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Abstract 

Differential geometry provides a natural family of coor­

dinate systems, the Frenet frame, in which to specify the ge­

ometric properties of a magnet winding. By a modification of 

the Euler-Bernoulli thin rod model, the strain energy is defined 

with respect to this frame. Then it is minimized by a direct 

method from the calculus of variations. The mathematics, its 

implementation in a computer program, and some analysis of 

an SSC dipole by the program will be described. 

Introduction 

The 50mm bore-radius of the Superconducting Super Col­

lider (SSC) main ring constrains its superconducting cables to 

tight bends at the ends of the magnets, thereby justifying in­

creased mathematical attention to the cable-strain minimiza­

tion problem. This paper, a successor to reference [1], describes 

progress at Fermilab in a particular approach to this problem. 

We have only rough estimates of constitutive relations be­

tween stress and strain so we concentrate on strain alone which 

is purely geometric and susceptible to exact specification and 

analysis. (The pronoun "we" in this note will refer to those 

members of Rodger Bossert 's Magnet and Tooling Development 

group working under Jeff Brandt in the Technical Support Sec­

tion at Fermilab.) 

The method to be described is implemented by an in­

teractive computer program, BEND. It employs a variational 

method to present its user with cable configurations having a low 

total elastic strain energy as calculated with respect to a reason­

able mathematical model. Because it is not the total strain but 

the localized points of higher strain which first endanger a cable, 

detailed information is presented about the high-strain points 

in the configuration. The user can adjust intuitively meaning­

ful parameters to relieve strain at these points. The program 

then presents the new user-modified configuration with its pre­

sumably new high-strain points. The process is repeated until 

the user feels that significant improvement is no longer possible. 
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Then files describing the optimized block of cables can be out­

put, formatted for input into Greg Lee's AutoEnd program2 in­

terfacing with the rest of the Fermilab magnet design and fabri­

cation system which includes standard stress analysis programs3 

and our computer aided design and numerically-controlled ma­

chining systems.4•5 We also interface with the Lawrence Berkeley 

Laboratory field calculation programs. 8 

In the next section a classical model of cable-like objects 

is modified to include the nonclassical geometric constraints im­

posed upon a superconducting cable by winding it around the 

end of a magnet. Then are outlined methods for solving the 

resulting equations. In the last section the mathematical model 

is extended from single cables to packed blocks of cables. 

The Rectifying Developable Method 

We base our approach on the Euler-Bernoulli theory of 

a thin homogeneous rod in a plane, modified by Kirchhoff to 

include a twist out of the plane into space (see Chapters 18 and 

19 in (7)). The cable cross section, constant along its length when 

unstrained, is a bilaterally symmetric trapezoid. The elastic 

properties of the cable are completely characterized by three 

constants, a1 , a 2 and a3 • The first two are the flexural rigidities 

of the cable about axes in the plane of the trapezoid, through the 

midpoint of its base and perpendicular and parallel respectively 

to the base. The third is the torsional rigidity about an axis 

through the midpoint and perpendicular to the plane of the 

trapezoid. 

These midpoints form a curve in space specified by the 

vector function R( tJ) of arc length tJ. To complete the geometry 

of the cable one more function of tJ would suffice, an angle of 

rotation of the trapezoid about the tangent to R. Instead it is 

convenient to attach to each trapezoid a right-handed orthonor­

mal frame F (see page 32 of (8)) of vectors 

• i'1 = dR/dtJ. 

• F2 in the plane of the trapezoid and perpendicular to its 

line of symmetry. 



Now we have embedded in the cable a coordinate frame with 
respect to which its properties are expressible in a natural way. 

The curvatures, 1t1 , 1t2, and torsion r, functions of s correspond­

ing respectively to the rigidities 4 1 , 4 21 and 4 31 are defined with 

respect to this intrinsic coordinate system by 

Given the curvatures and torsion we can reverse the definition 

and obtain the configuration of the cable by solving the system 

of ordinary differential equations 

dF=OF (1) 

where n = { w;; h,;=1,2,3 is a skew-symmetric matrix of one-forms 

(page 33 of {8]) defined by 

w;; = F; . dF;. 

The language of differential forms simplifies the formal­

ism and its future sophistication to include more complica.ted 

a.nd realistic stress-strain tensors. Fla.nders' textbook11 is an ex­
cellent introduction to differential forms and is available as an 
inexpensive Dover reprint. In this paper we will extend the 

domain of definition of F and n from the one-dimensional man­

ifold ii. to the three-dimensional manifold occupied by a block 

of cables. 

The meaning of the rigidities is contained in the expres-

sion 

(2) 

for the strain energy density. ii. is the curve which, subject to 

given constraints, minimizes the total strain energy, the integral 

of (2) with respect to s over the length of the cable. One of 

the constraints is that it lie on a given smooth surface, S. (At 

present the software can handle only cylinders but we generalize 

here because of a remark by Shlomo Ca.spi of Lawrence Berkeley 

Laboratory that there is a real need for other surfaces.) Con­

straints are handled in the rectifying developable method not 

by first modeling a cable in space and then constraining it to 

S, but rather by basing the construction on variables inside the 

intrinsic geometry of S from the beginning. There they are 

unconstrained. ,This mathematical convenience becomes more 
import~t in the last section where we model a block of cables. 

In a.n unconstrained block each cable would slide freely against 

its neighbors. The block would have too many degrees of free-
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dom whereas when constrained by S a.nd the packing condition, 

the entire block has the same number of degrees of freedom as 

a single cable. 

The original Euler-Bernoulli model thin rod model is easy 

to modify for a non planar S. Then the two flexural rigidities, a1 

and a2, are equal and expression (2) becomes a11t( s )2 /2 where 

1t is the curvature (page 92 of [9]) of ii.. If we add Kirchhoff's 

term it becomes (a11t(a )2 + a3 r(a)2) /2 where r is the torsion of 

ii. 
But the height of the cross sectional trapezoid of the ca­

ble, measured parallel to its line of symmetry, is much larger 

tha.n its midthickness measured perpendicular to that line. So 

the strain 1t2 imposes a much grea.ter longitudinal deformation 

on curves passing through the endpoints of the line segment 

of symmetry and parallel to ii. than does 1t1 impose on curves 

along the two lateral faces of the cable. a2 Js much larger than 

at. The so-called "constant perimeter" condition10 requires that 

the integral of 1t2 ( s) along the length of the cable be zero so 

that "perimeters", curves parallel to R, maintain constant total 

lengths. The rectifying developable method carries this condi­

tion to a.n extreme. 1t2 is required to be identically equal to 

zero. The cable is modeled at this stage of the method by a 

long thin developable rectangle, a two-dimensional strip as if its 

trapezoidal cross section had zero thickness. 

A surface is developable if and only if it can be flattened 

out into a. plane without any stretching or tearing. (See the 

bottom of page 303 in [9).) Not only are the "perimeters" of 

the strip constant, so is the length of every curve in it. We 

constrain the cable to S by requiring ii. to be in S. Now we 

use a. nice result from differential geometry: Any smooth ii. in 

spa.cc, with nonzero curvature, is contained in one a.nd only one 

developable surface, its rectifying developable (see page 47 of 

[11)). The strip is uniquely determined by the condition that 

it be in the rectifying developable and that one of its sides lie 

along ii.. Now the frame Fis the Frenet frame of ii. (see page 

93 of [9)). 1t = lti, 1t2 = O, and the r of the cable equals the r 

of the curve. To find the configuration of the constrained cable 

in space we need only find the configuration of an unconstrained 

Euler-Bernoulli-Kirchhoff rod in the surface. 

To express 1t and r in terms of variables intrinsic to the 

surface we use still another moving frame, a special surface frame 

(see §130 in [9]) that can be attached to any smooth curve in 

S. It is obtained by rotating the Ftenet frame about its nut 

column vector, tangent to R, until its second is perpendicular 

to S. As in [1}, n and r can then be expre1Sed in tetms of the 



intrin_sic variables R, F11 -y a.nd -y' in the strain energy density 

expres~ion (2), where -y is the geodesic curva.ture (page 284 in 

[9]) of R.. 

The rectifying developable is not defined at singularities 

of R where tt does not exist or where it is equal to zero as 

along a straight section of the coil. If R is analytic the recti­

fying developable can be uniquely defined by continuity across 

the singularity. Otherwise it may be necessary to twist the strip 

away from developability in order to ma.ke a smooth transition. 

The degree of smoothness is measured by the smallness of the 

strain energy added by the twist. Because the rectifying devel­

opable is developable, it is a ruled surface (page 303 in [9]). It 

is swept out by a family of straight line segments, its rulings, 

parameterized bys where R(s) is the point at which the ruling 

intersects R. Let a be the angle of intersection of the ruling 

with R. The twist from the rectifying developable to this new 

strip, which we call the guiding strip, is for each s a rotation 

of amount rp(a) about F1(s) of the ruling through R(a), so a(s) 

is held constant. The guiding strip is still a ruled surface even 

though it is no longer developable. 

The guiding strip is now a model for the cable so we define 

F by rotating the Frenet frame also by an amount ip about the 

tangent to ii. Then F2 is perpendicular to the guiding strip and 

F3 is tangent to it. The total strain energy to be minimized is 
now 

1 l"''-' ( ) E("Y,ip) = - (a1 cos2 cp + a2 sin2 cp)tt2 + asr2 da. 
2 0 

(3) 

It is a functional of "Y (including its first derivative and, to get 

F1 and ii respectively, its first and second indefinite integrals, 

see §3 in [1]) and cp. It also depends on four endpoint conditions 

for "Y and two for cp. r is now the torsion of the guiding strip, 

not of ii. 

Strain Minimization Algorithms 

To minimize E("Y 1 cp) we iterate between two suboptimiza­

tions, alternatively minimizing with respect to "'( with cp fixed 

and cp with"'( fixed. This is the Alternating Variable Optimiza­

tion Method (see page 16 of [12]) except that we alternate be­

tween two orthogonal subspaces instead of all of the orthogonal 

coordinate axes. The proof of convergence is the same. 

We have found that good numerical accuracy can be ob-. . 
tained with a number of points along ii that is small enough to 

put the niinimization problem well within the range of modern, 

general purpose, numerical optimization programs; especially so 

3 
because our independent variables were chosen to put the prob-

lem in the domain of unconstrained optimization12 where nu­

merical methods, in particular conjugate gradient13 and quasi­

Newton13 methods, work well with smooth objective {unctions 

like ours for which we can find a very good initial guess. 

When numerical methods are applied in this way they a.re 

called "direct" methods in the calculus of variations (see Chapter 

8 in [14)). Available general purpose programs are straightfor­

ward and powerful and would undoubtedly be able to perform 

each of the two suboptimiza.tions or even optimize "'( and cp si­

multaneously. However they ignore all of the special structure in 

our model and a.re not capable of giving the user intimate access 

to it interactively during progress of the optimization, so we use 

a special purpose direct method. Though less automatic and 

more complicated it is appropriate at a time when we are still 

investigating various mathematical structures to be optimized. 

Applied mathematics is an art of a.pproximation and we 

a.re still investigating the approximations to be ma.de. We op­

timize cp only in a linear approximation. In a full perturbation 
expansion of the nonlinear problem, deriva.tives with respect to 

a of order higher than two a.re neglected. The solution is then 

just a cubic spline of a chosen monotonic function of a. 

The suboptimization of "Y can be achieved by solving the 

Euler-Lagrange equation with cp fixed. If rp is small enough to 

be neglected, the Lagra.ngian is to that extent independent of 

a. Then by Noether's theorem (§20 in [14J) the order of the 

differential equation can immediately be reduced by one. !£ the 

Lagrangian is independent of z then two more first integrals can 

be found. For example the surface of a right-circular cylinder 

has a. two-dimensional. family of symmetries so in reference (ll 

the equation is reduced to a single third order ordinary differ­

ential equation. (The first Noether reduction for our particular 

problem is explicitly given in the second part of problem 13 on 

page 52 of [14].) 

Partly for historical reasons in the development of the 

project, and partly because the equation may be singular at an 

endpoint, in [1] we solve it by a. special method of successive 

approximations, a direct method which simulates a physically 

reasonable relaxation of the cable into its equilibrium configu­

ration. 

Blocks of Cables 

The cables in a block are packed together with slightly 

changing cross sections as they twist around an end. Program 

BEND is supposed to predict the shape of the block so that 

when pressure is applied during the curing process the ca.bles 



will fit together exactly with neither gaps between cables nor 

bulges outside of the prescribed volume. 

Placement of the pa.eked cables is determined by an or­

thonormal frame F attached to ea.ch point i in the block. F1 

is tangent to the curve passing through it which is parallel to 

the axis of the cable containing i. When i is on the lateral 

surface of a. cable (not one of the parallel sides of a. trapezoidal 

cross section), then F 2(i) is perpendicular to that surface. In 

the unstrained block these lateral surfaces are all planar. We 

include them in a. family of disjoint planes whose union is the 

entire block. The family then constitutes a. foliation of the un­

strained block which is carried into a. smooth foliation of the 

strained block by two-dimensional surfaces that are no longer 

planar but still give a. continuous interpolation between the lat-

eral surfaces of ea.ch cable. F2 is defined throughout the block 

by the requirement that it be perpendicular to the foliation. 

At the end of the second section a.hove, F was defined 

on R by twisting the Frenet frame attached to the rectifying 

developa.ble until it was attached to the guiding strip. That F 

will first be extended from R to the rest of the S, and then from 

S to the entire block. Let 71(is) be the angle between F3(is) 

and the normal to Sat the point is in S. F3 is tangent to the 

foliation, so 71 satisfies an eikonal equation 

(4) 

on S where Vs is the gradient on S, and p is the signed radius 

of normal curvature in the direction Vs through is. 0(is) is 

the keystone angle of the cable (the angle between the extended 

nonparallel sides of the trapezoid) and ~(is) is its thickness a.t 

the edge in contact with S. The first term on the right-hand 

side of the equation is the rate of change of 11 caused by the 

keystoning. Its integral, (, with respect to arc length along a. 

characteristic of the equation is proportional to the number of 

cables traversed. The second term is the rate of change of 71 

caused by the curvature of S. 11 is determined by (4) and its 

known boundary condition on R. F1 must be tangent to S and 

perpendicular to V s11, so F3 and hence Fis determined over all 

of S by 11· 

In BEND, equation (4) is solved by a. forward difference 

scheme in which ea.ch cable corresponds to a single step. The 

functions 0 and ~ are determined by user input. The program 

then aqtomatically takes into account the variation of the cross 

sections ofthe cables along their lengths and their subsequent 

shifting along intercable surfaces so as to maintain contact of 

their outer edl?es with the constraining surface. 

4 
Let is( a,() in S be on the characteristic of equation ( 4) 

which intersects R orthogonally at a. Let 

ff= cos(a(a))F1(is) + sin(a(a))F3(is). 

To extend the definition of F from any point on S to the point 

i = is+a1P in the block, require ff1(i) to be parallel to ai/ as a.t 

i, and F3(i) a.t ito be in the plane spanned by F1(i) and ,8. The 

normal curvatures of S are assumed small enough with respect 

to the size of the block that F is now well-defined throughout 

the block. 

As a matrix of column vectors, F is the 3 x 3 submatrix in 

the upper left-hand comer of the 4 x 4 T-matrix of the robotics 

theorists (see Chapter 2 in reference [15)). These T-ma.trices 

a.re output from BEND for automation of the winding process. 

Planning for this project is being directed at Ferrnilab by Eric 

Haggard. AT-matrix is attached to ea.ch e~d of the straight sec­

tion of cable between the spool and the block. The T-ma.trix a.t 

the block contains the frame F attached to the midpoint of the 

line segment in the ruling of first contact with the outside surface 

of the underlying cable already wound. The other T-matrix, a 

rectilinear translate of the first along the straight section of the 

cable, is attached to the midline of the corresponding surface of 

the cable at the point where it leaves the spool. Between these 

two frames are interpolated other frames attached to the succes­

sive links in the kinematic cha.in constituting the arm of a robot 

manipulator. Bob Bonaguro has solved the inverse kinematic 

problem (see Chapter 3 in [15)) to obtain these interpolating 

frames for one of the manipulators that was proposed at Fer­

milab. He has coded his solution into a program which accepts· 

output from BEND and in turn outputs a file for input into the 

program controlling the robot. 

Traditionally stress-strain relations in rods and beams 
have been derived from a model made up of long fibers parallel 

to their axis, elongated or shortened by flexing and twisting of 

the rod. Thus the elastic properties of a three-dimensional rod 

could be derived theoretically from postulated elastic properties 

of idealized one-dimensional fibers. But the superconducting 

fibers in our cable are by specific design not parallel to its axis, 

and the insulation between cables in a block introduces still 
other complications. Further, the packing algorithm is accurate 

only to within first order in the midthickness, width and key­

stone angle of the unstrained cable. So the varying cross section 

of the strained cable is at present being checked empirically. 

Cured ends are sliced transversely at several points along the 

length of the block. Then actual dimensions of the cables are 

compared with their predicted values to recalibrate the program 

in our ongoing effort to increase its accuracy. An exposition of 



its use to design end parts for the 50mm SSC dipoles is being 

prepai:ed for publication.18 
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