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SUMMARY 

This study concerns the application of the finite-difference 

time-domain, or FD-TD, technique to the analysis of transient 

cavity fields. In order to reduce the amount of computer time 

required, and to simplify the understanding of the results, only 

two-dimensional cases were considered. The results, however, are 

applicable to the study of three-dimensional cases. In two 

dimensions Maxwell's equations reduce to two orthogonal sets 

classified, according to their field polarization, as the 

transverse electric, or TE, and transverse magnetic, or TM, cases. 

Both are considered here. In order to verify the FD-TD results, an 

alternative approach using the method of moments, or MOM, technique 

was implemented to calculate the surface currents. The derivation 

of the algorithms used for both the FD-TD and MOM codes are 

presented. 

The first scatterer modeled was an infinitely long solid square 

copper cylinder. This geometry provided a simple test case to 

become acquainted with the FD-TD code used. 

simple geometry to solve with the MOM 

It also proved to be a 

technique. Using a 

rectangular cross section allowed the square discretizations of 

space to conform perfectly with the surface of the scatterer. 

The two-dimensional cavity geometry chosen was a hollow slotted 

cavity with an outside dimension coincident with that of the solid 

square cylinder. The infinite slot provided the means of exciting 
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SUMMARY (continued) 

the interior with an external plane wave traveling along the y 

axis. 

For both the TE and TM polarizations, the surface current was 

used to compare the FD-TD and MOM results. The MOM algorithm 

solved for the surface currents directly. For the FD-TD method, 

the surface currents were calculated from the magnetic fields at 

the surface of the scatterer. 

The FD-TD code was then modified 

current amplitude in the time domain. 

pole at zero frequency, due to an 

to investigate the surf ace 

For the TM polarization the 

infinite length, was found to 

have a significant effect. For the TE polarization a mode related 

to the circumference of the scatterer is revealed. A fast f ourier 

transform applied to the time domain data helped to identify these 

phenomena. 

In order to excite more than one mode at a time, the incident 

plane wave was given a gauss1an time dependance. Results of the 

application of a fourier transform to this time domain data are 

presented. To improve the fourier transform results, the 

application of several types of time domain windows are discussed. 

ix 
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I. INTRODUCTION 

1.1 Purpose for study 

Many devices are used in a particle accelerator, such as the 

one at Fermi Laboratory, to interact with the electromagnetic 

fields of the particle beam. Resonant radio-frequency cavities are 

used to accelerate the beam, large high field magnets are used to 

steer the beam, and a variety of detectors are used to monitor such 

things as beam position, intensity, and density. All share the 

common trait of interacting with electromagnetic fields. As the 

understanding of these devices improves, higher energy, more 

efficient, and more reliable accelerators can be built. Since 

Fermi Lab has been commissioned, theorists have come to realize 

that even the shape of the vacuum chamber the beam travels in plays 

an important role in the stability of the beam. Resonant 

structures such as vacuum bellows, detectors, or cavities can 

induce modulations, or instabilities in the beam if the fields 

generated by the beam passing through them are of sufficient 

amplitude. These instabilities cause the beam to dilute, which 

either limits maximum intensity, or requires larger aperture, or 

equivalently more expensive machines (8). 

This work is intended to be a study into the application of the 

finite-difference time-domain, or FD-TD technique, to some of the 

problems faced by designers of equipment used in modern 

accelerators. In particular it discusses using the FD-TD algorithm 
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to study the field distribution of a simple two-dimensional cavity 

in both space and time. 

The frequency range of interest is limited to essentially DC to 

several gigahertz. The interaction of passive devices with the 

beam is through the frequency components contained within the beam 

current. For circular accelerators, the lowest possible 

frequencies of interest are the go-around rate and its harmonics, 

the order of 10 to 100 KHz. Such things as intentional beam 

steering and synchrotron 

are easily controllable by 

frequencies may 

other methods. 

be disregarded as these 

Lower frequencies are 

usually not a 

affect the beam 

problem as the fields required to significantly 

increase as the frequency decreases. An upper 

frequency limit is set by the beam's velocity and the required 

clear aperture. The electromagnetic fields of a relativistic point 

charge are contained within an angle given roughly by 1/gamma, 

where gamma is the ratio of its total energy to its rest energy. 

times the speed of light and an 

be .84 cm wide at the inside 

Thus for a particle velocity of .9 

aperture of 2 cm, the fields would 

surface of any device. Equating this to a wavelength, the highest 

frequency is about 3.6 GHz. Another upper frequency limit is the 

cutoff frequency of the beam tube. Rather than building up, the 

fields within a spurious resonator can propagate away. 

The FD-TD algorithm is particularly well suited for this 

purpose as it uses a time stepping algorithm to solve Maxwell's 

curl equations in the time domain. As implemented here, the time 
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dependence of the incident plane wave is easily modified to the 

users specification. This allows studying the results directly in 

the time domain or alternatively using a Fourier transform to 

investigate the frequency response. 

1.2 Background 

In general, analytic solutions to Maxwell's equations cannot be 

found. With exception for a few special two-dimensional cases 

such as the circular cylinder. For three dimensions, only the 

spherical geometry has been solved. Asymptotic and series 

approximations have been used to extend solutions to slightly more 

complex shapes. The use of analytic solutions limits the design of 

devices to shapes approximating ones with known solutions. Because 

of the approximations used, models must be constructed and tested 

in order to verify their performance. 

time consuming process. 

This can be an expensive and 

Numerical solutions to Maxwell's equations performed on a 

computer, have proven a powerful and versatile tool. They can be 

used with all types of materials including mixtures of 

They are applicable to inhomogeneous, anisotropic and nonlinear. 

all frequency ranges from magnetostatic or electrostatic to 

microstrip and microwave circuits. 

model is limited by computer storage 

three-dimensional FD-TD codes have 

spanning up to nine wavelengths (11). 

The bandwidth of a particular 

and running time. However, 

been used with structures 
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The most versatile and widely used techniques involve using a 

first order accurate numerical approximation to either Maxwell's 

integral or differential equations. Space is discretized into 

rectangular cells with each scaler field quantity defined at an 

appropriate location within each cell. 

with the permittivity, permeability, 

The scatterer is specified 

electrical conductivity, and 

magnetic resistivity at each field location. The techniques can be 

implemented in either the frequency or time domain. For the 

frequency domain, a single frequency is assumed and the time 

derivatives of a scaler field quantity are replaced with jw times 

that quantity. For time domain solutions, the time derivative is 

replaced with a difference equation. Frequency domain solutions 

for high Q cavity modes are usually performed more efficiently by 

formulating a matrix whose eigenvalues characterize those modes 

(14). 

The finite-integral theory, or FIT, and the finite-difference 

time-domain, or FD-TD, methods reduce to identical difference 

equations and are thus synonymous, provided rectangular cells are 

used to discretize the volume of space being modeled. The stepped 

edge approximation to curved surfaces can have anomalous effects if 

the wavelength used approaches the cell size. Recent work has 

provided a solution to this problem by imposing Faraday's law in 

integral form to the intersection of the spatial cells and the 

curved surface (15). This effectively allows a curved surface to 

slice through the appropriate cells. 
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Reference (9) provides an excellent introduction to some of the 

current uses of the FD-TD technique. They include penetration of 

narrow slots and lapped joints, coupling of wires and wire bundles, 

penetration of biological tissue, scattering by relativistically 

moving surfaces, and inverse scattering reconstructions in one and 

two dimensions. 

Existing programs commonly used for the calculation of 

electromagnetic fields in the accelerator community include the 

following: 

POISSON calculates electrostatic and magnetostatic 
fields (1). 

SUPERFISH computes resonant frequencies and fields in 
radio-frequency cavities using linear dielectric and 
magnetic materials and triangular cells (1) . 

URMEL uses the FIT method to formulate a matrix which is used 
to solve for the eigenmodes of high Q cavities (14, 17). 

TBCI uses the FIT method in the time domain to calculate 
beam wake fields (15, 17). 

MAFIA is a combination of three-dimensional versions of 
URMEL and TBCI within one integrated program (17). 

The FD-TD code used in these studies was authored by Dr. Allen 

Taflove at Northwestern University. The code is documented in 

reference (10) . This code, unlike the above, has implemented a 

radiation boundary condition which allows modeling fields external 

to a cavity. Because it solves only two of the four Maxwell's 

equations it will not work for static fields, however. 
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II. THE TWO-DIMENSIONAL FINITE-DIFFERENCE TIME-DOMAIN ALGORITHM 

2.1 Solving Maxwell's equations 

The FD-TD technique is a computer algorithm used in solving 

Maxwell's curl equations given below. 

satisfy Maxwell's other two equations, 

time varying fields (4) . 

oH 1 VxE EJIJ. H 
at f' µ 

oE 
= 1 vxH - £..e E at E E 

E Electric field 
H Magnetic field 
E Permittivity 
µ Permeability 
Ue Electric conductivity 
Pm Magnetic resistivity 

The curl equations will 

= p 

volts/meter 
amps/meter 
farads/meter 
henrys/meter 
mhos/meter 
ohms/meter 

and V•B = 0, for 

(2.1) 

(2. 2) 

For the three-dimensional case, the FD-TD algorithm divides a 

volume of space fully containing the scatterer, or cavity, into 

cubes and assigns the six field quantities Hx, Hy, Hz, Ex, Ey, and 

Ez to an appropriate location within each cube. The scatterer is 

specified with the values of permeability, permittivity, electrical 

conductivity, and magnetic resistivity for each scaler field 

quantity. On alternate half time steps Rx, Hy, and Hz are 

determined, then Ex, Ey, and Ez. This will simulate the 

propagation of an electromagnetic wave though the data space of the 

model. The radiation boundary conditioh allows the volume of space 

being modeled to have a finite size. In order to reduce the 
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computation time and storage requirements only two-dimensional 

algorithms are investigated. The results, however, should be 

applicable to three-dimensional problems. 

In order to implement a two-dimensional case, both the 

excitation and the modeled geometry are not allowed to vary along 

the z axis. This makes all partial derivatives with respect to z 

identically zero. With this simplification, Maxwell's curl 

equations reduce to two orthogonal sets termed the transverse 

magnetic,or TM, and the transverse electric, or TE, cases. 

TM case (Ez, Hx, Hy fields only) 

oHx 
at 

aHy = 
at 

aEz = 
at 

1 (aEz + PmHx) µ ay 

~ rn~z PmHY) 

l (aHy 
E ax 

aHx ) - -- - UeEz ay 

TE case (Hz, Ex, Ey fields only) 

oHz = 
at 

aEy = 
at 

1 (aEx 
µ ay 

1 (aHz 
E Oy 

oEy 
ox PmHz) 

(2. 3) 

(2. 4) 

(2. 5) 

(2. 6) 

(2. 7) 

(2. 8) 

The above equations are equally valid when applied to total, 

scattered, or incident fields separately. If used for the total 

fields, however, the required continuity of the tangential field 

components at the interface to dissimilar media is automatically 

accounted for. 
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It is interesting to note that the TE and TM cases are the dual 

of each other with the following mapping. 

TM TE 

Hx ~ -Ex 
Hy ~ -Ey 
Ez ~ Hz 
E ~ µ 
µ ~ E 

Pm ~ Ue 
Ue ~ Pm 

Thus code written for the TM case is equally applicable to the TE 

case. The code used for this study, however, did not take 

advantage of this symmetry and used separate algorithms for the two 

cases. This requires offsetting the TE and TM fields within the 

grid. This approach correlates better with the three-dimensional 

case but requires more computer storage as both cases are solved 

simultaneously. 

In 1966, an algorithm using second-order accurate central-

difference approximations for the space and time derivatives of the 

electric and magnetic fields was introduced (18). A unique point 

1n space and time is specified with the four integer components 

(i,j,k,n) which represents the point (iftx,jfty,kftz,nftt). Using F to 

denote a generic field quantity Hx, Hy, Hz, Ex, Ey, or Ez the 

amplitude of a field at a unique point in space and time is 

specified with; 

Fn(i,j,k) = F(iftx,jfty,kftz,nftt) 



The space and time derivatives become; 

aFn(i, j ,k) 
ax 

oFn(i. j ,k) 
at 

Fn(i+l/2, i ,k) - Fn(i-1/2, j ,k) 
h.x 

Fn-1/2 C . k) 
1 ' ] t 

= ~t 

g 

(2. 9) 

(2. 10) 

As seen later, space and time discretizations are selected to 

bound errors in the sampling process and to insure numerical 

stability of the algorithm. In all subsequent work it is assumed 

that h.x = h.y =ti.. For two-dimensions, the location of the fields 

within a cell, and the cross section of an arbitrary cavity are 

shown in figure (2-1) below. 



Truncation Boundary 

I I I I 
Conducting Surface 

I I 
i/ 

-----------I I I \ Cavity 
I I 

J 

I I 
Aperture 

I I 

J 
I / 

I / " kinc~Htnc -I / 

/ '- I Einc _ 

TM Plane Wave 
Source 

TM TE 

Hx(i,j) Ey (i, j) 

Hy (i, j) 
T e 
Lz(i,:) __ 

Ez(i,j) Ex (i, j) 

figure 2-1. An arbitrary two-dimensional cavity and the 
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location of field components within the FD-TD cell 

Applying the Yee approximations, equations (2.9) and (2.10), to 

equations (2.3), (2. 4) ' (2.5) and simplifying, the following 

equivalent equations for the TM case are obtained (18, 13). 



m = mediaHx(i,j+l/2) 

Hxn+l/2 (i,j+l/2) = Da(m) Hxn-l/2 (i,j+l/2) 

+ Db(m) [Ezn(i,j) - Ezn(i,j+l)] 

m = mediaHy(i+l/2,j) 

Hyn+l/ 2 (i+l/2,j) = Da(m) Hyn-l/ 2 (i+l/2,j) 

+ Db(m) [Ezn(i+l,j) - Ezn(i,j)] 

m = mediaEz(i,j) 

E n+l(. ') z 1,J == Ca(m) 

+ Cb(m) 

+ 

1 
O"E(m)llt -

2E(m) Ca(m) = O"E (m)llt 
1 + 

2E (m) 

ll t 

Ezn(i,j) 

[Hyn+l/2 (i+l/2,j) 

Hxn+l/2 (i,j-l/2) 

1 
Cb(m) = E (m) {\. em(m)ll.t 1 + 2E (m) 

1 em (m) llt -
2g(m) Da(m) = em(m)llt 1 + 2µ(m) 

Db(m) 
ll.t 1 

= µ (m)ll. em (m) ll.t 1 + 
2µ(m) 

- Hyn+l/2 (i-1/2,j) 

- Hxn+l/2 (i,j+l/2)] 
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(2. 11) 

(2.12) 

(2.13) 

(2. 14) 

(2. 15) 

(2. 16) 

(2. 17) 

With only a few types of material being modeled it becomes more 

efficient to use a media type array which points to the media 

constants. For example one integer contains 16 bits. This could 

be allocated to the 3 field quantities Hx, Hy, and Ez with 5 bits 

for each, these 5 bits could point to 25 = 32 types of media. This 

will require significantly less computer storage than storing the 
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two floating point media variables for each field quantity. Again 

note that Ca is the dual of Da and Cb is the dual of Db. 

Looking at equations 

aspect of the algorithm 

(2.11), (2. 12) 

is revealed. 

and (2.13), 

Each new 

an important 

value of the 

magnetic. field at a specific point depends on the same quantity at 

the same point but one time step earlier and two electric field 

quantities evaluated one half time step earlier. This is similar 

for the electric field. Thus, the algorithm first steps through 

all space points updating the magnetic fields then one half time 

step later updates all of the electric fields. This calculation is 

performed in place and does not require extra computer storage. In 

order to obtain time domain information one must allocate storage 

and copy the appropriate field quantities at each half time step. 

Because it is necessary to discretize both space and time, this 

algorithm provides a step approximation to smoothly curved surfaces 

and smoothly changing time domain functions. 

has been found to provide adequate solutions. 

In many cases this 

For the rectangular 

geometries considered here, the spatial cells conform perfectly to 

the surface. For curved surfaces, a model has been developed using 

Faraday's law in the integral form to allow a curved surface to 

slice the appropriate cells (15). 

2.2 The total/scattered field interface 

The modeled volume of space is divided into two regions: the 
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total field region near the object and the scattered field region. 

The interface between these two regions is chosen to be a simple 

geometry, usually a cube for three dimensions which reduces to a 

square for two dimensions. Equations (2.11), (2.12) and (2.13) are 

equally valid within either region, however, steps must be taken at 

the interface to insure the separation of total and scattered 

fields. The use of total fields near the object simplifies the 

calculation of incident waves and improves the dynamic range of the 

algorithm. Code which keeps track of scattered and incident fields 

separately must calculate the difference of two possibly large 

magnitudes at the interface of dissimilar media, if the difference 

is small, numerical noise will result. This will require the 

calculation of the incident fields at this possibly complex 

surface. Use of the scattered field region is required for the 

application of the radiation boundary condition but also allows the 

definition of a virtual surface on which the scattered fields are 

defined and from which the far fields may be calculated, as for the 

radar cross section. 

For the TM case, the necessary corrections applied at the front 

of the grid, the side parallel with the x axis and nearest to it, 

are discussed below. The other sides are similar. The interface 

is chosen to coincide with the Ez field points. Points lying on or 

inside the interface are defined as representing total field. The 

simple relation that must be maintained for tangential fields is 

simply that the total field be continuous. In order to correct the 

numerical algorithm, Ez incident is required on the interface 
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at all four sides, Hx incident on the front and back sides, and Hy 

incident on the right and left sides. Hx and Hy incident are 

evaluated one half cell outside of the interface. Rewriting 

equations (2.11) and (2.13) explicitly indicating total, incident, 

and scattered fields, the correction at the interface becomes quite 

simple. The equations for Hx and Ez at the front interface are 

shown here. 

Hxscatn+l/2 (i,j-1/2) = Da(m) Hxscatn-l/2 (i,j-1/2) (2. 18) 

+ Db(m) [Eztotn(i,j) - Ezscatn(i,j-1)] 

(2. 19) 

+ Cb (m) [HYtotn+l/2 (i+l/2,j) - Hyt0 tn+l/2 (i-l/2,j) 

+ Hx n+l/2( .. 1/2) !'-- n+l/2c· . 1/2)] scat 1,J- - =tot 1,J+ 

The correction is performed by adding the appropriate incident 

fields to those given by the numerical algorithm at the surface of 

the interface, equations (2.11) through (2.13). At the corners, Ez 

requires two extra terms. This can be absorbed into the algorithm 

easily by allowing it to operate on the corner value while 

correcting both adjacent sides. As described in the next section, 

these equations allow the introduction of arbitrary incident 

fields. 
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2.3 Excitation with the incident fields 

In order to improve the efficiency or decrease the number of 

calculations, a look-up table method is used to determine the 

required incident field values. The total/scattered field boundary 

with an incident plane wave is shown in figure (2-2). The angle of 

incidence with respect to the x axis is ¢ where 0 ~ ¢ < 90°. 

y 

(io,jo) 
~ 
kine 

r 

x 

figure 2-2. Incident plane wave with total/scattered field 

interface. 

The incident plane wave will make initial contact with the 

lower left corner. The time required to reach a point m, where the 

incident field is to be calculated, 1s the same as the time 

required for the wave to travel from the initial contact corner to 

point d. This is the basis for the look-up table approach. 

Simulate the propagation of a plane wave along a one-dimensional 
A 

grid parallel with the unit kine vector. In order to calculate a 
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field quantity at point m, d is determined and a linear 

interpolation is used between discrete steps in the one-dimensional 

grid. Letting ic and jc represent the x and y coordinates of the 

first corner the plane wave reaches, then the following relations 

are used. 

o· s rf> < go• (ic,jc) = (io, jo) 

go• s rf> < iso• (i1,jo) 

iso• s ¢ < 270° (i1,j1) 

270° s ¢ < 360° (io,j1) 

I\ 
kine = (cos¢,sin¢) 

r(m) = (i-ic,j-jc) form= (i,j) 

d = I (i-ic)cosrf>, (j-jc)sinifll 

In order to generate the look-up table, or propagate the 

incident wave, equations (2.11), (2.12) and (2.13) are simplified 

to one dimension below. 

Hincn+l/2 (d+l/2) = Hincn-l/2 (d+l/2) (2 .20) 

+ llvp(¢=0°) 
µ Vp(</J) 

Eincn+l (d) Eincn(d) (2.21) 

+ 
lit 

Ell vp C¢=o·) 
[Hincn+l/2 (d-1/2) - Hincn+l/2 (d+l/2)] 

Vp(t/i) 

The ratio vp(t/1=0°)/vp(t/i) is used to adjust ll so that the wave 

propagates along the one-dimensional grid at the same velocity it 



would propagate along the 
A 
kine 
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direction in the two-dimensional 

grid. This will be discussed more thoroughly in section 2.5 which 

covers dispersion. The required x and y components of the field 

are extracted from the incident components according to the 

following relations. 

Hxinc(d) 

Hyinc(d) 

Ezinc(d) 

Hinc(d)sin(¢) 

-Hinc(d)cos(¢) 

Einc(d) 

To induce a wave on the one-dimensional grid, simply set one 

end point electric field to the time function required. If de is 

the point coincident with the corner and dc-2 is the first point in 

the grid then the following relation is used. 

(2.22) 

The magnetic field quantities will be generated by the FD-TD 

algorithm one half time step and one half cell later. In order to 

terminate the end of the grid, the last point is set to the 

previous value of the next to the last point as shown below. 

n+l n Ez (last) = Ez (last-1) (2.23) 

n+l n+l I Ez (last-1) = Ez (last-1) Yee (2.24) 

The magnetic field is terminated similarly. This is equivalent to 

the wave traveling through the boundary and is an exact solution, 

at least to the order of the numerical resolution of the computer, 

for the one-dimensional case. 
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2.4 The radiation boundary condition 

The computation zone or lattice is limited in size by the 

amount of computer memory available. In order to eliminate the 

simulated reflection of waves from the lattice truncat.ion planes a 

radiation boundary condition is applied. Basically, a "one-way" 

wave equation is enforced on the tangential field components at the 

boundary. 

Assuming two dimensions, the wave equation operating on a 

generic scaler field component, can be expressed in operator form 

(13) . 

1 (82 82 1 a2 ) 
LF = (Dxx + Dyy - ~2Dtt)F = ax~ + ay2 - ~2at2 F = 0 (2.25) 

dividing L into two parts; 

LF = L+L-F 0 

Dt L - Dx j 1-s2 c (2. 26) 

L+ = Dx + Dt j1-s2 c (2.27) 

s = 1 !2Y 
c Dt 

The radical term involving S classifies L- and L+ as a pseudo 

differential operator that is nonlocal in both space and time. In 

equations (2.26) and (2.27), L- represents a 11 one-way" wave 

equation for waves traveling in the negative x direction with L+ 
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for the positive x direction. Exchanging Dx and Dy provides the 

relations for the y direction. 

It has been shown in (2) that that equations (2.26) and (2.27) 

are exact solutions and would provide perfect absorption if applied 

to the tangential scaler field components at the lattice truncation 

boundaries. The presence of the radical prevents an exact 

implementation, however, a two-term Taylor series approximation as 

shown below is given in (6) . 

Ji-s2 ~ 1 - s2;2 (2.28) 

or for a negative x directed plane wave; 

L F = (Dx - ~t + ~~iv) F = 0 (2.29) 

multiplying by Dt and expanding; 

(2.30) 

Equation (2.30) is a 11 one-way 11 wave equation for the negative x 

direction. The equations for the other three directions are 

similar. The sarne set of equations have been derived by factoring 

the dispersion relation and using a similar approximation for the 

radical term (12). 

The finite differencing scheme for equation (2.30) was 

originally developed in (6), however the equations illustrated here 

for two dimensions at the left boundary were obtained from (13). 



1-------- - -
F(O,j+l) 

F(O,j) 

F(O,j-l)j 

I 

F(l/2,j) 

x = 0 

F(l,j+l) 

F(l,j) 

F(l,j-1) 
I 
I 

x = 1 

20 

figure 2-3. Field points used to apply the radiation boundary 

condition on the left side. 

Dxt Fn(l/2,j) = 

= 

~ Fn+l(l/2,j) - ~ Fn-l(l/2,j) 

21\t 

21\t 

n 1 (a2 n . a2 n . ) Dtt F (1/2,j) = 2 at2 F (O,J) + at2 F (l,J) 

+ 

(2.31) 

(2. 32) 
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Dyy Fn(l/2,j) 1 (o2 n . ) o2 n . ) (2.33) = 2 ot2 F (O' J + oy2 F ( 1, J) 

1 (Fn(O, j+l) - 2 Fn~o, j) + Fn(O,j-1) 
= 2 /1y 

Fn(O,j+l) - 2 Fn~l, i.L. + Fn(l, j-1)) + /1y 

Substituting equations (2.31) through (2.33) into (2.30) and 

solving for Fn+l(O,j) the appropriate radiation boundary condition 

for the negative x direction is obtained. 

+ c/1:11+ /1 [Fn(O,j) + Fn(l,j)] (2.34) 

(c/1t)2 
+ 211(c/1t + 11) 

+ 

Similar equations may be found for the other three directions. 

2.5 Numerical stability and dispersion 

Numerical stability of the algorithm described in section 2.1 

places a restriction on the time step size relative to the grid 

step size. It is shown in (13) that if the following limit is 

maintained the code will be stable. The velocity is represented by 

tJ . 

1 
11z2 

(2.35) 



or if /'J.x 

/'J.t ~ __ ,.,_ 

11.f3 

/'J.y 
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/'J.z = f'J.; 

For one dimension the time step must be less than or equal to the 

amount of time required for an electromagnetic wave to propagate 

from one grid point to the next. Typically for two dimensions, the 

time step is chosen as /'J./2c which provides a satisfactory margin 

for stability. 

The dispersion relation for the three-dimensional FD-TD 

algorithm is found by substituting the equation of a plane wave for 

the field quantities into equations (2.11), (2.12) and (2.13). 

Combining the three equations to remove the field amplitudes 

results in the dispersion relation below. (13) 

(_1 )2 . 2(w/'J.t) 
11/'J.t sin 2 (L) 2 . 2 rkfu:) + /'J.y sin , 2 (2.36) 

(L) 2 . 2 (kz/'J.z) + /'J.z sin 2 

In the limit when /'J.t, /'J.x, /'J.y, and /'J.z go to zero, the ideal 

dispersion case, which may be derived similarly from Maxwell's 

equations, is obtained. 

w2 2 2 2 tJ2 = kx + ky +kz (2.37) 

For two dimensions, with the added simplification that /'J.x = /'J.y 

= f'J. and allowing a to represent the propagation angle with respect 

to the x axis, the following equation is obtained. 
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[_A_J 2 . 2 [w/l.tJ tJ/l.t sin 2 
(2. 38) 

The above equation was solved numerically in (13) Figure (2-4) 

shows the phase velocity versus propagation angle for three grid 

sizes. Selecting a grid size of A/20 results in less than one half 

of one percent variation in phase velocity with propagation angle. 

Figure (2-5) shows the dependence of phase velocity on the grid 

cell size for the two extreme propagation angles 0° and 45°. The 

propagation velocity goes to zero between a grid size of A/3 and 

A/2, depending on propagation angle. 

Because the phase velocity decreases with increasing grid size, 

or equivalently increasing frequency, pulse distortion will occur. 

This will show up as high frequency ringing on the trailing edge of 

fast changing fields. There are special cases where there is no 

dispersion. For three dimensions this occurs when /l.t = /l./c~3 and 

kx = ky = kz k/~3. Equation (2.36) reduces to the ideal case 

with these substitutions. For one dimension this case is 

equivalent to setting /l.t = 11/c. Figure (2-6) compares a gaussian 

pulse, with at of 796 psec, after propagating 7367 time steps in a 

one-dimensional FD-TD grid with /l.t = 11/c, the ideal case, and /l.t = 

/l./2c. The parameters were chosen to equate with those of the two-

dimensional FD-TD test case to be discussed in section 6.4. The 

grid step size was .0397888 meters and the nominal velocity was c. 

Figure (2-7) uses the same model parameters as figure (2-6) except 

with a 5 nsec wide square pulse. Because the rising and falling 

edges are much faster, there is significantly more ringing after 

only 393 time steps. 
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a • l./20 Ideal case 

i.oo L-_-_-_-1-~---_-_-_-_-_-_-_·-_-_-_-_-_-_-_-_-__ / _________________ -_-_-_-_ 

0.99 6 ~ l./10 

0.98 
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6 z l./5 

0.95 

0.94 L-~~-'-~~~'-~~-'-~~~.I.._~~-'-~~~.._~~-'-~~~.._~~-' 
o· 10" 20° 30' 40° 50° 60° 70° 80° 90° a 

Wave propagation angle 

figure 2-4. Variation of phase velocity with wave 
propagation angle; reproduced from (14) 
with permission of author 
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figure 2-5. Variation of phase velocity with grid 
step size; reproduced from (14) with 
permission of author 
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6t = 6/c 

6t = 6/2c 

figure 2-6. Effect of time step size on the dispersion of a 
gaussian pulse, with ut = 796 psec, after 7367 
time steps in a one-dimensional FD-TD grid 

6t = 6/c 

6t = 6/2c 

·~ .. · 
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figure 2-7. Effect of time step size on the dispersion of a 
square 5 nsec wide pulse after 393 time steps in 
a one-dimensional FD-TD grid 



2.6 Obtaining magnitude and phase 

Because the FD-TD algorithm 
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calculates the scaler field 

quantities, a special algorithm 

and phase at each time step 

states that that at least two 

is required to obtain the magnitude 

(10). Shannon's sampling theorem 

separate time samples are required 

within one period to uniquely specify a sine wave. 

assumes that a pure sine wave is being measured. 

This of course 

The presence of 

DC or more than one frequency will complicate the requirements. 

The algorithm in the code used requires the storage of five 

floating point numbers for each field quantity; Hx, Hy or Ez for 

the TM case. The cost in terms of computer storage is quite high, 

increasing the field storage requirements by a factor of five. The 

qualities of each field component that are stored are the field 

amplitude, the change or difference from the last time step, the 

minimum and maximum value of the field quantity, and the phase. 

The algorithm works by monitoring the time derivative or the 

stored difference number. If the difference changes from negative 

to positive and the field component is negative, the minimum number 

is replaced with the current field amplitude. If the difference 

changes from positive to negative and the field is positive, a 

maximum is assumed and both the maximum and phase are updated. The 

phase is calculated by multiplying the current time step by the 

number of degrees per time step at the excitation frequency. The 



28 

phase is also corrected by interpolating between the old and new 

difference values to estimate the fractional time step when the 

difference passed through zero. This algorithm does not work when 

the DC offset is larger than the sine wave's amplitude. 
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III. THE METHOD OF MOMENTS ALGORITHM 

3.1 The transverse magnetic case 

The method of moments, hereafter referred to as MOM, is a 

technique for solving integral equations using a computer. For an 

arbitrary shaped, two-dimensional, perfectly conducting scatterer, 

the electric field can be obtained with the application of the 

Helmholtz wave equation to the scattered field and equating the sum 

of the incident and scattered field to zero at the surface of the 

conductor. The wave equation is given below. 

(3.1) 

k 0 is the wave number, or 2~/A, and Jz is the z directed surf ace 

current induced by the total transverse magnetic field at the 

surface. Figure (3-1) shows the cross section for the two-

dimensional problem assumed. 

Einc A 

~ kine 

p-p' 

Es cat 
1 -

Hine s p' 
0 

figure 3-1. Cross section of an arbitrary two-dimensional 

scatterer for the TM case. 
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The solution to the Helmholtz equation is given in equation 

(3.2) below (3). The zeroth order Hankel function of the second 

kind is denoted by H0 (2), p is a vector which denotes the source 

location, or position of Jz, and p' indicates the field location, 

or position of Ezscat· As Jz exists only on the surface of the 

conductor the integral is confined to the boundary of the scatterer 

S. At the surface of a perfect conductor the total electric field 

must be zero. 

EzscatO'J') ~ JJz(p)H0 (
2)(k0 1p-p'l)dl 

as 

Ezscat + Ezinc = 0 (on the surface ·-of S) 

(3. 2) 

(3 .3) 

Combining equation (3.3) with (3.2), the integral equation 

which must be solved through the method of moments, or MOM, 

technique is obtained. 

Ezinc(p') = ~ JJz(p)H0 (
2 )(k0 1p-p'l)dl 

as 
(p and p' are both on the surface of S) 

(3. 4) 

Let fn(p) be the set of basis functions used to discretize the 

surface current. Choosing the pulse function, fn may be defined as 

shown below. 

Pn-6/2 < p < Pn+6/2 
fn(p) (3. 5) 

otherwise 
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The symbol 6 is used for the separation of samples along the 

surface of S. Using fn, the surface current may be expressed as a 

sum over N points. 

N 

Jz(p) L an fn(p) (3.6) 

n=l 

Thus an represents the surface current along the interval 6. 

Equivalently, the scatterer is replaced by N current filaments 

equally spaced by 6 around the surface of S. 

Now define a set of weighting functions wm, inner product 

<wm, f>, and linear operator L. Choosing the set of delta functions.-

as wm; 

for p' = Pm 
otherwise 

Lf(p) = ~ Jf(p)H0 C2)(kolp-p'l)dl 

as 

<wm,f(p')> = Jrc;o')wm dl' = f(pm) 

as 

(3.7) 

(3. 8) 

(3.9) 

Let p, 1 and n indicate source location, p', l' and m indicate 

field location. Equation (3.4) may be rewritten using equations 

(3.7), (3.8) and (3.9) as shown below. 



<wm,EZincCP')> = <wm,LJz(p)> 

Expanding the left hand side; 

<wm,EzincCP')> = Jo(p'-pm)Ezinc(p')dl' = Ezinc(pm) 
as 

Expanding the right hand side of equation (3.10); 

<wm,LJz(p)> = Jo(p'-Pm) ~ JJz(p)Ho(2)(kolP-P' l)dldl' 
as as 

N 

= ~ J ( :Lanfn (p)) Ho (2) (ko IP-Pm I) dl 
as n=l 

N 

= :Lan(~ ffn(p)Ho( 2)(kol.P-Pml)dl] 
n=l as 

N .Pn+b./2 
= :Lan(~ fHo( 2) (kolP-Pml)dlJ 

n=l .Pn-6/2 

N N 

= :Lan <wm,Lfn(P)> = :Lan lmn 
n=l n=l 
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(3. 10) 

(3.11) 

(3.12) 

Letting Jz(pn) =an, and using equation (3.11), equation (3.10) can 

be rewritten in matrix form. 

(3.13) 
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Thus the discretized surface currents can be found by first 

calculating the matrix lmn, then inverting it and multiplying by 

the discretized incident field along the boundary of S. An 

approximation for lmn is given below (3). 

dmn = lfln-flml = j (xn-xm)2 + (Yn-Ym)2 

ID ¥ n lmn = ~ ll Ho(2 )(kodmn) (3. 14) 

m n lnn kon.o [\ (1 - j ~ ln('Y~~llJJ 4 (3. 15) 

j~ 2ir !!!!l 1/o = ko = = = Wo~µoEo ).. ti 

I 1.781 (eulers constant) 

When m = n, dmn = 0, and H0 (2)(0) ~ oo In order to overcome this 

singularity problem the small argument approximation is used for 

the Hankel function shown below. 

(for z small) (3. 16) 

3.2 The transverse electric case 

An approach for solving the TE case involves the solution to 

the Helmholtz wave equation applied to the magnetic vector 

potential A. Using the solution to the wave equation, Hzscat can 

be expressed in terms of the surface current as shown below. 



A(p ') ~ fJ(p)Ho(
2

)CkolP-P'l)dl 

oS 

Hscat (p ') L = 4j v X JJ(p)H0 (
2) (kol,ii-p' i)dl 

oS 
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(3 .17) 

Figure (3-2) shows the cross section of an arbitrary two-

dimensional perfectly conducting scatterer. As indicated, ~ 1.S the 

unit normal vector and /' 
r is the unit tangential vector to the 

surface, so that~=~ X ~. Using the direction of surface current 

shown, JT c~n be expressed in terms of Hzinc and Hzscat· 

- /\ -
J = n X Htot 

JT = -(Hzinc + Hzscat) 

T Einc 

" ©--'V\r+ kine 

p-p' 

Hscat 

s 

figure 3-2. Cross section of an arbitrary two-dimensional 

scatterer for the TE case. 

(3. 18) 

Combining equations (3.17) and (3.18) and rearranging equation 

(3.19) is obtained. 



-Hzinc(/5') _L = Jr(p) + 4 j V X s~Jr(p)H0 ( 2)(k0 lp-p' i)dl 

as 

(p and p' are both on the surface of S) 
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(3.19) 

The integral is then broken into two parts, oS-S0 and S0 . The 

singular region of S, denoted by S0 , is that location where Jr and 

Hzinc coincide. The value of the latter integral is approximately 

-Jr/2 (3). 

-Hzinc(/5') = Jr(p) + _L v X J4'Jr(p)H0 (
2 ) (k 0 lp-p' l)dl 4j 

oS-80 

+ _L v X Jir1r(p)H0 (
2 ) (k0 lp-p' l)dl 4j 

I So 

~ Jr(p)/2 

-Hzinc(/5') 
1 Jr(p) _L J Jr(p)~Ho ( 2 ) (ko I p-p' I) dl (3.20) = 2 + 

4j 
oS-S0 

Using the pulse functions for fn and the delta functions for 

Wm, as in the TM case, an approximation for lmn can be found as 

shown (3); 

L = ~ + !j JgsHo(
2

)Ckolfi-p' l)dl 

oS-80 

lmn 

m=n lnn 

m;tn lmn 

1 = 2 

1 + = 2 

Jin+f../2 

!j JgiHo(
2

)CkolJi-/5ml)dl 

Pn-f../2 

(3.21) 

(3.22) 
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"' R = Cxm-Xn, Ym-yn) 
IPm-Pnl 

unit vector pointing from Jr(pn) 

~ = unit normal at the location of Jr(pn) 

(3. 23) 



IV. COMPARISON OF METHOD OF MOMENTS AND FINITE-DIFFERENCE 

TIME-DOMAIN ALGORITHMS 

4.1 Discussion of method of moments 
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MOM provides a solution for only a single frequency. Analysis 

of a structure with an incident field that has arbitrary time 

dependence would require decomposing the time domain function into 

a sum of single frequency sinusoidal parts and applying MOM to each 

separately. The result for each frequency requires storage at 

least for a few spatial points of interest. Once the frequency 

domain data has been taken, a Fourier transform could be applied to 

convert it to the time domain response. Alternatively, if all 

frequencies are modeled and results saved one could convolve the 

data with an arbitrary time domain function and obtain the desired 

response. 

MOM requires the evaluation of the incident field along a 

possibly complex structure. The algorithm becomes complicated if 

several types of media with arbitrary shape are being modeled. 

Special treatment is required for the singularity point, and 

corners on the scatterer must be treated with care. If the 

structure is excited at resonance it has been shown that the 

solution is not unique (16). 

For N points around the surface, MOM requires the inversion of 

and storage for, an N X N array. In addition, if analysis in the 

time domain is performed, storage for each frequency run is 

required. 
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For fields not on the surface, a separate integral equation 

over the surface must be formulated and solved. 

4.2 Discussion of finite-difference time-domain 

The incident fields may have any time dependence desired, 

however like MOM, analysis 

storage. For 

approximately 

N points 

((N+20)/4)2 

in the time domain requires additional 

around the surface, FD-TD requires 

storage when the lattice truncation 

planes are located 10 cells from the scatterer. 

The incident fields are only required on the surface of a 

simple total/scattered field boundary. In addition the time 

dependence need only be evaluated at one point on the one

dimensional incident field grid. 

If an impulse incident field is used, information about all 

frequencies can be obtained with only a single run. If a single 

frequency is applied, FD-TD requires a special algorithm to obtain 

the magnitude and phase information. This algorithm has a strong 

effect on the convergence of the final result. 
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V. SELECTION OF MODELING PARAMETERS 

5.1 The geometry and variables used 

Two geometries were modeled. 

cylinder offered a good starting 

The simplicity of a solid square 

point for the study. A slotted 

hollow square cylinder with the same outside dimension, was used as 

a simple cavity resonator. Both 

the z direction. A cross section 

TD grid is shown in figure (5-1). 

cells in the x direction and 48 

were assumed infinitely long 1n 

of the slotted cavity in the FD

The overall lattice size was 46 

cells in the y direction. This 

placed the 20 cell by 20 cell cylinder a minimum of 11 cells from 

the lattice truncation boundary. The total/scattered field 

interface was 4 cells inside the lattice on all sides. 

The permittivity and permeability were set to free space values 

and the magnetic resistivity was assumed to be zero throughout the 

grid. The scatterer is defined in the code by setting the 

electrical conductivity of the cells 

that of copper, 3.72xl07 mhos/meter. 

as having zero conductivity. The 

occupied by the scatterer to 

All other cells were defined 

code could be easily modified 

from that for the slotted hollow cylinder to the "solid" cylinder 

by specifying the conductivity of the cells within the slot. Thus 

the solid cylinder was really hollow. Several runs of the code 

were made with the solid cylinder to determine when a significant 

amount of.field would leak into the center. A frequency of 209.297 

MHz and cell size of .0397888 meters were used. The frequency was 

selected so that one half wavelength was equivalent to the inside 



50 

40 

30 

20 

10 

0 

0 

figure 5-1. 

40 

LATTICE TRUNCATION BOUNDARY 

TOTAL/SCATTERED FIELD INTERFACE 

-- 4 

10 20 30 40 50 

The FD-TD grid with cross section of the slotted 
cavity 



41 

dimension of the cylinder. This was done to amplify the effect of 

fields leaking inside. With u = 154 mhos/meter, about .1 to 1 part 

per thousand of the total field at the outside front surface leaked 

inside. The skin depth and attenuation through the one cell thick 

wall is estimated below. 

f 1 ___£__ = 209.297 MHz 
2 1811 

skin depth i5 1 .002803 meters = ~ U1rfµ = 

!:,, 
attenuation through 1 cell e 6 = 6.85x10-7 

Because the wall is only one cell thick, and the model was 

being driven near resonance, the FD-TD algorithm indicates more 

leakage than one might expect. However, since i5 is related to u 

times f with u = 3.72xl07 mhos/meter, the leakage should be minimal 

down to frequencies on the order of 209 MHz scaled by 

(154/3.72xl07), or 870 hertz. 

For all of the calculations in this paper the incident fields 

consisted of a plane wave traveling in the positive y direction. 

The frequency used for the frequency domain MOM/FD-TD comparisons 

was arbitrarily chosen as 300 MHz whose sole advantage is providing 

a wavelength of exactly one meter provided µ and E are chosen to 

yield a velocity of light of exactly 3xl08 meters per second. The 

cell size was chosen to make the 20 cell length of one side of the 

scatterer the order of one wavelength. If A is the length of one 

side in meters then choosing II = .0397888 meters provides a k 0 A = 
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5, where k 0 = 2~/A. Thus one side is .7958A long. This seemed far 

enough away from obvious resonances, for example A= A/2. Finally, 

the time step was chosen to be ~/2c, or 66.315 psec, which is 

safely below the numerical stability limit of ~/c~2. In the model, 

one wavelength at 300 MHz is about 25 cells, thus there should be 

small variations in phase 

frequency. 

velocity with direction at this 

The equivalent surface currents were used to compare the MOM 

and FD-TD results. The MOM algorithm solves for these directly. 

For the FD-TD algorithm they are given by the simple relation] = ~ 

X Bt0 t, where a is the unit normal to the surface and Htot is the 

magnetic field one half cell from the surface. 
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VI. RESULTS OF CALCULATIONS 

6.1 Square solid cylinder excited with 300 MHz 

The FD-TD code was allowed to run for 750 time steps or about 

15 cycles. Figures (6-1) and (6-2) compare the resulting surface 

current magnitude and angle from both the FD-TD and MOM codes, for 

the TE and TM cases respectively. The vertical lines indicate the 

position of the corners. For the TE case the difference between 

the MOM and FD-TD results is less than 13 for both magnitude and 

angle. 

Looking at the TM case in figure (6-2) , the MOM points are 

located in between the FD-TD points. 

fields are located within the FD-TD 

This is because of where the 

unit cell. Secondly, MOM 

predicts larger currents at the corners of the scatterer. This is 

because the FD-TD surface currents are calculated with the magnetic 

field one half cell away from the surface. Finally, on the 

backside of the scatterer the TM case diverges significantly for 

the two algorithms. The MOM algorithm indicates the amplitude 

approaches zero and has a more continuous phase, where the FD-TD 

result has a larger magnitude and 

These zero points were excluded 

reports a phase of exactly zero. 

from the phase plot. The first 

attempt at understanding this problem was to increase the incident 

field magnitude by a factor of 10, in the chance that the magnitude 

and phase algorithm in the FD-TD code was not detecting zero 

crossings. The code was also allowed to run for 50 cycles or 2500 

time steps; identical results were obtained. Later tests indicate 
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the magnitude and phase algorithm has difficulty with a DC 

component present in the backside, or shadow region, of the 

cylinder. This will be discussed more in the following sections. 

6.2 Slotted cavity with 300 MHz excitation 

Figures (6-3) and (6-4) compare the magnitude and phase of the 

surface current for the TE and TM cases on the slotted cavity. 

Both cases show larger differences than with the solid cylinder. 

Again, the FD-TD TM case has trouble with the backside and the MOM 

TM case has trouble with corners. The FD-TD numbers were obtained 

by allowing the code to run for 15 cycles or 750 time steps. 

In an effort to understand the difference between the MOM and 

FD-TD results, the FD-TD code was modified to list the magnitude of 

a few selected locations for each cycle of the field. The 

locations chosen were at the center of the inside and outside back 

surfaces. The code was allowed to 

steps, see figure (6-5). For 

run 

both 

for 50 cycles, or 2500 time 

the TE and TM cases, the 

currents on the outside back surface apparently converged after 15 

cycles, or 750 time steps, which was the cycle used for the 

comparison of figures (6-3) and (6-4). The current on the inside 

surf ace for the TE case has roughly a four cycle or 75 MHz 

oscillation which converges eventually. The TM case, however, has 

a large low frequency oscillation. 

discussed in the next section. 

These convergence problems are 
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6.3 Slotted cavity excited with 300 MHz in the time domain 

The FD-TD code was modified to list scaler field components at 

each time step. The tangential magnetic field components one half 

cell from the surface, at the six locations indicated in figure 

(6-6) below, were stored for each time step for both the TE and TM 

cases. As both the scatterer and the incident plane wave have 

symmetry around a line parallel with the y axis and passing through 

the center of the scatterer, 

half of the structure. 

-
I 

one need only be concerned with one 

outside 

I back 

\inside 
back 

inside -
right 

inside 
front 

I 
I 

I 
outside 
front 

outside 
right 

figure 6-6. Locations of the sampled field points. 

The relevant parameters to keep in mind for applying a Fourier 

transform are: 1) the useful bandwidth is less than one over the 

time sampling rate and 2) the frequency resolution is one over the 

total sampling period. If fit is the time per sample and N is the 

total number of samples, then; 

frequency resolution _1_ 
= Nllt 

= 2c 
Nfi 

for fit = IL 
2c (6.1) 



frequency bandwidth = ~1- £ 2llt = [I 
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(6. 2) 

The lowest frequency mode expected with the structure occurs at 

the frequency when the inside dimension is one half wavelength 

long, or 209.3 MHz. The largest measurable Q will be the resonant 

frequency divided by the frequency resolution. 

resonant frequency 

Qmax = Nli c 
2c 2(18li) 

c 
2(18!1) 

N 
4(18) (6.4) 

The FD-TD code was allowed to run for 5000 time steps. This 

required about 55 minutes of cpu time on a Vax 8650 computer, which 

was just under the default time limit of one hour. At 300 MHz, the 

excitation frequency, 5000 time steps corresponds to 100 cycles. 

This provided a Qmax of only about 69.4 for the 209 MHz mode 

expected. 

Figure (6-7) shows the TE results and figure (6-8) shows the TM 

results. In order to use a fast Fourier transform algorithm, the 

5000 point time record was zero extended to 8192 points. Although 

the entire time record is plotted, only the DC to one gigahertz 

frequency domain data is plotted. The most surprising result was 

the presence of energy at frequencies other than 300 MHz, most 

noticeable in the Fourier transforms of the inside fields of the 

cavity. 
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Energy at all frequencies is generated by abruptly turning on 

the 300 MHz incident plane wave. The excitation in the frequency 

domain can be thought of as the convolution of a 300 MHz plane wave 

with a pulse function having a period of 8192 bt, equal to 1 for 

5000 bt and zero for (8192-5000) ~t. This is also what causes the 

patterns below the noise level in the frequency domain, most 

notable in the plots of the outside fields. This did not show up 

when the time record was truncated to 4096 points, prior to the 

application of the fast Fourier transform in figure (6-9) . The 

nulls in these plots are caused by the window function which is 

slightly different in each because of the propagation delay 

difference between the three locations shown. 

Another interesting phenomenon is the presence of 44.5 MHz in 

the TE case. On the inside this component has an amplitude of 

roughly 30 db and on the outside it is 10 times smaller. The TE 

case will excite currents in the structure which circulate around 

its cross section. The 20 db difference between the inside and 

outside amplitudes implies that the inside and outside are not 

coupled very strongly. However, the frequencies are identical at 

least to the resolution of the plot. The outside circumference is 

4x20, or 80, cells; this is one half wavelength at 47.1 MHz. On 

both the inside and outside surfaces, there must be separate 

surface current modes whose resonant frequencies are shifted 

somewhat, and possibly coupled, through the complex impedance of 

the slot. For the inside TE case, this 44.5 MHz has a significant 

effect on the convergence of the 300 MHz component of the field. 
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As an example, at the center of the inside right face, the 44.5 MHz 

modulation is 8% of the 300 MHz amplitude after 5000 time steps. 

The magnitude and phase algorithm, used in figure (6-5), will 

reduce this component by a factor of two. This algorithm 

calculates the magnitude :from the maximum and minimum values of the 

field, which are separated by 1/2 of the 300 MHz period. In this 

period of time, the 44.5 MHz will have only a 27° phase advance, 

resulting in a maximum difference of 45% of its peak value. 

The time domain plot at the center of the outside back surface, 

shown in figure (6-8), reveals the reason for the differences 

between the MOM and FD-TD results seen in figure (6-5) for the TM 

case. Because an infinitely long structure is being modeled, it 

will have a TM mode resonance at zero frequency. The offset, which 

arises because of this mode, caused the magnitude and phase 

algorithm to fail. From the frequency domain plot, the 300 MHz 

component has an amplitude of 33.12 db or 45.3 amps/meter at the 

center of the outside"back. The MOM result was 38.7 amps/meter. 

As shown in section (6.4), when this structure is excited with 

a pulse, it has a lowest order TM mode at a frequency of about 294 

MHz, only 6 MHz away from the 300 MHz incident plane wave. The 

difference frequency would have a 

corresponds nicely with the 165 nsec 

period of 167 nsec, which 

period of the beat frequency 

appearing on the inside surfaces for the TM case, see figure (6-8). 

Noting that our first MOM/FD-TD comparison stopped after 15 cycles, 

750 time steps or 49.7 nsec, the correlation between MOM and FD-TD 
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for the inside surface currents was largely due to the choice of 

time step. For the TM case the algorithm has difficulty with a DC 

offset, and does not average over a long enough period of time to 

smooth out the 6 MHz oscillations. 

Finally, with a time step 

should be 7.54 GHz. Figure 

of 6/2c = 66.3 psec, the bandwidth 

(6-10) is the Fourier transform from 

the TM case inside back surface, covering 

clear discontinuity in the plot at 2.5 

dispersion relation, the phase velocity 

DC to 5 GHz. There is a 

and 3.75 GHz. From the 

goes to zero when the cell 

size equals; A/3, or 2.5 GHz, for a 0° angle of propagation and 

A/4, or 3.75 GHz, for a 45° angle of propagation. This dependence 

of phase velocity on wavelength or frequency has the effect of a 

low pass fi 1 ter on the model. It also must shift resonant modes 

towards lower frequencies. The amount of shift depends on the 

angle at which energy of the mode travels or oscillates within the 

grid and its frequency. Because 

zero, the model must compress all 

the velocity actually goes to 

possible modes within the 3.75 

GHz limit. If one knew the angle and thus the appropriate velocity 

shift, the spectrum could be corrected. Although easily done for a 

specific, well understood mode, this would be impractical in 

general because all angles are possible. 

6.4 Slotted cavity with gaussian pulse excitation 

For a rectangular two-dimensional cavity, as shown in figure 

(6-11) below, the resonant frequencies are given by equation (6.5). 
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figure 6-10. 5 GHz fourier transform of the inside back surface 
current for the TM mode 
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(6.5) 

figure 6-11. Cross section of two-dimensional cavity resonator. 

In equation (6.5), a is the x dimension width, and b is the y 

dimension width. The indices m and n are the mode numbers, m being 

the number of half wave variations of the magnitude of a field 

component along the x axis, 

example, with m = 1 and n 

electric field given by (5); 

Ez Eo 
. m7rx sin-

a 
. n1fy 

sin b 

and n that for the y axis. For 

2 the TM12 mode has a z directed 

(6.6) 

When m = 1, Ez is zero at x = 0 and a, for one half wave 

variation. For n = 2, Ez is zero at y = 0, b/2, and b, for two 

half wave variations. This type of resonator will not support a TM 

mode with m or n = O, as it would require a tangential electric 

field at the surface of a conductor. For a square cavity, the 

resonant frequency of the TEmn mode is the same as that for the 

TEnm, TMnm and TMmn modes. The presence of the slot will break 

this symmetry. Since the incident plane wave has no y directed 

field components, all modes may not be excited. 
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In order to study the modes of the slotted cavity, the 

structure was excited with an incident plane wave which had a 

gaussian time dependence. This is particularly nice, as a gaussian 

in the time domain is also a gaussian in the frequency domain. 

1 
[;tJ 2 

g (t) A e 2 (6. 7) 

1 
[!fJ 2 

G(f) 
A 2 (6.8) = e 

af J 27r 

The bandwidth in the frequency domain, af, is just 1/27rat. In 

the FD-TD code, a time step of 6t 6/2c 66.315 psec and a 

spatial step of 6 = .0397888 meters were used. Selecting a af of 

200 MHz provided a at of 796 psec, or only 12 time steps. The 

gaussian pulse is delayed by 200 time steps, or 16.7 at, in order 

to minimize any transients caused by abruptly turning on the 

source. Using a smaller at would allow probing higher frequencies 

but would require a rather coarse approximation of a gaussian time 

pulse. In addition, a larger bandwidth pulse would suffer more 

from distortion caused by dispersion at the higher frequencies. 

Thus a gaussian pulse will not excite the higher frequency modes 

which get compressed at the algorithm's cut off frequencies of 2.5 

and 3.75 GHz. An impulse excitation would tend to excite these. 

Figures (6-12) and (6-13) show the time domain response to a 

gaussian pulse at 6 locations around the surface of the scatterer 

for both the TE and TM cases respectively. Again, the TM case 
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Time domain plots of TE mode surface currents at 
six locations around the surface of a slotted 
cavity excited with a gaussian pulse incident 
wave; a) outside front, b) outside right, 
c) outside back, d) inside front, e) inside right, 
f) inside back 
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(continued) 
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Time domain plots of TE mode surface currents at 
six locations around the surf ace of a slotted 
cavity excited with a gaussian pulse incident 
wave; a) outside front, b) outside right, 
c) outside back, d) inside front, e) inside right, 
f) inside back 
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figure 6-13. Time domain plots of TM mode surface currents at 
six locations around the surface of a slotted 
cavity excited with a gaussian pulse incident 
wave; a) outside front, b) outside right, 
c) outside back, d) inside front, e) inside right, 
f) inside back 
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figure 6-13. 
(continued) 

d) inside front nsec 

Time domain plots of TM mode surface currents at 
six locations around the surf ace of a slotted 
cavity excited with a gaussian pulse incident 
wave; a) outside front, b) outside right, 
c) outside back, d) inside front, e) inside right, 
f) inside back 
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figure 6-13. 
(continued) 

f) inside back 
nsec 

Time domain plots of TM mode surface currents at 
six locations around the surface of a slotted 
cavity excited with a gaussian pulse incident 
wave; a) outside front, b) outside right, 
c) outside back, d) inside front, e) inside right, 
f) inside back 
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shows a response at DC and the TE case shows a response at 45 MHz, 

as described in the previous section. The DC shift in figure 

(6-13) for the outside back surface is the result of using only 

Maxwell's curl equations. Static field solutions exist which do do 

not satisfy the equations V•D = p and V•B = 0. It does not pose a 

problem in this analysis as the low frequency portion of the 

Fourier transforms can simply be ignored. 

A fast Fourier transform was applied to the TE and TM data from 

the inside center back, see figure (6-14). The frequencies 

obtained from this figure are listed below along with those 

calculated from equation (6.5). In view of the fact that the 

calculation does not take into account the presence of the slot, 

there is fair agreement between calculation and the FD-TD results. 

mode FD-TD Calculated 
figure (6-14) equation (6.5) 

TE11 221 MHz 251 MHz 
TM11 294 251 
TE12 428 468 
TM12 461 468 
TE22 603 592 
TM22 647 592 

Figure (6-15) shows the effect of normalizing the TM mode case 

of figure (6-14) with the fourier transform of a gaussian pulse. 

With the 200 MHz Uf gaussian pulse used, the useful bandwidth is 

less than 1 GHz. 
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figure 6-14. Fourier transform of a) TE and b) TM mode surface 
currents on the inside back surface of a slotted 
cavity excited with a gaussian pulse incident wave 
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VII. WINDOWS 

7.1 Application of windows 

The next topic discussed is the application of windows to the 

time domain functions prior to executing the Fourier transform. 

The windows used are listed below with their definition, assuming N 

time points (7) . 

rectangular w(n) 1 (7 .1) 

[20 0 $ $ N-1 

:-1 

n 2 
Bartlett w(n) 

2n N-1 < n $ N-1 
N-1 2 

(7. 2) 

Hanning w(n) = l (1 - cos(~~~] J 2 (7. 3) 

Hamming w(n) .54 - (21fn) .46 cos N-l (7. 4) 

Blackman w(n) = .42 - .5 (21fn J cos N-l + ( 41fn J .08 cos N-l (7.5) 

Plots of each window's time function and expanded Fourier 

transform are shown in figure (7-1). To obtain the frequency 

response, a 1024 point time record containing the window function 

was generated then zero extended to 32768 points. A fast Fourier 

transform was then taken and the first 1024 points of that were 

plotted. This has the effect of increasing the frequency 

resolution by a factor of 32768/1024 or 32. The horizontal axis of 

the frequency plot is scaled by this factor, thus a frequency 

component at n indicates a frequency of n/Ndt, where N represents 
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the total number of time samples, in this case 1024, and dt 

represents the time spacing between them. 

The effect of applying the 

domain, can be estimated by 

window, or multiplying in the time 

mentally convolving the signal's 

Fourier transform with the window's Fourier transform. Let Fmax = 

1/dt and Fres = 1/Ndt. The Fourier transform of a sine wave of 

frequency Fmax/4 would be a delta function in the frequency domain. 

The effect of a rectangular window can be obtained from figure 

(7-1). The delta function would fall exactly on the point N/4 for 

a fast Fourier transform, since N is a power of 2. Looking at the 

rectangular window, the neighboring points N/4 + 1, N/4 + 2, 

fall on the zeros of the window's transform. If, on the other 

hand, the window is applied to a sine wave of frequency Fmax/4 + 

Fres/2, the neighboring frequency domain points fall half way 

between the zeros, or on the window's local frequency maximum. The 

Fourier transform of these two sine waves are shown in figure 

(7-2). The frequency response of the other windows investigated 

fall off quicker than the rectangular window. This has the effect 

of reducing the noise level. The price payed for improving the 

noise level, or base line, 1s frequency resolution; compare for 

example the frequency width of the Blackman window with the 

rectangular window. This result is intuitive since the resolution 

is inversely proportional to the sampling period. 

Figure (7-3) shows the Fourier transform of the inside back, 

gaussian excited TM case surface currents. The Blackman window has 
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figure 7-3. 
(continued) 

Comparison of the effect of applying windows prior 
to the fourier transform of TM mode surface 
currents at the inside back of the slotted cavity 
excited with a gaussian pulse; a) rectangular, 
b) Bartlett, c) Hanning, d) Hamming, e) Blackman 
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a noise level 30 to 40 db lower than the rectangular window. Also, 

with this reduced noise level, structure that was not visible with 

a rectangular window is revealed. The effect of a window depends 

significantly on the exact frequency content of the original 

signal. Thus the Blackman window is not necessarily preferable, 

even though it gave the bE!st results for this particular SE!t of 

data. 
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VIII. CONCLUSION 

8.1 Single frequency analysis 

The biggest problem encountered in single frequency analysis 

was due to the presence of spurious frequencies in the incident 

fields. 

source. 

These frequencies are generated by abruptly turning on the 

Because of the causality principal, the falling edge 

should have no effect. 

For two-dimensional TM cases, the pole at zero frequency, 

caused by an infinite length, can be excited with the zero 

frequency component of these spurious frequencies. In a shadow 

region of the scatterer, the DC component was several times larger 

than the component at the excitation frequency. Because of this 

the magnitude and phase algorithm failed. For static fields, 

solutions to Maxwell's curl equations exist which do not satisfy 

the equations V•D = p and V•B = 0. 

For either the TE or TM cases the natural modes of the 

scatterer are excited by these spurious frequencies. For the 

slotted cavity a natural TM mode only 6 MHz from the driving 

frequency was excited to essentially the same amplitude as the 

incident field frequency component. The beat frequency generated 

from the sum of these two components showed no decay after 5000 

time steps of the code indicating a large Q for this mode. 
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The amplitude of these spurious frequencies can be reduced by 

slowly turning on the incident fields. Using the rising edge of 

one of the window functions may prove worthwhile in this regard. 

Ideally, the magnitude and phase algorithm would measure the 

response, or amplitude, of the fields at the frequency of the 

incident wave only and reject all other frequency components. This 

infinite frequency resolution would require an infinite time 

sampling period however. A good 

the optimum receiver problem 

topic for further study would be 

using some minimum amount of 

additional memory storage. 

digital filter and track a 

It may prove worthwhile to implement a 

few selected field points in the grid. 

The computation time and memory storage requirements may prohibit 

its use on all field points. 

8.2 Transient analysis 

Because the FD-TD algorithm works on 

place, additional computer storage must 

domain analysis. For the 46 by 48 cell 

the field components in 

be allocated for time 

lattice used in these 

studies approximately 324 Kbytes of storage was required. This 

could be reduced to about 108 Kbytes by removing the magnitude and 

phase algorithm not required for time domain analysis. In order to 

track all field quantities, 108 Kbytes of storage would be required 

for every time step or about 540 Mbytes for a 5000 time step run. 

In order to limit memory requirements, only a few selected points 
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can be tracked. Care must be used in selecting these points, as 

they may fall at a null field point for a mode of interest. 

Another limiting factor is the amount of computer time 

required. A 5000 time step run of the 46 by 48 cell lattice 

required nearly an hour of CPU time on a Vax 8650 computer. The 

5000 time steps resulted in a maximum measurable Q of only about 

70, for a resonant frequency of 209 MHz. 

In order to minimize dispersion, the cell size should be chosen 

to be about A/10 at the highest frequency of interest. The time 

step size for two-dimensional cases is typically chosen to be 6/2c. 

The largest measurable Q for N time steps becomes; 

.f.o Q = 6f 
_s; ~ 
A 2c10 

IT_ 
20 

For a cell size of A/10, the dispersion, or phase velocity error, 

will cause a frequency error of about 13, roughly equivalent to the 

frequency resolution after 2000 time steps. 

The Q of devices in an accelerator can reach several thousand, 

requiring the order of 40000 time steps, or 8 hours of cpu time, to 

accurately model. The number of time steps may be reduced by 

decreasing the cell size, but this would require more time per time 

step to solve because of the larger lattice. If the structure is 

excited with a single pulse, at some point the fields will become 

dominated by numerical noise. 



96 

Using windows prior to the application of a Fourier transform 

reduces frequency resolution. However, it does reduce the noise 

level in the frequency domain by about 30 db. For the example 

studied, mode lines were revealed that could not be detected 

without the window. 

The useful bandwidth of the FD-TD algorithm is limited by 

dispersion. The phase velocity goes to zero between the 

frequencies of c/36 and c/26, depending on propagation angle. This 

has the effect of shifting all possible modes of the structure 

below these frequencies. A gaussian time domain pulse can be 

selected to excite the frequencies of interest while minimizing the 

amount of energy at these FD-TD cut off frequencies. This 

frequency limit is less than the one imposed by the time step size. 

The bandwidth available from a Fourier transform is given by c/6; 

thus one could average groups of three successive time points prior 

to the application of the transform. The resulting frequency 

resolution would be unchanged but the transform would work on three 

times fewer points. 

8.3 Advantages of computer modeling 

At the current time, both the MOM and FD-TD algorithms are 

limited by computer speed and memory storage requirements. The 

alternative is to physically construct a model and test it. The 

cost of equipment and construction can be significant. Depending 

on the requirements, the time necessary for construction, testing, 
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and interpreting the results could outweigh that of an equivalent 

computer model. 

A distinct advantage of computer modeling is that fields can be 

obtained without disturbing them. In order to excite or measure 

fields in a physical structure, some type of probe is required. 

The fields can be estimated by measuring the effect of pulling or 

dropping dielectric beads through an excited cavity or by measuring 

the impedance of a stretched wire. In both cases the presence of 

the probe must be taken into account when interpreting the results. 

Small antennas in the form of loops or studs may be used to measure 

fields directly. Their gain must be measured or calibrated at each 

frequency of interest and again their presence will load the cavity 

fields. 

Even with current computer limitations both the MOM and FD-TD 

algorithms prove a powerful tool. As computer technology continues 

to grow their usefulness will only improve. 
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