
Fermi National Accelerator Laboratory

TM-1480

A Programmable Finite State Module
for Use with the Fermilab TEV ATRON Clock*

D. Beechy
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

October 1987

*Submitted to the Europhysics Conference on Control Systems for Experimental Physics at CERN,
Geneva, Switzerland, September 28-0ctober 2, 1987.

0 Operated by Universities Research Association Inc. under contract with the United States Department of Energy

A PROGRAMMABLE FINITE STA TE MODULE
FOR USE WITH 1HE FERMILAB TEVA TRON CLOCK

D. Beechy
Fenni National Accelerator Laboratory *

Batavia, Illinois 60510 USA

Introduction

The timing requirements of the Fermilab system of
accelerators have become increasingly complex with the
addition of the Pbar source and subsequent collider operation of
the Tevatron. To date, timing events have typically been treated
as isolated markers rather than as part of a sequence of events
on the Tevatron Clock.[l] However, it is often important to
know not only that a clock event has occured, but also that it
has occured as part of a sequence of clock events. A finite state
machine is ideally suited to this task. A VME module has been
designed which implements several programmable finite state
machines that use the Tevatron Clock signal as inputs. This
module is known as the VME Finite State Machine or VFSM.
The machines of the VFSM are completely dynamic. They may
be created, altered, or destroyed while in service. In addition to
normal finite state machine rype outputs, the module records a
history of changes of state so that the exact path through the
state diagram can be determined. There is also provision for
triggering and recording from an external digitizer so that
samples can be taken and recorded under very precisely defined
circumstances.

Finite State Machines

Finite state machines have been used in the control system
at Fermilab for everything from controlling the cool-down
procedure of superconducting magnets to gating on counting
equipment at very specific times during the Tevatron cycle. It
is the ability to activate an output after an exact sequence of
input combinations that make state machines applicable to a
wide range of control problems.

A finite state machine is a machine that can only be in one
of a finite number of states at any given time. The inputs to the
machine provide the means for moving the machine from one
state to another. These changes in state of the machine are
called transitions. The VFSM has 8 inputs which are used to
input the 8 bits of the Tevatron Clock signal (TClk) to the
machine. The VFSM changes states and produces outputs in
response to TClk events.

The outputs of the machine can either be triggered by
certain transitions between states, or they can be active while
the machine is in a particular state or states. In the first case the
outputs are pulsed active for a short time while in the second
they are active for as long as the machine remains in the
selected state.

The TClk signal is the source of synchronization for many
components throughout the Fermilab accelerator complex. It is
distributed by a network of repeaters and is decoded by a large
variety of modules. TClk uses modified Manchester coding to
combine an 8 bit 'clock event' with a 10 MHz 'earner' signal.
The transmission of the 8 bit code is the means of
synchronizing various machine processes and functions.

All major machine functions have been assigned clock
events and these codes are transmitted as the various
accelerators ramp through their cycles. Any equipment that has

• Operated by Universities Researoh Association, Inc. under

contract with the U.S. Department of Energy.

l

been programmed to listen for a'specific set of codes can· take
appropriate action when any of those codes are detected. . · ·

State Diagrams

Finite state machines are described with the help of a state
diagram. The state diagram shows all possible states that the
machine can occupy along with the input combinations that
cause the various transitions between the states. The outputs of
the machine are also indicated on the state diagram and are
either associated with the transitions between states or with the
states themselves.

Fig. 1 shows a state diagram for a simple finite state
machine designed to be driven by TClk. The machine has 4
possible states, as indicated by the four ovals, and only one
output. The transitions between the states are labeled with both
the input combination (TClk event) that causes the transition
and the state of the output during the transition. The inputs are
given in hexadecimal fonnat and are just the 8 bit clock event as
received from the Tevatron Clock. The state of the output is
given by the 0 or 1 following the slash in each of the transitions
in the diagram.

The state machine of Fig. 1 is designed to be reset to state 0
by clock event $00, and to then output pulses on the first two
$EO clock events which occur after event $DO if event SDO is
preceded by event $CO. Note that other events may occur be­
tween $CO and $DO. .The $E0/1 convention means that the
transition from one state to another is in response to clock event
$EO and that the output of the machine is to be pulsed active.
The convention $ELSE/0 is intended to show that for all other
clock events not explicitly shown on the state diagram, the
output of the machine is to be zero. $ELSE/l is an equally
valid statement but specifies that the output of the machine is to
be pulsed high.

08
$ELSE/0~

8
$ELSEI~

41 State O State 1 "'

(. .. ,, R.. $001~
\ $0010) ~o)

~ 8tate2
~$E0/1

G· "'---/ ··~
Fig. 1. State diagram of a simple 4 state finite state machine
and the transitions that can occur between any two states.

Ram Based Finite State Machines

Finite state machines can be implemented with both
software algorithms and in hardware using a latching circuit

preceded by some amount of combinatorial logic. Software
machines have the advantage of providing large numbers of
states and transitions along with· the ability to modify the mach­
ine without changes in wiring or the burning of new pals, etc.
The major disadvantage of software based machines is that they
are relatively slow compared to hardware devices and will not
respond correctly to rapidly changing input combinations.
Hardware machines on the other hand are fast. They can run at
MHz speeds, but as implied above, they are not programmable.
They cannot be modified without talcing the machine out of
service.

· It is possible to have the advantages of both types of
machines if the combinatorial logic of the hardware based state
machine is replaced with random access memory. Because the
contents of Ram is easily changed, the machine can be modified
dynamically and since the access time of Ram is now quite
short, the Ram machine can be very fast. The VFSM uses Ram
to implement a finite state machine that can operate at TCik:
speeds. TClk events can occur as rapidly as 1 event every 1.2
microseconds and even slow Rams have access times less than
this allo"".ing less expensive versions to be used.

Fig. 2 shows the basic components of a Ram based state
machine. In typical finite state machine fashion, the outputs of
the state register are fed back and combined with the clock
event inputs to form the total input to the Ram address lines.

Ram
State Register

00-03

AO-A7
TClk

4Kx8

A8-A11

04-07
Outputs

Fig. 2. Basic Components of a Ram based State Machine.

The output of the Ram is latched by the state register just
prior to the end of each clock event. Programming the Ram
based state machine in Fig. 2 is just a matter of filling the 4096
locations of the the Ram with the appropriate data values. The
state machine of Fig. 1 provides a good example for showing
how these values are derived.

The state diagram of Fig. 1 shows that for state 0 there is a
transition labeled $C0/0 which points toward state 1. This
transition has a corresponding Ram entry at address $0CO.
Table 1 show that the data stored at this location is $01. This
corresponds to the state diagram which shows that the
transition is to produce no output but is to take the machine to
state 1. In a similar manor, there is a transition from state 2 to
state 3 labeled $E0/1. Table 1 shows the corresponding entry
at location $2EO to be $13 which will produce an active output
and change the state to state 3. Notice that most table entries
produce no outputs and also do not cause the machine to
change state. These entries correspond to the transitions
labeled $ELSE/O on the state diagram.

There is ·some overhead associated with Ram based state
machines that is not shown in Fig. 2. This overhead is the
multiplexing that must be done to the address and data lines of
the Ram to allow the normal state machine functions to take
place and also to provide access to the Ram by a processor for

2

reading and writing the data values.

• Address ... Data ...
A11 />8 A7 NJ 07 D4 03 DO

eresenl Stale QIQQ!s E~ent ~ ~el!;! Slate
. $0 $00 $0 $0

$0 $CO $0 $1
$0 $C1 $0 $0

...
$9 $FF $0 $0

$2 $00 $0 $0
$2 $01 $0 $2

$2 $EO $1 $3
$2 $E1 $0 $2

$2 $FF $0 $2

Table 1. Partial contents of a Ram based finite state machine
described by the state diagram of Fig. 1.

Out.Put Records

In addition to providing the standard type of finite state
machine outputs which can then be used to trigger other
equipment, the VFSM has the capability of providing to other
bus masters, a record or history of the states that the finite state
machine entered before it produced an actual output signal. An
output record is produced each time an output of the machine
goes active. The VFSM also has an on board receiver for
inputting a serial data value from an external digitizer.
Additionally, the clock event that triggered the actual output
from the finite state machine is combined with the external data
value and the state machine history to form a complete output
record. These three pieces of information: the digital input
value, the clock event which triggered the output from the finite
state machine, and the history of the finite state machine pro­
vide a means of storing a large array of data samples along with
the state of the accelerator at the time each sample was talcen.
For example, a beam intensity sample could be taken both at in­
jection time and at flattop and stored for later analysis. The
history attached to each sample malces it possible to keep the
various samples separated and effectively off loads one of the
tasks of the crate processor to the processor on the VFSM.

Histories

Essential to the process of producing an output record
which correlates a data sample with the state of the accelerator
(as defined by a sequence of clock events) is the idea of
keeping track of history. A history is a list of the states that a
finite state machine enters as it responds to clock events on the
Tevatron Clock. It is important to point out that the history is
not merely a list of clock events. Rather, it is a list of states.
Clock events cause changes in the state of a finite state mach­
ine, and as the machine changes states, these changes are
recorded to form the history. When talking about the VFSM,
the term 'history' means the keeping track of the changes in
state that the machine undergoes as clock events are presented
as inputs to the machine.

It is also necessary that the start of history is defined as one
or more of the states on the state diagram that describes the
machine. This simply means that history starts over each time
the machine enters one of the designated states. For some state
machines, this means that history can grow to be quite long.
As long as the machine does not re-enter one of the selected

start of history. states, the history associated wi~ that machil)e
will continue to accumulate. The special states are
programmable and can inclu~e one ~ all of the states .on the
state diagram. The state machine descnbed by the state diagram ·
in Fig. 1 will ~ used to help clarify these ideas.

For the purpose of this example, suppose that the special
state that restarts history is selected to be state 0 and that the
following sequence of clock events is received: $00, $2D,
$07, $OF, and $CO. Clock event $00 will return the machine to
state 0 from whatever state it is in initially and will also cause
history to be restarted. Events $2D, $07, and $OF do not cause
the state machine to change state. These clock events are.
included in the looping arrow labeled $ELSE/0 that is
associated with state 0. The machine responds to these events
by merely staying in state 0 and keeping the output at zero. The
last clock event in the sequence, $CO, however, causes the state
machine to make a transition to state 1. The output of the
machine stays inactive, but since a change of state has OC?ured,
a history buffer is used to record the change. The history
buffer is just a segment of the microprocessor's memory that is
set aside for recording history. The processor updates the
history buffer each time it reads the the fifo. The contents of
the history buffer are shown in Fig. 3.

States Entered

Latest State of FSM

0 Beginning of History

Fig. 3. History buffer showing the history of the finite state
machine in Fig. 1 after the sequence of clock events $00, $2D,
$07, $OF, and $CO.

Now suppose that the sequence of clock events continues
with events $07, $OF, $CO, and $DO. In a similar manner as
before, events $07 and $OF do not cause the machine to change
state or to produce an active output pulse. There is a dif­
ference, however, in how the machine reacts to event $CO.
Previously this event caused the state machine to change from
state 0 to state 1, but the same clock event now causes no
change in either the state of the machine or its output. The first
three events of this sequence, $07, $OF, and $CO, are included
in the looping arrow associated with state 1 labeled $ELSE/0.
The last clock event in this second sequence, $DO, causes a
similar reaction as event $CO did in the first sequence: The
machine makes a change in state from state 1 to state 2 but the
output remains inactive. The change of state is recorded in the
history buffer. Fig. 4 shows this addition to the buffer.

Now let the string of clock events continue with events
$07, $OF, $CO, $DO, and $EO. As before, $07 and $OF along
with $CO and $DO cause no change of state or output and are
included in the looping $ELSE/0 arrow of state 2. Event $EO,
however, causes a transition to state 3 and at the same time
triggers the machine output to pulse high for the duration of the
clock event. The history buffer is again updated because of the
change of state of the machine.

Finally let the string of clock events continue with events
$07 $OF, $CO, $DO, and $EO. Note that this sequence is
ide~tical to the series just previous to this. The response is also
identical except that the transition is to state 0. The history
buffer following this final sequence is shown in Fig. 4. After
this last state is recorded, it is copied into the beginning of the
buffer to show that history has again started over.

3

States Entered

o Latest State of FSM

3

2

o Beginning of History

Fig. 4. History b~ffer showing the history of the finite state
machine in Fig. 1 after the final sequence of clock events.

Block Diagram

A block diagram of the VFS~ is s~o'Yn in Fig .. 5. In ~e
diagram the thicker black or gray Imes md1cate bus lmes. Fig.
5 shows that communication between the VFSM and the VME
bus can either be through a dual port ram located on the VFSM
or the VFSM can act as a bus master in which case
communication is through shared memory located elsewhere in
the crate. In either case, the VFSM uses DMA to speed up the
transfer of commands and data records between the VFSM and
other bus masters.

B
u
s

Port

Ram

Decoder

Microprocessor

Memory

OMA

Shift
In
FIFO

Outputs

Fig. 5. Simplified Block Diagram of the VME Finite State
Machine.

The block diagram shows the finite state machine as a
single block with access provided to both the micro.Processor
and the input clock event. Access to the. state machme by.the
processor is for the purpos.e ?f programmmg .the state machine.
This allows the charactensttcs of the machme to be changed
without reburning proms, pals, etc. The clock decoder
naturally has access to the state machine since the machine
responds to Tevatron clock events.

An important component in .Fig. 5 that has not)'.et ~en
discussed is the fifo and the assoetated control and mulnplexmg
circuitry. It is this circuitry that is the mechanism by which t!ie
VFSM provides an output record. The record does not consist
of just a dump of the contents of the fifo, but rather, the
contents of the fifo are used in the process of keeping track of
history and the building of an output record. The fifo performs

two important functions: First, it provides for high speed
capture of three sources of data, and secondly, because the data
are shifted into the fifo sequentially in time, the data are
correlated. The multiplexor just before the fifo steers the three
data sources to the fifo. The three sources of data for the fifo
are: 1) the state of the finite state machine, 2) the Tevatron
clock decoder, and 3) the externally supplied.digital value.

The microprocessor has access to the fifo in order to empty
it in response to an interrupt from the control circuit. The data
in the fifo are compiled into various records and made available
to other VME mlliiters.

The block diagram also shows that the fifo is clocked or
triggered to record these data by two different sources. The
first ~ource is a change of state detector. Its function is to clock
the new state of the finite state machine into the fifo each time
the machine changes state. This provides a record or history of
how the state machine traverses its state diagram. The second
trigger source for the fifo is the output of the finite state
machine. This output is in turn a function of how the machine
is programmed. This second trigger source clocks both a clock
event and the externally supplied digital value into the fifo. As
the finite state machine reacts to the Tevatron clock, changes in
the state of the machine are detected and clocked into the fifo.
Each time the state machine changes state, the number of the
new state is loaded into the fifo. This 'history' makes up one
of the fields of the output.record. Eventually, the state machine
produces an output which triggers the recording of the
remaining two fields. The first of these is the clock event that
triggered the finite state machine to produce an output and the
second field is the external digital input value. The control
circuitry appends a type code bit field to each entry as it is
pushed into the fifo. The fifo makes building the record
straight forward because the data are recorded in the fifo in
chronological order.

Processor Tasks

A multitasking real-time executive is used to schedule the
various tasks that the VFSM microprocessor performs. Some
of the more important tasks are listed below:

1. Read Fifo Contents.
2. Update History Buffer.
3. Assemble Output Records.
4. Process Commands from Bus Master(s).
5. · Service a Local Terminal.

Most of the above tasks are interrupt driven. For example,
the microprocessor will only read the fifo when it receives an
interrupt from the fifo control circuit.

Item #4 in the list above is a major task. A large number of
finite state machine related commands are supported. A
representative sample is given below:

1. Create/Destroy machine M
2. Create/Destroy state S, of machine M.
3. Create/Destroy transition T, of state S, of

machineM.
4. Force machine M to state S.
5. Enable/Disable machine M.
6. Return Output Record for machine M.

New system software[2], written at Fermilab for a
multiprocessor VME environment, is used in the VFSM. This
software is called Object Oriented Communications or OOC for
short. The OOC code is just another task that runs under the
multitasking executive. OOC was written to provide a standard
communications protocol between VME bus masters. It treats

4

both the source and the destination of inter-processor messages
as objects. OOC provides the standard functions associated
with object oriented languages. It can create and destroy
objects, it allocates space for instance variables, and it
implements an inheritance type class structure by maintaining
tables of pointers to the various access methods associated with
each of the classes. Messages to objects are processed by the

· OOC task by searching the cla.ss structure to find. a pointer to
the access method required by the message type. Fig. 6 below
shows the. format for an OOC message.

,___s...._..__D _ _.__M_l_D_.__M_T..__.._ __ ParameterL:]

S: Message Source
D: Message Destination

MID: Message ID
MT: Message Type

Fig. 6. OOC message format.

In the VFSM, the finite state machines become objects as
do the states of the machines. Even the transitions between
states are objects .. The instance variables of a transition include
the state from which the transition originates and the state
towards which the transition poipts. A standard set of access
methods is provided by OOC as well as a provision for user
supplied routines.

Conclusion

The VFSM extends the usefulness of TClk by providing a
finite state machine that can be programmed to recognize very
specific sequences of clock events corresponding to well
defined accelerator conditions. The output records produced by
the VFSM allows data samples to be precisely tagged with the
state of the accelerator at the time the samples were taken.
Future enhancements will include a companion module that will
allow any set of digital input signals to control the finite state
machines and not just TClk. This system will then provide a
programmable high speed interface between the VME
environment and external devices.

Acknowledgments

The author wishes to acknowledge the design contributions
of C. McClure, J. Ticku, and J. Utterback whose hard work
and enthusiasm toward this project have added significantly to
the capabilities of the VFSM.

References

[1] D.G. Beechy and R.J. Ducar, "Time and Data
Distribution Systems at the Fermilab Accelerator",
presented at the Second International Workshop on
Accelerator Control Systems, Los Alamos, NM,
October 7-10, 1985.

[2] L.J. Chapman, "Object-Oriented Communications",
Fermilab internal memo (1987), unpublished.

