
A v Fermi National Accelerator Laboratory 

TM-1515 

Exact Solution of the Derbenev-Kondratenko 
n Axis for a Model with One Resonance 

S. R.Mane 
Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

March 1988 

:Q= Operated by Universities Research Association Inc. under contract with the United States Department of Energy 



1 

Exact solution of the Derbenev-Kondratenko ii axis for a model with one resonance 
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Let us call the quantization axis of the spin eigenstates of the Hamiltonian of a particle 
circulating in a storage ring ii, i.e. the operator i.ii commutes with the Hamiltonian: 
{ i.ii, 'H} = O, where {, } denotes a Poisson Bracket. The defining properties of ii were 
given by Derbenev and Kondratenko,1 and are (i) ii satisfies the equation of spin motion 

(1) 

where n is the spin precession vector, and (ii) ii satisfies the periodicity conditions 

ii(I,,,P,fJ) = ii(J,i/; + 211',fJ) = ii(I,,,P,8 + 211'). (2) 

Here {I, 1/J} denotes the set of orbital action-angle variables, i.e. ii depends on the orbital 
trajectory. Thus there is not just one value of ii for ell trajectories, but an infinite set, one 
for each value of {I, ,,P }. 

The above definition is rather abstract, and in general ii has been calculated exactly 
only on the closed orbit of a storage ring. Perturbation theory has had to be used to find 
ii on other trajectories. 2 There is a simple non-trivial model, however, where one can solve 
for ii exactly, and that is the point of this note. 

The model is a vertical static field plus a horizontal field rotating at tune Q. We 
decompose n in Eq. (1) into fi = fi 0 + w, where n0 is the value on the closed orbit and w 
is the additional term due to an orbital oscillation. Then 

n0 = vi 

w = f [ i cos ,,P + y sin 1/J ] = f [ i cos( QfJ + .Po) + y sin( Q9 + .Po) ] . ( 3) 
_,,. 

j f 
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The vertical field is the main field that makes the particles circulate around the ring, 
and w is the perturbation due to spin-orbit coupling. Here 'I/Jo is the initial phase of the 
orbital oscillation, and f describes the strength of the spin-orbit coupling. The coordinate 
system is i radial, fj longitudinal and i vertical. A positive rotation is counterclockwise. 
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The above model cannot be constructed exactly in e. storage ring, because real mag
nets produce more than one harmonic in w. However, the above model is still e. valid 
Hamiltonian system, and is e. good approximation near the resonance 11 = Q. 

Let us first review the case where fi = fio only. Then the spin precesses around fio, 
which is e. constant vector, and the solution for n is obvious: it is just n II fi 0 , i.e. n = i. 

We now consider fi = fio + w. We first transform toe. frame rote.ting counterclockwise 
e.t tune Q around i. Then the spin precession tune around i becomes 11- Q and w becomes 
stationary. Using primes to denote vectors in the new frame, 

01 = (11-Q)z + E[z' cos(1/io) +y'sin(1/io)):: (11- Q)i +i". (4) 

In this frame 8' precesses around n'' which is 8. constant. The solution for n is n II fi•' i.e. 

n= 

y- 6l-
. ' 

(11 - Q).i + (' 
.J(11 - Q)2 + f2 

~' 

(5) 
_..I 
.n. 

We therefore see that n is the spin rotation axis in the frame where the Hamiltonian 
i~ atationary. The diagonalized Hamiltonian is 

'H. = 'Harb + 8' .fi' 

=QI+ .J(11 - Q) 2 + E2 8'.n (6) 

In other frames, where 'H. is not stationary, 8.ii still commutes with the Hamiltonian in 
that frame, because of the invariance of Poisson Brackets under canonical transformations, 
i.e. { 8.n, 1i} = 0 in all frames related to the above by a canonical transformation (a proof 
of this statement is given in Ref. 3). (Here 'H. means the Hamiltonian in the frame after 
the canonical transformation.) In the original reference frame, the solution is 

• (11- Q).i + E[icos,P + ysin,P] 
n = ~~~-,~===o;~~~~~~ 

.J(11 - Q)2 + f2 
(7) 

This obviously satisfies the periodicity conditions Eq. (2). Notice that ii is not parallel to 
fi. The vector ft is constrained to be e. unit vector in ell frames, whereas fi is not. Hence 
they transform differently under canonical transformations. The Derbenev-Kondre.tenko 
definition (Eqs. (1) and (2)) allows one to calculate ft purely in terms of functions specified 
in one frame, without the need for canonical transformations, which can be complicated, 
in general. 
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The above model also helps one to understand the distribution of spin eigenstates 
in equilibrium, e.g. in a high-energy electron storage ring. When fi II z only, all the 
eigenstates are quantized vertically, and so the polarization will be vertical also. When 
fi is not the same for all trajectories, the spin states will be quantized along n for each 
trajectory, because that is the spin precession axis when the Hamiltonian is stationary. 
The equilibrium distribution of spins will be a cone of vectors (n), where the average is 
over the equilibrium distribution of orbital actions and angles. The "local polarization" 
for particles in a small phase-space volume element d! d,P around {J, ,P} will thus point 
along n, and the "global polarization" is given by the phase-space average 

ft.q = j f(I,.P) (i.n) n dI d.P, (8) 

where f is the probability density function of particles in orbital phase space and (i.n) is 
the average spin projection of particles a.long n in the volume element d! d,P around {I, ,P}. 
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