multiplexor easier to
design. All that is really needed is a two level and-or scheme as
presented in Fig. 2.

From2N

Up

From
Same
Level

From2N

Down

---------!

ShiftUp DontShift ShiftDown

Fig. 3 One Mantissa Shuffie Stage

The unfortunate side effect of the redesign of the Exponent
Comparison Circuitry is that now the Mantissa Shuffle Stage
must be larger. Previously, only down shifts were necessary, so
once a significant bit passed below the Least Significant Bit of
the Shuffled output, it could be forgotten. However, in the
present design, the possibility exists that the next stage might
be a ShiftUp, and so, 2<N-0+2<N-2)+ ... +2° bits below the Least
Significant Bit of the Shuffled Output must be maintained at
each stage (where N is the current bit level). This, of course,
adds a considerable amount of additional space in the design,
but the increase in speed makes up for this.

C. Hidden Bits

is set to a one.
The final complexity comes from the Mantissa Shuffle. It

is obvious that if both Exponents are 0, the no Hidden Bits are
added and neither Mantissa is shifted. This presents no
problem. Similarly, if both Exponents are greater than Zero,
then both have Hidden Bits added and the smaller number is
shifted by the difference between the Exponents. This presents
no problem because

Exp A - ExPB = (ExpA - 1) - (ExpB - 1) (16)

In other words, Equation 15 requires that the magnitude of a
number with an Exponent greater than Zero be scaled by
2<Exponent - o. However, if both Exponents are greater than
Zero, then the Mantissas will be shuffled relative to one
another properly without any extra effort. However, if
Exponent A is Zero and Exponent B is not, then there is a
problem. The shifting of Mantissa A with respect to Mantissa
B is based upon a direct comparison of their Exponents.
However, Exponent B is not really the Exponent of the
Number represented by the pair Exponent B/Mantissa B.
Exponent B must be reduced by one for the Addition to be
accurate. However, if Exponent B is reduced by one, then its
original value must be restored before it is output from the
AdderChip. This is gets quite complicated unless one realizes
that if Exponent A is a Zero and Exponent B is not, then
Mantissa A was shifted to the right by one place too many.
Thus, a simple circuit can be designed to Left Shift either
Mantissa in the event that one Exponent is Zero and the other
is not. This circuit unfortunately must sit directly in the data
flow path and it requires about 2-4ns to execute.

V. THE SECOND TICK

The SecondTick accepts as its inputs the Shuffled
Mantissas and the Larger Exponent. It performs the Mantissa
Addition and then the Renormalization. Its output is a twelve
bit floating point number in the same Conditional Hidden Bit
format as the two inputs.

As stated earlier, Hidden Bits add complexity to the design A. The Mantissa Addition
without effecting the data flow. To recall, the Conditional
Hidden Bit format is as follows:

ifExp = 0 N =Mantissa (14)

"f E O . (Exponent- I)
1 xp> N=(Mantissa+256)x2 (15)

Thus, the first necessity of the Hidden Bits is to determine
whether or not the Exponent is Zero. The next step is to add
256 to the Mantissa if the Exponent is not Zero or add nothing
if the Exponent is Zero. This is actually quite simple.
Externally, the AdderChip adds two numbers with 8 bit
Mantissas. Internally, it adds two numbers with 9 bit
Mantissas. If the Exponent equals Zero, then that ninth bit (in
the most significant bit location) is set to a Zero. Otherwise, it

The Mantissa Addition is accomplished though a nine bit
Binary Carry Lookahead Adder (BCLA). It is perhaps simplest
to start with an example of binary addition, ignoring 2s
compliment format. The numbers in this example are simple,
positive binary number.

11010
00101

+01101
10010

~Carries

A
B
Sum

Fig. 4 An Example of Binary Addition

It is easily seen from the example that

(17)

In other words, each bit of the Sum is a 1 if an odd number of
its respective A, B and Carry bits are a 1. Furthermore

,(A;AB) v (A;ACarryi_ 1) A (B;ACarryi_ 1) =Carry; (18)

In other words, there would be a carry into the next more
significant bit addition if either bit A and bit B were 1 or either
bit A were a 1 and there was a carry into this bit addition or B
were 1 and there was a carry into this addition. In the design of
adders, these two possibilities under which there is a carry into
the next bit have special names. When both bit A and bit B are
1, they are said to generate there own carry. When either A or
B are 1 and the carry input to this bit is a l ,A or B are said to
propagate their carry input into the next bit.

The adder complexity can be reduced if two functions are
defined based on the aforementioned two possibilities. The
Carry Generate function is defined to be

(25).

Cout3 = K3 v P3 (g2 v P2 (gl v P1Ko)) (26)

A pattern begins to emerge here, and it is exploited by the
BCLA. For example,

(27)

and,

(28)

g. =A.AB.
I I I

(19) Thus, if we define two equations,

The Carry Propagate function is defined to be (29)

Pi= AieB; (20) and,

Thus, the Sum equation is redefined to be ·

piecarryi-l = Sum1

and the Carry equation is redefined to be

pxy = Px/\Py

(21) Then the CarryOut equations become

(30)

gi v (pi/\ Carry;_ 1) = Carry; (22)

While this does help to reduce the complexity, these
equations are still subject to what is known as the ripple carry
effect. Bit 0, the least significant bit, has all of its input present
immediately. However, Bit 1 must wait until Bit 0 completes
its Carry Out before it has all of its inputs. Similarly, Bit 2 must
wait for Bit 1, and so on. If each adder bit is exactly identical to
all others, then it can be expected that there will be a consistent
delay, say td, between the carry input and the sum and carry
output. This means that if the two addends arrive at time T=O,
then Sum0 is available at T=tct; Sum1 is available at T=2tct; and
Sum7 is available after T=8tct. The total propagation delay
increases linearly with the number of bits to be added.

The goal of Binary Carry Lookahead is to provide a
regular (i.e.repeatable and easily VLSI designed) means of
generating sums in a fashion such that the total propagation
delay is sub-linear. Specifically, the total propagation delay
increases logarithmically.

The reduction in delay is accomplished by splitting apart
the carry propagation circuitry so that as much as possible
occurs in parallel. Let's assume for the moment that there is a
4-bit adder that is to be used exclusively as an adder and that
no preceding adder stage is feeding its Carryln. In other words,
cin is always 0. Then,

(23)

(24)

Cout3 = G23 v p 23Go1 = Go123

and the Sum equations become

(31)

(32)

(33)

(34)

Sumi =pieG((i-l)(i- 2) ... (0)) (35)

Brent and Kung define an operator, "o", which replaces
the G and P equations above

. (g,p)O (g',p') = (gv (pAg'),pAp') (36)

This is no new information, it is simply presented so that the
reader can better understand the next figure. It is this format
that realizes the goals of the BCLA. First, it is regular. Only
two subcircuits are needed - gen to generate Pi and gi from ~
and Bi, the incoming numbers to be added, and 0 to generate
Ps and Gs from p and. g. Second, it has a logarithmic time
increase with the number of gates. This is easily seen from the
figure because Couto passes through 0 gates (after p and g are
generated) whereas Coutl passes through 1 gate and Cout2 and
Cout3 pass through 2 apiece. The following figures will

hopefully clarify any remaining questions about BCLA theory. Exponent are held awaiting the Carry Out.

Fig. 5 Binary Carry Lookahead Generation

Cout3 CarryOut
p3

)D-Smn3 Cout2
p2

)D-Smn2 Coutl
pl _)D-Suml Couto
po

~D-SumO
~

Fig. 6 Addition Process given Carry Lookahead Generation

The various subcircuits were implemented and replicated. The
resulting Binary Carry Lookahead Adder adds the Nine Bit
Mantissas in approximately 6-8ns.

B. Renormalization

Essentially, if there is a carry out from the Mantissa
Addition, then the resulting Mantissa needs to be right shifted
one place and the Exponent needs to be increased by one. The
shifting of the Mantissa is quite simple. Internally, the adder is
nine bits wide. If there is a Carry Out, the Upper 8 Bits are the
proper output. If there is no Carry Out, the Lower 8 Bits are the
proper output. In the case of the Exponent renormalization,
however, waiting for the Carry Out to determine whether or not
to Add a 1 to the Exponent would take too much time. Thus,
while the Mantissas are being added, a One is added to the
Exponent, and both the original Exponent and the increased

VI. SUPPORT CIRCUITRY

The AdderChip used straight forward Master-Slave fiip
flops for the register stages. They have no preset or clear
capabilities, so the output of the chip for the first two clock
ticks might be meaningless gibberish.

The Clock circuitry was drastically altered for this design.
In previous versions, large Clock Buffers distributed the signal
around, but in this version, a Clock Tree distributes the signal
in an evenly delayed fashion. Two extra pins were added to the
design, ClockDelayed and ClockUndelayed, to show the delay
from the beginning of the Tree to its furthest branches.

Finally, several registers were tapped off of the signals
between the FirstTick and the Second Tick to allow for greater
visibility of the internal operations.

VII. FABRICATION AND RESULTS

The AdderChip was fabricated in a 1.2µ. n-well process.
Testing thus far indicates proper functionality in both fall
through (no clocks necessary, registers transparent) and
clocked modes. The following is a list of the preliminary
testing results

•a) The time delay along the clock tree was
shown to be 3.5ns.

• b) In clocked mode the chip appears to
actually add at 200Mhz.

• c) In fall-through mode the ADDER chip
can easily add at 150Mhz.

• d) In fall through mode the time from
Datain rising edge to the Mantissa out
data valid was between 37ns to 44ns.

• e) Rise time of the Clockout undelayed
was 5.85ns and the Fall time was 5.2ns.

There was one minor design error found which related to
the overflow bit and the Mantissas. This problem will be
corrected in future designs.

Testing of the AdderChip continues both at Fermilab and
at the Superconducting Super Collider in Texas.

VIII. ACKNOWLEDGEMENTS

I would like to acknowledge the work of Marc Larwill and
Cecil Needles who designed and built the test station for the
AdderChip and performed the tests of the AdderChip listed
above.

Appendix

Circuits and Layouts

Fig. A.1 The AdderChip

Fig. A.3 Exponent Comparison Circuitry

Fig. A.4 A Single Bit Shuftle Stage

Fig. A.5 Shuffle Circuitry

Fig. A.6 The Binary Carry Lookahead Adder (Mantissa Addition)

GI ERl A2 W
GJ EB2 A3 [!)
W EBl A4 W
Q EBO A5Q
Q Vdd A6 W
Q GND A7 GJ
Q Fal.Thru Adder GND W
Q Cloddn

Chip
Vdd [J

Q Cloddinddayed ClockDdayal Q
Q Vdd PinOut 07 w
Q AddrO 06 GI
GI Addrl 05 GJ
Q~ 04Q

Q Regl 03 G1
C1!1 Reg2 02 GI
Q Beg3 01 GI
QGJGJQQG]GJ[;]G]G]GJGJG]QQGJ
~ i ~ ~ ~ ~ ~ ~ ~ ~ 0 0 0 0 ~ ~
~ = ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~

Fig. A.7 The AdderChip Pinout

