Fermi National Accelerator Laboratory

JC
L

TM-1484

Online Monitoring of Laserpulses Using the GPIB-Interface
of a Tektronix 2430 Digital Storage Oscilloscope

Ludo Verluyten
Michael W. Peters
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

October 1987

JE

ar Operated by Universities Research Association Inc. under contract with the United States Department of Energy

TM-1484
October 1987

ONLINE MONITORING OF LASERPULSES USING THE GPIB-INTERFACE
OF A TEKTRONIX 2430 DIGITAL STORAGE OSCILLOSCOPE

Ludo Verluyten
Michael W Peters

One of the monitoringaspects of holography at the 15 foot Bubble
Chamber is the online checking of the lightoutput of the JK2000
ruby laser. Ideally the lightoutput should be a squared pulse in
time. Spikes, pre- and postlasing (i.e. lasing before and after the
squared pulse) can have a negative influence on the holograms.

The scheme for monitoring the lightoutput is shown in fig.l.

A EG&G FND-100 photodicde, whose output is stored and digitized by
a Tektronix 2430 Digital Storage Oscilloscope, has been placed at
the outputstage of the laser. The size of the storage memory is 1
kB. The scope has a horizontal resclution of 530 samples per
division and a vertical resclution of 25 digitization levels per
division. The scope is externally triggered by a TTL pulse, which
opens the Pockel Cell in the oscillator so that lasing can occur.
By using a General Purpose Interface Bus (GPIB) an IBM-PC/AT
retrieves data from the scope at transferspeeds over 300 kB per
second. The GPIB assembly, which is essentially a bidirecticonal
internal data bus, consists of a GPIB-PC II board and a double
RF-shielded GPIB extensiocncable (both items were purchased from
National Instruments). The two devices connected on the GPIB are
the IBM-PC and the scope, which has the logical name "devl" and bus
address 1. The PC is the Controller of the bus. It can address the
scope to talk (i.e. regquest it to send data) or to listen. If the
scope is in a listen mode, the controller is able to change the
settings of the scope over the bus. The GPIE hardware and software
setup for the board and the scope are shown in appendix A. The EQI
interface line is asserted to mark the end of a message string. The
data from the scope are retrieved from channel 1 and are sent in
positive integer notation. The program scoperead.c (appendix B)
reads the data from the scope. It consists of 4 major parts:
- the main()} function to initialize the scope and to print

the final results to the file summary.dat located on a

fASTdisk D:. This is a software disk residing in extended

memory (above 1 MB) to which data can be written or read

from at RAM speed.

~ the sc_read() function to read the actual curve data from
the scope and to store them in a buffer.
- the sc_flt read() function to read the scope settings.
— the sc_calc{) function to calculate the features of the
laserpulse.

All GPIB functions, used in the program, address directly the
scope and are called device functions. The scope is put in the
talk and listen mode. Most of the issued commands in the program
only require the talk capability of the scope. The only command
which requires the listen capability is "PATH OFF". After each
call tc the scope the statusword of the bus gets checked for a
GPIB error or for a SRQ (service request) issued by the scope.
Whenever the scope is improperly addressed, it will assert the
RQOS kit (requesting service) in the GPIB statusword. To locate
the problem, one has to check the statusbyte of the scope by
serially polling the device. Checking for scope errors is only
useful when the following bits are set on the scope:

- CER (command error)

~ EXR (execution error)

- EXW (execution warning)

- INR (internal error)

- DEVDEP (device dependent error)

Describing the characteristics of the lightoutput is essentially

a pattern recognition problem. A pulse is defined as each signal
that is 8 digitizaticon levels below the bias level (the fast
photodiode gives a negative signal output). The main pulse is the
pulse with the biggest width. A spike is being defined as each
signal in the main pulse larger than two times the average
pulseheight . Appendix C shows an erratic laserpulse together with
the output from the program scoperead.c. The program, which takes
less than 2 seconds to run, describes the features of the

laserpulse in a satisfactory way.

o o o] o] O —& Q o S
1 A il \ fr §
T y It B 1
N
§
S — e
§ O O (o] Q Q - -~ e -l O O O O
] N\ -
Jd U J
r JK2000 RUBY-LASER
photodiode
N
GPIB-cable O Q << PC-trigger
TEKTRONIX 2430
IBM-PC|AT

Fig.1l: Experimental setup for online monitoring of laserpulses.

Appendix A

1) Scope configuration.

1
gt

FEHD TN
ENIEL
Gl e

HOOE 1
tWonE T L
TEEn £l

~
o
[

|

=D
m. ™

g

*
i

:
&
E4d
¥

.

]

-

RATEN

)
ovoom

Lol
S R

Device: DEV1 Access: GPIBO
Primary GPIB Address 1
Secondary GPIB Address None
Timeout setting T10s
EQOS byte CO0H
Terminate Read on EOS no
Set EQI with EOS on Write no
Type of compare on EQS 7-bit
Set EOI w/last byte of Write yes

2) Hardware and software configuration for the GPFIB-PC board.

Primary GPIB Address 0

Secondary GPIB Address None
Timeout setting T10s
EOS byte OOH

Terminate Read on EOS

Set EOI with EOS on Write
Type of compare on EOS

Set EOI w/last byte of Write
GPIB-PC model

Board is System Controller
Local Lockout on all devices
Disable Auto Serial Polling
High-speed timing

Interrupt jumper setting
Base I/0 Address

DMA channel

Internal Clock Freqg (in MHz)

no
no
7-bit
yes
PC2
yes
ves
no

yes

2B8H

/*
/*
/*
/*
/*
/*
/*
/*

Appendix B

Jeoke ok ok ok ok ek ok ok ok ke ok e Bk ek Program SCOperead hhkkhkhkRkARARA AN XAAKRARKA

This program reads out a Tektronix 2430 digital oscilloscope
by means of a GPIB-PC II board (purchased from National
Instruments), plugged into one of the slots of an IBM-PC/AT.
ibsta is the statusword of the GPIB.

iberr is the errorcode for the GPIB error.

ibfind{), ibwrt(,,)}, ibrd{,,), ibloc() and ibrsp{,) are
functions supplied with the purchase of the GPIB-PC becard.

#include <ctype.h>

#include <string.h>
#include <fcntl.h>

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>
#include <stdio.h>

#include <vZ2tov3.h>

extern int ibsta, iberr, ibcnt;

static int itrig, scope;

static double sc_time,sc _volts,sc trig;

static unsigned char wvalue[l024], spr;

static int indexl,pul width,pul av,pul start,pul_index;

static int amp[20],sp_amp([20],time[20];

static flcocat sp time[20], spwidth([20];

static int index2;

FILE *sum;

main (} {

int i;

if{ {(sum=fopen("D:\summary.dat","w")) == NULL) {
puts ("CANNOT OPEN FILE\n");
exit {);

}

if((scope=ibfind("devl1™))<0) {
printf ("CANNOT OPEN THE SCCPE\n");

exit ();

*/
*/
*/
*/
*/
*/
*/
*/

}

ibwrt (scope, "path off",8);

if {ibsta<0) {
printf {"GPIB ERROR IN WRITING: path off\n");
printf ("STATUSWORD: %6d\n", ibsta);
printf {("ERRORCODE: %6d\n",iberr);
ibloc(scope);
exit {);

}

if((ibsta & (1 << 11)) == 0x800){
printf {("SCCPE ERROR IN WRITING: path cffin™);
ibrsp (scope, &3pr) ;
printf {("SCCPE STATUSWORD: %6d\n",spr);
ibloc (scope);
exit ();

}

sc_read();

for (1=0;1<20; i++) {
amp [1]=0;
time [1]=0;
sp _amp[i]=0;
sp timeli]=0.0;
spwidth([i]=0.0;

}

sc_calc();

fprintf(sum," MAIN PULSE INFORMATIONAr\n™);
fprintf (sum,"” ---—-—-"--——-"—--""-"—-"-"-——— \Nr\n");
fprintf(sum," time between pulse and ext trig (us):");

fprintf(sum, " %2f\r\n",sc_time* (pul_start-itrig));

fprintf {sum,"

fprintf (sum, "

pulsewidth (us): %2f\r\n",sc_time*pul width);
average pulseheight (mV): %$2f\r\n\n",sc_volts*

pul av);
if (index2 != Q) {
fprintf (sum, " SPIKES IN THE PULSE:\r\n");
fprintf (sum, " start {(us) width (us) max amplitude (mV)
\r\n") ;

for (i=0; i<index2;i++) {

fprintf (sum, " $2f $2f",sp_time[i], spwidth([i]);
fprintf (sum, " $2f\r\n",sp _amp[i]*sc_volts);
}

}

fprintf (sum, "\n\n");

if(indexl > 1){

fprintf {sum, " PRE- AND/COR POSTLASINGAr\n"):
fprintf (sum," ——————————————————— \r\n");
fprintf (sum, " time (us) max amplitude (mV)\r\n"};

for{i=0;i<indexl;i++){
if (i != pul index}
fprintf (sum, " $2f $2f\r\n", time[i]l *sc_time,
amp[i] *sc_volts);
¥
}

} /* end main */

sc read{){
/* This function reads data from the scope. The first argument*/
/* in the function sc_flt read() is part of the scope command-*/
/* language. * /
double wval;
/* read out the external triggerposition */
if(sc_flt read("atr?pos",2,&val)<0) ibloc(scope);
itrig=32*val;
/* read out the time scale of the scope */
if{sc_flt read("hor?ase", 4, &sc time)<0) ibloc(scope);
/* read ocut the voltage scale of the scope */
if(sc_£lt read("chl?vol”,4,&sc volts)<0) ibloc(scope);
sc_time=sc_time*le+6/50.0;
sc_volts=sc volts*1e+3/25.0;
sc_trig=itrig*sc time;
ibwrt {scope, "curv?",5);
if{(ibsta<0) {
printf {"GPIB ERROR IN WRITING: curv?in");
print £ ("STATUSWORD: %6d\n",ibsta);
printf ("ERRORCODE: %6d\n", iberr);

ibloc (scope);
exit () ;
}
if{ (ibsta & (1 << 11)) == Q0x800)} {
printf ("SCOPE ERROR IN WRITING: curv?\n");
goto scoperror;
}
ibrd(scope, value, 3); /* return igncored */
if (ibsta<0} {
printf ("GPIB ERROR IN READING FIRST 3 BYTES FROM CURVEAn");
printf ("STATUSWORD: %6d\n",ibsta);
printf ("ERRORCODE: %6d\n", iberr);
ibloc (scope) ;
exit ();
s
if((ibsta & (1 << 11)) == 0x800) {
printf ("SCOPE ERROR IN READING FIRST 3 BYTES FROM CURVEA\n");
goto scoperror;
}
ibrd(scope,value,1024);
if (ibsta<0) {
printf ("GPIB ERROR IN READING CURVE DATA\n");
printf ("STATUSWORD: %6d\n",ibsta);
printf ("ERRORCODE: %6d\n", iberr);
ibloc{scope);
exit {);
}
if{ (ibsta & {1 << 11)) == 0x800) {
printf ("SCOPE ERRCR IN READING CURVE DATA\n");
goto scoperror;
}
ibloc (scope);
return;
scoperror:
ibrsp (scope, &spr) ;
printf ("SCOPE STATUSWORD: %6d\n", spr);

ibloc (scope) ;

exit (};

} /* end sc_read */

sc_flt read(sc_cmd,nread, result)
char *sc _cmd[];
int nread;

double *result;

/* This function does the actual readout of the scope. */
char buf[80];
ibwrt (scope,sc_cmd, strlen(sc_cmd)});
if(ibsta<0) {
printf ("GPIB ERROR IN WRITING DATA MESSAGE: %7s\n",sc_cmd);
printf ("STATUSWORD: %6d\n",ibsta);
printf {("ERRORCODE: %6d\n", iberr);
ibloc(scope};
exit () ;
}
if{ (ibsta & (1 << 11)) == 0QxB80Q0){
printf ("SCOPE ERROR IN WRITING DATA MESSAGE: %7s\n",sc cmd);
gotoc sScoperror;
}
ibrd(scope,buf,nread) ;
if (ibsta<0) {
printf ("GPIB ERRCR IN READING DATA FROM DATA MESSAGE: %7s\n",
sc_cmd) ;
printf ("STATUSWORD: %6d\n",ibsta);
printf ("ERRORCCDE: %6d\n", iberr);
ibloc(scope);
exit (),
t
if((ibsta & (1 << 11)) == 0xB00) {
printf ("SCOPE ERROR IN READING DATA FROM DATA MESSAGE: %7s\n",
sc_cmd);
goto scoperror;
}
buf {nread]='\0";

10

*result=atof (§buf[0]);

return;

scoperror:
ibrsp(scope, &spr);
print £ ("SCOPE STATUSWORD: %6d\n",spr);
ibloc(scope);
exit ();

} /* end of sc_flt read */

sc_calc(){

/* This function calculates: */
/* - the width of the laserpulse, */
/* - the time the laserpulse starts after the Pockel Cell*/
/* opening, * /
/* - the average amplitude of the laserpulse, */
/* - the width and maximum amplitude of pre— and */
/* postlasing, */
/* - the time, width and maximum amplitude of any */
/* spikes in the pulse. * /
int 1i,3;

int average,work,workbef,thresh;
int width,start,stop,pul_stop;
int sp_width,sp start;
average=0;
pul width=0;
for {(i=0;i<10;i++) averaget=value[i];
average/=10;
thresh=8;
workbef=0; index1=0;
for(i=0;1i<1023;i++){
work=average-value[i];
if (work>»>=thresh) {
if (workbef>=thresh) {
width++;
amp [indexl]=max (amp [index1], work) ;
t

else{

11

start=i;
width=0;
amp[index1]=0;

}
else if (workkef>=thresh) {

time [indexl]l=start+width/2-1trig;
if((width>=0) && (width<é)) {
time[index1}1=0;
indexl--;
}
if (width>pul width) {
pul_ width=width;
pul_ start=start;
pul_ stop=start+width;
pul index=indexl;
}
indexl++;
}
workbef=work;
}
if{ (indexl==0) || (pul_width==0)) return;
pul av=0.;
for (i=pul_start;i<=pul_stop;i++) pul_av+=average-value[i];
pul_av/=pul width;
thresh=2*pul_av;
workbef=0; index2=0;
for (i=pul start;i<=pul stop;i++) {
work=average-value [i];
i1f (work>=thresh) {
if (workbef>=thresh) {
sp_width++;
sp_amp [index2]=max (sp_amp[index2],work);
}
else(
sp_start=i;
sp_width=0;

12

sp_amp [index2]=0;

}
else if((workbef>=thresh) && (sp_width > 0)){

sp_time [index2]=(sp_start-pul start) *sc time;
spwidth[index2]=sp_ width*sc time;
index2++;
}
workbef=work;
}
return;
} /* end sc_cale */

13

Appendix C

MAIN PULSE INFORMATION

time between pulse and ext trig (us): 4.320000

pulsewidth (us): 2.600000
average pulseheight (mV): 1060.000000

SPIKES IN THE PULSE:
start (us) width (us) max amplitude (mV)
1.120000 0.200000 40¢60.000000

PRE- AND/OR POSTLASING

time (us) max amplitude {(mV)
3.440000 1720.000000

14

