*ﬂ e Fermi National Accelerator Laboratory

TM-1477

VTI
VME/CIPRICO Interface Routines

Dean Alleva
Development and Evaluation Group
RD/Computing
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

September 4, 1987

Operated by Universities Research Association inc. under contract with the United States Department of Energy

Note Number XXXX

V71
VME/CIPRICO0 Interface Routines

-Version~
Software:1.0
Document:1.0

September 4, 1987

Dean Alleva
Development and Evaluation Group
RD/Computing
Fermilab

-

N OO OO OO WN -
OO WN P

0000 OGO 0O OO0 00O CO ~J ~I O UGN

Page 2

TABLE OF CONTENTS

INTRODUCTION ittt ittt et i e r et e e s ancraaaneanns 3
MEMORY UTILIZATIONottt et i e e e ne e enane ey 3
PARAMETER BLOCK CREATION AND LINKING c.vv.n. 4
POLLING AND INTERRUPTS i ittt iene i cne e 5
STATUS REPORTINGottt i e ittt et ai e aans 6
THE ROUTINES ... ittt ittt it e e sttt et e enatnans 7
VTII Initializationottt i ianeannn, 7
Parameter Block Initialization 8
Parameter Block Linkingcooiiiiiiiiiiiiiiiininnnnn.. 8
Parameter Block Execution i, 9
Ring Buffer Record Initialize iioiivnn.. 10
Ring Buffer Record Linkingo, 10
Error Reporting ...ttt e it e e, 11
Updating Status it i it i 11
Command Routinesc.iiiiiiiiiinninnenrninaniannnnannnn 12
CIPRICO Configuration And Firmware Information 12
Tape Rewind ittt ittt it ieiananen 13
Tape Read and Write e, 14
Putting A Drive O0fflineo, 15
Drive Resetttt et ieiirreannenan, 15
Tape Erasettt it ittt teiten e anannenn 16
Marking Files and Searching Files, 17
Searching Records i, 17
CIPRICO Diagnosticsvvivioniine i tatrennsnsnnnnees 18
REFERENCES i e i i i et et ety 19

Page 3

1 INTRODUCTION

This document details the VME/CIPRICO Interface routines (VTI).
These routines where designed to allow programs written in PILS
running on a MVME 101 under Valet-plus to centrol a CIPRICO tape
controler [1], [2]. The routines fail into two general types. The
low level rountines, such as vti_make pb, create the data structures
used by the CIPRICO as well as manipulate the CIPRICO’s control
registers. The high level routines, such as vti_rewind, use the lower
level routines to carry out complete funtions on tape drives. Most
tape operations are implemented except for ring buffer record
routines. The creation of ring buffer record lists linked to
parameter blocks is possible, but no high level routines are
implemented to work with these !ists.

The routines are written in PILS, a high-level language similar
to BASIC and Pascal. This language is powerful and fast enough for
most applications. One of the most powerful features of the

Valet/PILS system is the ability to set up exception vectors and
exception handlers directly in a program. This feature is used to
handle interrupts from the CIPRICO.

This document is divided into six sections, the first is the
introduction. The remaining sections detail memory utilization,
parameter block creation and iinking, polling and interrupts, status
reporting, and the VII routines.

It is assumed that the reader is familiar with VME and the
CIPRICO controller as well as the linked list data structure. A copy
of the VTl software is available on BitNet at Fermilab as
"FNAL : :USRSROOT : [ALLEVA .PUBLIC]VTI.SRC".

2 MEMORY UTILIZATICN

The CIPRICO requires the creation of parameter blocks in WME
system memory. When the CIPRICO executes a command, it retrieves the
command from a parameter block. Parameter blocks contain a link field
which can be used to create long lists of blocks. These lists can be
executed by the CIPRICC without intervention from the CPU.

Most ¥TI routines must be passed an address where they can create
a parameter block. Some routines, |ike vti_config, require more then
one address. These addresses are supplied by the programmer since the
VII routines and the VALET system do no memory managment. Until some
form of memory management is available in the 0S, it is up to the
programmer to maintain memory and parameter block |list address
integrity. In this document, routine parameter names specifying VME
system memory addresses end with "add", such as pbadd.

Page 4

3 PARAMETER BLOCK CREATION AND LINKING

The routine vti make pb creates a parameter block at the supplied
address. In non-link mode, each parameter biock created has its link
field cleared. To create a |list of parameter blocks, a call to
vti_start pblink begins the link process. Each following call to
vti_make pb still creates a block at the supplied address, but links
the last parameter block created to the new one. This is done by
setting the last parameter block’s link field to the address of the
new parameter block. Thus, vti_make pb adds, when in link mode, the

new parameter block to the end of “the block list. A call to
vti_end pblink stops the linking process by returning to non-link
mode. Starting the process over creates a new list of parameter

blocks. The link process is shown in the code fragment below:

100 ;éi_makq_pb (pbaddl, ...) ! unlinked parameter block

200 vti_start pblink | begin linking of blocks
210 vti_make_pb (pbadd2, ...) ! first record in list
220 vti_make pb (pbadd3, ...) ! Second record in list
300 vti_end pblink | end of linking

310 vti_go (pbadd2) ! go with fist

320 vti_make pb (pbadd4, ...) ! unlinked parameter block

The addresses are specified by the variables pbaddx, were x is a
number specifing a unique new address. A second way to make a |inked
list is to call the high level routines while in |linked mode. In this
way, the parameter blocks are not executed after the routines create
them, but are linked with previous blocks. The created list can then
be executed with a call to vti_go. This is shown in the following
example:

100 vti_rewind (pbaddl, ...) ! rewind tape

110 vti_start pblink ! begin link

120 vti_search (pbaddl, ...) | not executed yet
130 vbi_read (pbadd2, ...) I linked after search

200 vti_end _pblink | stop link
210 vti_go Tgbaddl) ! starts with search, then read,

(NOTE: It is now possible to link parameter blocks, but the
interrupt handler is too simple to process the list (that is, to
handle multiple interrupts from one command). Because of the
primitive nature of the "background® processing under Valet-plus, it
is best to wait for a more sophisticated 0S to handle full CIPRICD
support) .

Page 5

4 POLLING AND INTERRUPTS

Two methods are used to monitor the processing of parameter
blocks. In polling mode, the gate field inside the executing
parameter block is tested in a loop which is exited if the Command
Complete bit is set. Polling should not be used when executing linked
parameter blocks.

When interrupt mode is used, a |loop is entered until a interrupt
flag is set by an interrupt handler. The handler is executed upon an
interrupt.There are two handlers present, one for errors and one for
success. This type of interrupt handling is not much different then
polling, but Valet-plus has no "wait for interrupt® command. In a
multitasking environment, a wait for interrupt command would enable
the 0S to block the waiting processes and execute other processes.

Page 6

5 STATUS REPORTING

Once a command, or list of commands, has been executed, the
status may be fetched in any of two ways. First, a call to
vti_display_error will return the status code of the last command
executed. For linked parameter blocks, the status returned is either
success or the error code for the error which halted list execution.
Vi dlsplay error also prints to the display device a message
indicating the error code returned.

Status may also be fetched with a call to vti_get error, which
returns status without displaying any messages. Note that these
routines should be called after a parameter block or parameter block
list is executed.

Originally, status reporting was to be done in the interrupt
handler routines and returned to the main program through a parameter
in the command routine headers. However, Valet-plus can not handle I0
(get, put, print, etc.) correctly while interrupts from VME are
pending. When a more sophisticated operating system becomes available
status reporting will be changed.

Page 7

6 THE ROUTINES
6.1 VTI Initialize
1) VTI_INITIALIZE (ciprico_add, add mod, inter)

VTINIT

Description: This routine initializes internal VII data values.
It should be calfed once before any calls to other
VTI routines.

Parameters:

ciprico_add (INT32, input): VME address of CIPRICO’s
Attention Register.

add_mod (INT32, input): Address modifier for use
- by the CIPRICO to access system
memory .
inter (INT32, input): If set to 1, VII uses interrupts

to monitor the CIPRICO. If set to
0, VTI uses polling.

Page 8

6.2 Parameter Block Initialization

The vti_set X routines set the field specified by X in a
parameter block. For example, vti_set control sets the control field.
These routines are usually not used by a program, they exsist for use
by vti_make pb.

1) VTI MAKE PB (pbadd, com, skp, rev, unt, sp, bc)
VIMPB

Desciption: This routine creates a parameter block at the supplied
VME system memory address.
Parameters:
pbadd (INT32, input): address where new parameter
block is to be created.
com (INT32, input): the command code to be placed
in the command field.
skp (INT32, input): the skip bit value (1 or 0)
rev (INT32, input): the reverse bit value (1 or 0)
unt (INT32, input): the unit number (0 to 7)
(INT32, input): source/destination pointer value
be (INT32, input): byte count value

6.3 Parameter Block Linking

1) VTI_START PBLINK
VTSPL

Description: Begin the linking of parameter blocks. Any calls
to vti_make pb after a call to vti_start pblink
will ITnk the new parameter block at the end of
the list of parameter blocks.

2) VTI END_PBLINK
VTEPL

Description: Ends the linking of parameter blocks. Any calls to

vti_make pb after a call to vti_end pbllnk will not link the parameter
block to the list. Once this procedure is called the linked list is
closed to all further links. The procedure should be called before
another call to vti_start pblink or a call to vti_go with the list

as a parameter..

Page 9

6.4 Parameter Block Execution

1) VTI GO (pbadd)
VTGO

Description: Executes the parameter block at address pbadd.
This procedure does either polling or interrupts
when waiting for the CIPRICD to complete
the command (or list of commands). Polling or
interrupt monitoring is selected with the routine
VTI_INITAILIZE.

Parameters:
pbadd (INT32, input): address of parameter block (or
address of first parameter block
in list of parameter blocks) to
be executed.

Page 10

6.5 Ring Buffer Record Initialize
1) VTI MAKE RB (rbadd, bent, sdptr)
VTMRB

Description: C(reate a ring buffer record at the address rbadd.

Parameters:
rbadd {INT32, input): address where new ring buffer
is to be created.
bent (INT32, input): byte count field value
sdptr (INT32, input): sourcefdestination pointer

6.6 Ring Buffer Record Linking

1) VTI_START RBLINK
VTSRL

Description: Starts the linking of ring buffer records. This
routine functions the same as vti_start pblink
except that it works with ring buffer records.

2) VTI END_RBLINK
VTERL

Description: Works the same as VTI_END PBLINK, except the
procedure functions with ring buffer records.

Page 11

6.7 Error Reporting

1) VITI _DISPLAY_ERROR (error)
VTDERR

Description: Returns and displays the status code of the last
completed operation. In |linked parameter blocks
the status returned is either success (0) or the
code of the error which stoped execution of the
list.

Parameters:
error (INT32, output): The returned error code.

2) VTI GET_ERROR (error)
VTGERR

Description: Same as vti_display_error except that the routine
does not display any error message.

Parameters:
error (INT32, output): The returned error code.

6.7.1 Update Status -

1) VII READ_STATUS (pbadd, unit)
VTRST

Description: Updates the two status bytes in the parameter block (at pbadd)
reflecting the current status of the selected drive.
Parameters:
pbadd (INT32, input): VME memory address for the returned
parameter block.
unit (INT32, input): The drive number

Page 12

6.8 Command Routines
6.8.1 CIPRICO Configuration And Firmware Inforamtion -

1) VTIUCUNFIGURE (pbadd, cfadd, bcont, tcl, sig, throt, retry, tc2)
VTCON

Description: Configures the CIPRICO tape controler.

Parameters:

pbadd (INT32, input): address where a parameter
block can be created.

cfadd {INT32, input): address where a temporary
configuration block can be
created.

becont (INT32, input): Bus control

tcl (INT32, input): Tape control 1

sig (INT32, input): Signals

throt (INT32, input): Throttle

retry (INT32, input): Retry value

tc2 (INT32, input): Tape control 2

2) VTI_READ_CONFIG (pbadd, cfadd)
VTRTON

Description: Returns the configuration of the controler in a configuration
block.

Parameters:
pbadd (INT32, input): VME address where a parameter
block is created.
cfadd (INT32, input): VME address where configuration
block will be created.

3) VII READ ID (pbadd, firmwara_id)
VIRID

Description: Returns the controler’s firmware ID,

Parameters:
pbadd (INT32, input): VME address where a parameter block
is created.
firmware_id (INT32, output): Returned ID

4) VTI READ DATE (pbadd, firmware_date)
VTRDATE

Description: Return the controler’s firmware date.

Parameters:
pbadd (INT32, input): VME address where routine creates a
parameter block.
firmware date (INT32, output): Returned date

Page 13

6.8.2 Tape Rewind -

1) VTI REWIND (pbadd, unit)
VTREW

Description: Rewinds the tape drive specified by the given unit number.

Parameters:
pbadd (INT32, input): address where a temporary parameter block
can be created.
unit (INT32, input): specifies the tape drive to rewind.

2) VTI OVER _REWIND (pbadd, unit)
VTOREW

Description: Does a overlaped rewind on given unit.

Parameters:

pbadd (INT32, input): VME address for the creation of the
parameter block.
unit (INT32, input): Drive number

6.8.3 Tape Read And Write -

Page 14

1) VTI READ (pbadd, buffadd, numbytes, unit)
VIRD

Description; Reads a number of bytes from a tape to a memory buffer,

Parameter:

pbadd

(INT32,

buffadd (INT32,

numbytes (INT32,

unit

(INT32,

input):

input):

input)

input)

VME system memory address where a

parameter block is created.

VME address of system memory where data

buffer is located.

: Number of bytes to transfer from data
buffer.

: Tape drive number to do read from.

2) VTI WRITE (pbadd, buffadd, numbytes, unit)
VTWT

Description: Write a number of bytes from a buffer to tape.

Parameters:

pbadd

(INT32,

buffadd (INT32,

numbytes (INT32,

unit

(INT32,

input):
input):
input) :

input):

address where a temporary
parameter block is created.

VME address of system memory
where data buffer is located.
Number of bytes to transfer to
data buffer.

Tape drive number to do write to.

Page 15

6.8.4 Putting A Drive Offline -
1) VII OFF_LINE (pbadd, unit)
VTOFF '

Description: Rewinds the tape drive specified by unit and sets it offline.

Parameters:

pbadd (INT32, input): VME address where a temporary

parameter block is created.
unit (INT32, input): Tape drive number to set offline.

6.8.5 Drive Reset -

1) VTI RESET DRIVES (pbadd)
VTRORV

Description: Resets all drives connected to controler.

Parameters:

pbadd (INT32, input): VME memory address where a parameter block
can created.

Page 16

6.8.6 Tape Erase -

1) VTI FIXED ERASE (pbadd, unit)
VTFER

Description: Does a fixed erase on the given unit.

Parameters:

pbadd (INT32, input): VME memory address for the creation of the
parameter block.
unit (INT32, input)}: Drive number

2) VII VAR ERASE (pbadd, unit)
VTVER

Description: Does a variable length erase to end of tape on the given unit.

Parameters:

pbadd (INT32, input): VME memory address used to create a
parameter biock.
unit (INT32, input): Drive number

Page 17

6.8.7 Marking Files And Searching Files -
1) VTI MARK_FILE (pbadd, unit)
VTMFL

Description: Marks a end of file on the given univ.

Parameters:

pbadd (INT32, input): VME memory address for parameter block,
unit (INT32, input): Drive number

2) VTI SEARCH (pbadd, file marks, unit)
VTSRCH
Description: Does a forward search a given number of file
marks on the given unit.

Parameters:

pbadd (INT32, input): VME address for parameter
block.

unit (INT32, input): Drive number

3) VTI SEARCH MULT (pbadd, file marks, direction, unit)
VTSRCHM

Description: Does a search, in either direction, a given number of file
marks on a given unit.

Parameters:
pbadd (INT32, input): VME system memory address for creation
of a parameter block.
file _marks (INT32, input): Number of file marks to search.
Direction (INT32, input): Direction of search.
(1 = Change direction)
unit {INT32, input): Drive number

6.8.8 Searching Records -

1) VTI SPACE _REC (pbadd, rec_num, unit)
VTSREC

Description: Spaces a given number of records on the given unit.

Parameters:
pbadd (INT32, input): VME memory address for parameter block.
rec_num (INT32, input): Number of records to scan over.
unit (INT32, input): Drive number

Page 18

6.8.9 CIPRICO Diagnostics -

1) VTI DIAG 1 (pbadd) and VTI_DIAG 2 (pbadd)
VIDIA1 ‘and VTDIA2

Description: These routines do diagnostic tests on the CIPRICO. For
diagnostic test 2, the CIPRICO must be configured with the
diagnostic bit in the bus control by high.

Parameters (INT32, input): VME system memory address for creation of a
parameter block.

Page 19

7 REFERENCES

[1] Berners-lLee, T. et al. The VALET-PLUS, a VMEbus Microcoputer for Physics
Applications. Fith conference on Real Time Computer Applications in
Nuclear, Particle and Plasma Physics- San Francisco, May 1987

[2] Tapemaster 3000 VMEbus tape drive controler, Ciprico Product Specification.
Publication Number 21014000, Revision A- March 1987.

