
Fermi National Accelerator Laboratory

FSMI - VME to Lecroy 1821 Interface Routines
Preliminary Version

Dean Alleva
Computing Department - Evaluation Group

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois

August 1988

TM-1540

0 Operated by Universities Research Association Inc. under contract with the United Slates Department of Energy

FSMI - VME to Lecroy 1821 Interface Routines
Preliminary Version

August 1988

Dean Alleva
Computing Dept.- Evaluation Group

Fermi lab

1.0 Introduction

This document describes the VME/Lecroy 1821 Interface routines
(FSMI). These routines where designed to meet two needs. First, the routines
enable programs written in PILS running on a MVME 101 under Valet-Plus to
control a Lecroy 1821 FASTBUS interface from VME [1], [2]. Secondly, the
routines provide a high level language version of the FASTBUS standard
routines for the 1821 which can easily be translated into other high level
languages (like C). The routines fall into two general types, control and
transaction. The control routines (also called the 1821 primitive routines) work
directly with the 1821 interface. These routines set up and monitor operations
between VME and the 1821. The control routines are usually used indirectly by
the programmer through the transaction routines. The transaction routines,
such as FSMl_CYCLE_ARBITRATE, use the control routines to carry out
complete functions on FASTBUS.

To facilitate access to the 1821 registers from VME, a Super-VIOR
OMA board was used as a set of 1/0 register tied to the 1821 /DEC interface [3],
[4]. The OMA controller was not used in the preliminary version but will be
used in future versions.

The routines are written in PILS, a high-level language similar to
BASIC and Pascal. PILS, a relatively simple language, is powerful and fast
enough for most applications [1].

This document describes a preliminary version of the FSMI
routines. All necessary control routines have been implemented. The
FASTBUS standard routine library is functional up to the FASTBUS primitive
routine level. As with any preliminary software, further testing and coding needs
to be done before this software is truly useful.

This document is divided into four sections, the first being the
introduction. The remaining section detail the the FSMI routines, suggested
changes to 1821 microcode, and a reference section. It is assumed that the
reader is familiar with VME, FASTBUS, and has some knowledge of the Lecroy
1821 [2]. A copy of the FSMI software is available on BitNet at Fermilab as

"FNAL: :USR$ROOT:[ALLEV A. PU BLIC]FSMI. DEF"
"FNAL::USR$ROOT:[ALLEVA.PU BLIC]FSMl.PRM"
"FNAL::USR$ROOT:[ALLEVA.PUBLIC]FSMl.LIB"

1

2.0 The Routines

The FSMI routines are divided among three files. "FSMl.DEF"
defines constants used by the FSMI routines. "FSMl.PRM" contains the control
routines for the 1821. "FSMl.LIB" contains the FASTBUS standard routine
library. With the preliminary version, only the FASTBUS primitive routines have
been implemented. The more complex transaction routines can be built from
these primitives.

The preliminary routines have been built for easy expansion and
change. The control routines contain a set of microcode interface routines
which isolate the microcode calling sequence from the rest of the the FSMI
code. Microcode changes can be accommodate by changing the microcode
interface routines or by adding new routines.

The preliminary FSMI routines do not use the Super-VIOR OMA
features [3]. Data is transferred to or from the 1821 through a set of routines call
FSMl_P _GET_DATA and FSMl_P _LOAD_DATA. The data is moved by the
CPU from the 1821 to VME memory. To use the Super-VIOR OMA features,
these routines should be rewritten. Note, however, that the 1821/DEC interface
only allows OMA during reads.

2.1 Routine Description

1) FSMl_CYCLE_ARBITRATE

Description: Does an arbitration cycle, holding the bus when control is
gained.

2) FSMl_CYCLE_RELEASE_BUS

Description: Releases the bus by lowering GK.

3) FSMl_CYCLE_PA_DAT (pradd)

Description: Does a primary address cycle to data space.

Parameters:
pradd (INT32, input): The primary address.

2

4) FSMl_CYCLE_PA_CSR (pradd)

Description: Does a primary address cycle to csr space.

Parameters:
pradd (INT32, input): The primary address.

5) FSMl_CYCLE_PA_DAT_MULT (pradd)

Description: Does a broadcast primary address cycle to data space.

Parameters:
pradd (INT32, input): The primary address.

6) FSMl_CYCLE_PA_CSR_MULT (pradd)

Description: Does a broadcast primary address cycle to csr space.

Parameters:
pradd (INT32, input): The primary address.

7) FSMl_CYCLE_READ_SA (rword)

Description: Does a secondary address cycle read. Bus
mastership and primary address cycles must
be complete before using this routine.

Parameters:
rword (INT32, output): Returned word from read.

8) FSMl_CYCLE_WRITE_SA (wword)

Description: Does a secondary address cycle write. Bus
mastership and primary address cycles must
be complete before using this routine.

Parameters:
wword (INT32, input): Word to be written to NTA.

3

9) FSMl_CYCLE_READ_WORD (rword)

Description: Does a single word read cycle. Bus mastership and
primary address cycles must be completed before
using this routine.

Parameters:
rword (INT32, output): Word transferred.

10) FSMl_CYCLE_WRITE_WORD (wword)

Description: Does a single word write cycle. Bus mastership and

Parameters:

primary address cycles must be completed before using this
routine.

wword (INT32, output): Word to transfer.

11) FSMl_CYCLE_READ_BLOCK

Description: Does a block read cycle. Bus mastership and
primary address cycles must be completed before
using this routine. Reads until SS=1 (end of block).

13) FSMl_INITIALIZE (sv_add, retry_cnt, arb_vec, mod_num)

Description: Initialize the FSMI routines. This should be the first FSMI
library call in a program.

Parameters:
sv_add (INT32, input): VME address of Super-VIOR.
retry_cnt (INT32, input): Retry count.
arb_vec (INT32, input): Arbitration vector.
mod_num (INT32, input): 1821 module select number.

14) FSMl_RESET

Description: Resets the 1821 interface.

15) FSMl_DOWNLOAD (menu_number)

Description: Downloads a menu memory into the sequencer memory.

Parameters:
menu_number (INT32, input): Menu memory number (0-7).

4

3.0 Suggested 1821 Changes

After working with the 1821 for several weeks it had become
obvious that some of the microcode needed to be changed. Below is a list of
these needed changes.

1) Microcode routines should be added for clearing the bus but
leaving GK(u), putting AS(d) and waiting for AK(d), and clearing
the AD lines.

2) Primary address routines should support 32-bit addressing.
At present only the broadcast primary address routines
support 32 bit addressing.

3) Full support for the WT line should be included.

4) Support for FASTBUS block writes should be included.
This is necessary if the full Standard Routine library
is to be implemented. Better support for OMA writes
from the host should also be included in hardware.

5) The standard routine block transfers include setting the
size of the block to be transferred. At present, the
microcode block read transfers until a end of block
status response. A more general purpose
implementation of block transfers is needed (if this
is possible with the 1821).

5

4.0 References

[1] Barners-Lee, T. et al. The VALET-Plus, a VMEbus Microcomputer for
Physics Applications. Fifth conference on Real Time Computer
Applications in Nuclear, Particle and Plasma Physics - San
Fransisco, May 1987.

[2] Lecroy 1821 User's Manual, Revised March 1987

(3] Super-VIOR, VMEbus Dual 16-bit Input/Output Register with Full
OMA, hardware description, Opifex AB publication (Version 1.1)

(4] Lecroy 1821/DEC Manual, November 1984

6

