
A
v Fermi National Accelerator Laboratory

SVI
Super-VIOR Interface Routines

Dean Alleva
Development and Evaluation Group

RD/Computing
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

October 21, 1987

TM-1492

C Operated by Universities Research Association Inc. under contract with the United States Department of Energy

SVI
Super-VIOR Interface Routines

-Version
Software:l .O
Document:l.O

October 21, 1987

Dean Alleva
Development and Evaluation Group

RD/Computing
Fermi lab

1
2
2.1
2.2
3
4
5
6
7
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7 .2.7
7.2.8
7.2.9
7.2.10
7.2.11
7.2.12
7.2.13
7.2.14
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
8.0
8.1
8.2
8.2.1
8.2.2
8.3
9
10

Page 2

TABLE OF CONTENTS

INTRODUCTION . 3
SUPER VIOR REGISTERS . 4

MC68450 Registers . 4
Boa rd Registers . 5

CHANNEL INITIATION AND CHAINING 6
POLLING AND INTERRUPTS . 8
STATUS REPORTING . 9
FRONT PANEL INTERRUPTS . 10
CONFIGURATION ROUTINES . 11

SVI Initialization . 11
Setting the MC68450 Registers 12

Setting the Device Contro I Register . 12
Setting the Operation Register 12
Setting the Sequence Control Register 12
Setting the Memory Transfer Counter 12
Setting the Memory Address Register 13
Setting the Device Address Register . 13
Setting the Base Transfer Counter 13
Setting the Base Address Register . 13
Setting the Normal Interrupt Register 14
Setting the Error Interrupt Register . 14
Setting the Memory Function . 14
Setting the Device Function Code 14
Setting the Base Function Register 15
Setting the Channel Priority Register 15

Channa I Configuration . 16
Interrupt Configuration 17
Operation Configuration . 18
Transfer Configuration 19
Setting the Front Panel Mask 20
CI earing the CSR . 21
Creating Command Arrays . 22
Creating Command Chains . 22

OPERATION CONTROL ROUTINES . 24
Starting a Channel . 24
Wa i ti ng For Comp I et ion . 25

Wa i ti ng W i th Po I I i ng . 25
Waiting With Interrupts . 25

Aborting an Operation 26
STATUS REPRORTING . 27
COMMENTS ON THE MC68450. 28
REFERENCE . 29

Page 3

1 INTRODUCTION

The document describes a set of routines for a VME DMA module
called the Super-VIOR [1]. The Super-VIOR interface routines, also
called the SVI routines, are written in PILS and run under a
Valet-plus system [2]. These routines enable a program to set up,
execute, and monitor DMA operations. It is assumed that the reader is
familiar with VME, the MC68450, and has some knowledge of the
interface's design [1]. A copy of the SVI software is available on
BitNet at Fermi lab in "FNAL::USRSROOT:[ALLEVA.PUBLIC]".

The Super-VIOR Interface Routines are written in PILS, a high
level language similar to BASIC and Pascal which is powerful and fast
enough for most applications. One of the most powerful features of
the Valet/PILS system is the ability to set up exception vectors and
exception handlers directly in a program. This feature is used to
handle interrupts from the MC68450 and the interface's front panel.

This document is divided into ten sections, the first being the
introduction. The remaining sections detai I the interface registers,
channel initiation, polling and interrupts, status reporting, front
panel interrupts, the configuration routines, the operation control
routines, the status reporting routines, and special comments on the
MC68450.

Page 4

2 SUPER-VIOR REGISTERS

There are two sets of registers in the Super-VIOR OMA Interface.
The MC68450 registers configure the OMA controller while the board CSR
register configure front panel operations.

2.1 MC68450 Registers

The MC68450 is a 4-channel 16-bit OMA controller. Each channel
has its own set of control registers. The controller also contains a
single general control register which affects all channels. These
registers are briefly described below. For a detailed description of
these registers see the document describing the MC68450 [3].

Device Control Register: This register configures the
information for the channel.
information as port size can
register.

device oriented
Thus, such

be set with this

Operation Control Register: This register configures operation specific
functions for the channel. Such information
as transfer direction, operand size, and
operation chaining are set in this register.

Sequence Control Register: This register defines the count sequence of
the memory and device address registers
during a transfer.

Channel Control Register: This register is used to start or terminate
the operation of a channel as wel I as for
setting interrupt request generation.

Channel Status Register: Used to monitor the channel with polling
as well as for indicating channel status upon
completion of an operation.

Channel Error Register: Contains a status code for the given channel
upon operation completion. This value is only
checked if the error bit in the status register
is set (or an error interrupt was generated).
Clearing the status register also clears this
register.

Channel Priority Register: Defines the priority level for the channel.
Level 0 is the highest and level 3 is the
lowest priority.

General Control Register: There is only one general control register
per MC68450. This register is used to set
the burst time and bandwidth ratio for the
OMA on the system bus (VME) .

Address Registers:

Function Code Registers:

AMS
1

AM4
x

Page 5

These three 32-bit registers contain the memory
address, device address, and base address used
during a transfer. Address count sequences for
the memory and device address registers are set
in the sequence control register.

These register sets the memory function codes
used with memory, device and base addresses.
These codes are mapped into standard VME
address modifiers. The function code mapping
is shown below. The lower three bits in this
register map to the FCx lines (bit 0 = FCO,
bitl = FCl, bit2 = FC2).

AM3
1

AM2
FC2

AMl
FCl

AMO
FCO

X Depends on transfer word size. If 16-bit X equals 1,
if 8-bit X equals 0.

Transfer Count Registers: These two 16-bit registers are counters use
to keep track of words transfered and command
array lengths.

Interrupt Registers: These two 8-bit registers contain interrupt
vectors, one register for normal completion
interrupt and one register for error
interrupt.

2.2 Board Registers

A control and status register is present on the Super-VIOR
is used to set up front panel interrupts and indicate status of
from the panel. For a ful I description of this register, see
document describing the Super-VIOR module [1].

which
I ines

the

Page 6

3 CHANNEL INITIATION AND CHAINING

The Super-VIOR is a register based OMA with the option to chain
commands together. These command chains are loaded by the OMA using
the VME master interface. Direct manipulation of the channel
registers is also possible using the configuration routines.

The SVI routines supply functions which set each registers
individually as wel I as routines which set common configuration
parameters in one cal I. How and when these routines are called is up
to the user but a channel should be fully configured before it is
started. SVI must also be initialized, with a call to svi init,
before any call to other SVI routines. -

The ability to create chains of commands enables several
operations to take place without CPU intervention. There are two
types of chains available for linking commands, array and linked I ist
chains. In array chains the blocks of parameters follow each other
sequentially in memory. In linked list chains each parameter block
also contains the address of the next block. Thus, linked list chains
can have their parameters blocks scattered in memory.

A command chain is created before the channel which is to execute
it is started. In the case of array chains, the base address of the
chain is placed in the base address register and the length of the
chain is placed in the base transfer counter register. In the case of
linked list chains, the base address of the chain is placed in the
base address register. The end of the linked list command chain is
marked with zeros in the link address field of the last parameter
block.

The examples below i I lustrate both the creation of array chains
and that of linked list chains. Note that al I addresses must be
supplied to the SVI routines by the control program since Valet-plus
has no memory managment capability.

Array Chains-

svi_start_array (array_badd, 5, 1) Creates an empty array of five
parameter blocks starting at
address array badd.

svi_set_entry (1, addl, 5) Sets the memory transfer count
to five and the memory
transfer address to addl.

svi set_entry (5, add2, 300) Similar to entry one but sets
entry five with different
paramters. Note that parameter
blocks need not be set in order
(from 1 to 5 for this example)
but can be initialized in any
order as long as al I blocks
are set.

svi_set_badd (ch_num, array_badd)

svi set bcount (ch_num, 5)

svi_go (ch_num, ...)

Linked List Chains-

svi start link (0)
svi-add ITnk (link_addl, addl, 5)

svi ad link (link_add2, add2, 300)

svi set badd (ch_num, link_addl)

svi_go (ch num, ...)

Page 7

Sets the base address register
of a channel (number ch num) with
the base address of the array.
Sets the base transfer count for the
channel to the length of the array.

After all parameters are set,
the channel may be started.

Start a new link
Adds a link to the present chain.
The link is created at link addl
with a memory transfer address of
addl and a transfer count of 5.
Adds another link at the end
of the chain. The link is created
at a different address and has
different parameters.

Set the base address register to
the address of the first link in
the I ist.

After all parameters are set,
the channel may be started.

Page 8

4 POLLING AND INTERRUPTS

Two methods are used to monitor an operation. In polling mode,
the channel status register value is fetched in a loop and two bits
are checked. The Operation Complete bit is set when the channel
operation is completed. The Error bit is set if•an error occured
during execution and indicates that the error register contains the
error code. The error register is checked only if the Error bit is
set. Pol ling mode can be used to monitor only a single executing
channel.

When interrupt mode is used to monitor an operation, the first
four bits are set in a flag depending upon which channels are started.
When all the flag bits are cleared by the interrupt handlers, al I
operations have been completed. Note that a new opeation can not be
started on a channel whose flag bit is not yet cleared. This mode of
monitoring can be used with up to four channels simultaneously.

Page 9

5 STATUS REPORTING

The channel error code is returned from the polling wait routine
for the pol led channel once the channel operation is complete. An
error code of 0 indicates no error. A program may also directly fetch
status for a selected channel with a cal I to svi_pol.:._status. · .,, •• - ..

For interrupts, the interrupt wait routine returns status for
each channel. A zero (0) status indicates normal completion while a
status value of negative one (-1) indicates that the channel was never
started.

Status messages can be sent to the display device by setting a
display parameter passed to the wait routines. The display codes are
shown below.

Status Display Codes

0 - Display no status messages
1 - Display all status messages (including success)
2 - Display error status messages only

6 FRONT PANEL INTERRUPTS

Front panel interrupts
front panel connectors.
enable such interrupts and
The board CSR can also be
have.

Page 10

are generated by the test signals on the
A mask can be loaded into the board CSR to

to select which signals cause an interrupt.
read to see what values the various s-i'gnals

The SVI routines supply no interrupt handler for front panel
interrupts since the front panel function is application specific.
The front panel routine must be supplied by the user and linked to the
front panel interrupt vector before such an interrupt is enabled. The
standard VALET/Pi ls interrupt vector routines are used to link the
front panel interrupt to a user routine. This link is shown below and
should be included in any program which use front panel interrupts.

vclnk (16%91, 13, ADDRESS(user_routine_name))

The interrupt vector is hex 91, logic unit number is 13, and
user routine name is the subroutine name of the front panel interrupt
handTer. Note that the interrupt vector and logic unit number shown
above must be used for the link.

Page 11

7 CONFIGURATION ROUTINES

These routines are used to set registers in the OMA controller,
initialize the SVI routines, create command chains, and set the front
panel mask.

7.1 SVI Initialization

1) svi init (vbase, gcr value)

Description: Initializes the SVI internal data structures and the
8-bit general control register. Should be cal led
once before any cal Is to other SVI routines.

Parameters:
vbase (INT32, input):

gcr_value (INT32, input):

VME address where Super-VIOR
address space starts.
General Control Register value.

Page 12

7.2 Setting The MC68450 Registers

7.2.1 Setting The Device Control Register -

1) svi_set_device (chan_num, dcr_value)

Description: Sets the 8-bit device control register for the selected
channel.

Parameters:
chan num (INT32, input): the channel number (0-3).
dcr value (INT32, input): device control register value.

7.2.2 Setting The Operation Register -

1) svi_set_oper (chan_num, ocr_value)

Description: Sets the 8-bit operation control register for the selected
channel.

Parameters:
chan num (INT32, input): the channel number (0-3).
ocr value (INT32, input): operation control register value.

7.2.3 Setting The Sequence Control Register -

1) svi_set_seq (chan_num, scr_value)

Description: This routine sets the 8-bit sequence control register
for the seleced channel.

Parameters:
chan num (INT32, input): the channel number (0-3).
scr value (INT32, input): sequence control register value.

7.2.4 Setting The Memory Transfer Counter -

1) svi_set_mcount (chan_num, mtc_value)

Description: This routine sets the 16-bit memory transfer counter
register for the selected channel.

Parameters:
chan num (INT32, input): the channel number (0-3)
mtc value (INT32, input): memory transfer register value.

Page 13

7.2.5 Setting The Memory Address Register -

1) svi_set_madd (chan_num, mar_value)

Description: This routine sets the 32-bit memory address register for
the selected channel.

Parameters:
chan num (INT32, input): the channel number (0-3)
mar value (INT32, input): memory address register value.

7.2.6 Setting The Device Address Register -

1) svi_set_dadd (chan_num, dar_value)

Description: This routine sets the 32-bit device address register for
the selected channel.

Parameters:
chan num (INT32, input): the channel number (0-3).
dar value (INT32, input): device address register value.

7.2.7 Setting The Base Transfer Counter -

1) svi_set_bcount (chan_num, btc_value)

Description: Sets the 16-bit base transfer counter for the selected
channel.

Parameters:
chan num (INT32, input): the channel number (0-3).
btc value (INT32, input): base transfer counter value.

7.2.8 Setting The Base Address Register -

1) svi_set_badd (chan_num, bar_value)

Description: Sets the 32-bit base address register for the selected
channel.

Parameters:
chan num (INT32, input): the channel number (0-3).
bar value (INT32, input): base address register value.

Page 14

7.2.9 Setting The Normal Interrupt Register -

1) svi_set_inorm (chan_num, niv_value)

Description: Sets the 8-bit normal interrupt vector register for the
selected channel.

Parameters:
chan num (INT32, input): the channel number (0-3)
niv value (INT32, input): normal interrupt vector.

7.2.10 Setting Error Interrupt Register -

1) svi set ierr (chan_num, eiv_value)

Description: Sets the 8-bit error interrupt vector register for the
selected channel.

Parameters:
chan num (INT32, input): the channel number (0-3).
eiv value (INT32, input): error interrupt vector.

7.2.11 Setting The Memory Function -

1) svi_set_mfunc (chan_num, mfc_value)

Description: This routine sets the 8-bit memory function code register
for the selected channel. These codes are mapped into the
standard VME address modifiers (see section 2.1). Note
that only the lower three bits of this register are used.

Parameters:
chan num (INT32, input): the channel number (0-3).
mfc value (INT32, input): memory function code.

7.2.12 Setting The Device Function Code -

1) svi_set_dfunc (chan_num, dfc_value)

Description: Same as svi set mfunc but sets the 8-bit device function
code register. -

Parameters:
chan num (INT32, input): the channel number (0-3)
dfc value (INT32, input): memory function code register.

7.2.13 Setting The Base Function Code -

1) svi_set_bfunc (chan_num, bfc_value)

Page 15

Description: Same as svi set mfunc but sets the 8-bit base function
code register. -

Parameters:
chan num (INT32, input): the channel number (0-3).
bfc value (INT32, input): base function code value.

7.2.14 Setting The Channel Priority Register -

1) svi_set_pri (chan_num, cpr_value)

Description: This routine sets the 8-bit channel priority register for
the selected channel.

Parameters:
chan num (INT32, input): the channel number (0-3).
cpr_value (INT32, input): priority value.

Page 16

7.3 Channel Configuration

1) svi_chn_config (chan_num, dev, pri, mfnc, bfnc, dfnc)

Description: Sets a channel's basic information which is not likely to
change often. This routine is equivalent to cal ls to

Parameters:

svi set device, svi set pri, svi set mfunc, svi set bfunc,
ancf"svi-set dfunc, see the descrTption of these-routines
for more information. This routine also sets the interrupt
register values automatically.

chan num
dev
pri
mfnc
bfnc
dfnc

(INT32,
(INT32,
(INT32,
(INT32,
(INT32,
(INT32,

nput): the channel number (0-3)
nput): device control register value
nput): channel priority
nput): memory function code
nput): base function code
nput): device function code

Page 17

7.4 Interrupt Configuration

1) svi_set_interrupts (chan_num)

Description: Sets the selected channel's normal and error· interrupt
registers. The values placed in the registers are
internal to SVI.

Parameters:
chan num (INT32, input): the channel number (0-3)

Page 18

7.5 Operation Configuration

1) svi_set_operation (chan_num, oper, seq)

,Description: Sets operation specific information for the given channel.

Parameters:

This routine is equivalent to cal Is to svi set operation
and svi set seq, see the description of theses-routines
for more information.

chan num
op er
seq

(INT32,
(INT32,
(INT32,

input):
input) :
input) :

the channel number (0-3).
operation control register value.
sequence control register value.

Page 19

7.6 Transfer Configuration

1) svi_set_transfer (chan_num, mcount, madd, bcount, badd, dadd)

Description: Sets transfer specific information for the selected
channel. This routine is equivalent to calls to
svi set mcount, svi set madd, svi set bcount,
svi-set-badd, and sv set dadd, see the descritions
of these routines for more information.

Parameters:
chan num
mcouiit
madd
bcount
badd
dadd

(INT32,
(INT32,
(INT32,
(INT32,
(INT32,
(INT32,

input):
input):
input):
input):
input):
input):

the channel number (0-3).
memory transfer counter value.
memory address register value.
base transfer counter value.
base address register value.
device address register value.

7.7 Setting The Front Panel Mask

1) svi_panel_mask (mask_value)

~ascription: Loads a va I ue into the board CSR [2] ';

Parameters:
mask value (INT32, input): the mask value.

Page 20

Page 21

7.8 Clearing The Channel CSR

1) svi_clear_csr (chan_num)

Description: Clears the CSR· register for the selected channel.

Parameters:

This operation is automatically done by svi wait and
svi_pol wait.

chan num (INT32, input): the channel number (0-3).

Page 22

7.9 Creating Command Array Chains

1) svi_start_array (start_address, size, clear_array)

Description: Begins the creation of a parameter·array. Ca+l·s

Parameters:

to svi set entry sets the entries in this new array
unti I another cal I to this routine. This routine
can be cal led with the address of an old array
and the fields of that array can the be changed with
svi set entry. Note that memory to memory transfers
using tlie device address register cannot be chained,
see section ten (10) for more detai Is.

chan num
size
clear_array

(INT32,
(INT32,
(INT32,

input): the channel number (0-3).
input): number of entries in array.
input): If set to 1 array is zeroed.

2) svi_set_entry (entry_num, mem_field, tcount_field)

Description: Sets the fields of an entry in the presently active
array. Note that entries need not be set in any
order as long as all entries are set before the
array is used by the OMA.

Parameters:
entry_num (INT32, input): number of the entry to set,

must be in the range
0 to array_size - 1.

7.10 Creating Convnand Chains

1) svi_start_I ink (last_I ink)

Description: Starts the creation of a parameter chain. Any subsequent
cal Is to svi add link adds a new parameter link to
the end of tlie ITst until another cal I to this routine
makes another chain the active chain. Old chains

Parameters:

may be added to by supplying this routine with
the address of their last link. Note that memory to
memory transfers using the device address register can
not be chained, see section ten (10) for more detai Is.

last Ii nk (INT32, input): if set to zero, a new chain
is created. If set to the
address of the last link
in a I i st, that I i st
can be extended.

Page 23

2) svi_add_link (I ink_add, mem_field, tcount_field)

Description: Adds a parameter link to the end of the present list.

Parameters:
Ii nk add (INT32, input): VME memory address where

parameter I ist is created.
mem field (INT32, input): memory transfer register

value.
tcount field (INT32, input): memory transfer counter

value.

Page 24

8 OPERATION CONTROL ROUTINES

These routines initiate, monitor, and abort channel operations.

8.1 Starting A Channel

1) svi_go (chan_num, int_enable)

Description: This routine starts a DMA channel. Note that the
MC68450 does not al low more the one channel to be
started at a time.

Parameters:
chan num (INT32, input): the channel number (0-3)
int enable (INT32, input): if set to 1, the channel

is enabled to use interrupts.
Otherwise, polling must be used
to monitor the channel.

Page 25

8.2 Waiting For Completion

There are two ways to wait for completion of a channel or
channels, with pol Ii ng or with interrupts. If any channel is started
with svi go and the int enable parameter set to 1, interrupt wait
should be used. If more then one channel is to execute ·at any given
time, interrupts should be used. Polling can be used to monitor only
one channel at a time.

8.2.1 Waiting With Pol ling -

1) svi_pol_wait (chan_num, display, status)

Description: Does polling on the selected channel's status register
unti I operation is complete. Should be used when only
a single channel is to be monitored.

Parameters:
chan num (INT32, input): The channel number of the channel

- to poll.
display (INT32, input): Status display code

0 - display no status messages
1 - display all status messages
2 - display only error messages

status (INT32, output): returned status code for polled
channel.

8.2.2 Waiting With Interrupts -

1) svi_wait (display, statO, statl, stat2, stat3)

Description: This routine returns the status of al I started channels
upon completion of their operation if they were started
with svi go and the int enable parameter set to 1.
Unlike pol ling, interrupts can monitor more then one
channel at a time.

Parameters:
display (INT32, input): Status display code

0 - display no status messages
1 - display all status messages
2 - display only error messages

stat0-3 (INT32, output): Status codes for each channel.
Returns -1 if channel was never
started.

Page 26

8.3 Aborting A Channel Operation

1) svi_abort (chan_num)

Description: Aborts a channel operation. This·routine is··useful in
front panel interrupt handlers.

Parameters:
chan num (INT32, input): The number of the channel to

abort (0-3).

Page 27

9 STATUS REPORTING

Status is returned to a program from the wait routines but
sometimes it may be necessary to fetch status directly. The routine
below allows a program to fetch the present status of any channel.
Note that the wait routines clear the error code register after the
codes are fetched.

1) svi_pol_status (chan_num, display, status)

Description: Returns the value of the error code register for the
sellected channel.

Parameters:
chan num (INT32, input):
dispTay (INT32, input):

status (INT32, output):

sellected channel number (0-3)
display status code
0 - display no status messages
1 - dispaly al I status messages
2 - display only error messages
returned status code for the
selected channel.

Page 28

10 COMMENTS ON THE MC68450

1) It is impossible to start more then one channel at a time. Each
channel has its own control register and start bit and must be
started separately. It would be better if ·the start bHis for al I
channels where located in a single register, like the general
control register, where the channels can be started with a single
access.

2) It is impossible to do chained memory to memory transfers. Memory
to memory transfers use the device address register for one address
in the transfer. Command chains contain no field for setting the
device address register so that it is impossible to do
unsupervised memory to memory transfers.

3) The MC68450 would function better if it supplied a service
request completed line to indicated the completion of an interrupt
request. At present, clearing the status register clears the
interrupt request line but only if no other interrupts are pending.
The VME interrupter can not tel I when one interrupt request ends
and another begins if more then one interrupt is pending.

Page 29

REFERENCE

[1] SUPER-VIOR, VMEbus Dual 16-bit Input Output register with ful I OMA,
hardware description, Opifex AB publication (Version 1.1).

[2] Bernes-Lee, T. et. al. The VALET-PLUS, a VMEbus Mrcrocomputer for Physics
Applications. Fifth conference on Real Time Computer Applications in
Nuclear, Particle, and Plasma Phisics- San Fransisco, May 1987

[3] MC68450 Four-Channel Direct Memory Access Controller, Motorola document.

