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We discuss first the factors controlling the beam dynamics when 
the beam intensity, hence the self-field generated by the beam, is 
negligible. In this case the motions of the particles in the beam 
are independent and we have the so-called single-particle dynamics. 
The single-particle dynamics is clearly controlled only by external 
electromagnetic fields and external physical barriers such as beam 
collimators and vacuum chamber walls. The transverse motion is 
controlled principally by the magnetic field, and the longitudinal 
motion is controlled by the radiofrequency electric field. These 
motions are discussed in more detail below. 

1.1 Linear Transverse Motion 

The closed orbit, hence the overall geometry of the beam, is 
determined by the dipole field on the orbit. The closed orbit is 
generally unique for a given particle momentum. The dipole field is 
usually designed to be vertical on the closed orbit and to have a 
high sector-periodicity. This gives a planar closed orbit with a 
sector-periodic geometry. Since particles travel in a narrow beam 
the effects of the magnetic field are most simply discussed by 
expanding the field in powers of the transverse coordinates 
x(horizontal) and y(vertical) measured from the closed orbit. The 
coefficients defining these multipole fields are given by 

B + iB = B l: (b + ia ) (x + iy) n y x o n n n (1) 

where all quantities are functions of the distance s along the 
closed orbit, B0 is the vertical field on orbit (x = y = O), and bn 
and &n are respectively the normal and skew· 2(n + 1)-pole 
coefficients. So defined b0 = 1 and &o = 0 for error-free field. 
The quadrupole fields specified by bl and al produce linear focusing 
actions. The particles are guided by the quadrupole field to 
oscillate stably (betatron oscillations) about the closed orbit. 
Generally the quadrupole field is designed such that the skew 
component al = 0 and the normal component bl has the same high 
orbital sector-periodicity. The horizontal and vertical betatron 
oscillations are then uncoupled, each given by 

ro •iJds/P x(or y) IX ~P e (2) 

where p = p(s) having the sector-periodicity is called the amplitude 
function. The number of oscillations per revolution or the tune, v, 
is defined by 



l J2~R 
v = 2~ o ds/P (3) 

where 2~R is the circumference of the closed orbit 

Errors in the dipole field cause closed orbit distortions. 
Closed orbit distortions are undesirable because they reduce the 
effective aperture of the ring. Vertical dipole field errors are 
produced by construction errors of the dipole magnets and horizontal 
misalignments of the quadrupole magnets; horizontal dipole field 
errors are produced by roll errors of the dipole magnets and 
vertical misalignments of the quadrupole magnets. Closed orbit 
distortions can be corrected by realigning the magnets or by using 
steering dipoles. 

Errors in the quadrupole field cause distortions in the 
amplitude function p. Amplitude distortions also reduce the 
effective aperture of the ring but their magnitude is generally 
smaller than that due to closed orbit distortions and correction is 
seldom necessary. 

Both the closed orbit distortion and the amplitude distortion 
blow up on resonances. It is easy to see that if the tune is an 
integer, m, orbits with oscillation are also closed, and hence the 
closed orbit is no longer unique. Any dipole error with harmonic m 
will drive an arbitrarily large closed orbit distortion. It is less 
transparent but equally suggestive that if the oscillation is closed 
in two revolutions (2v = integer = m) quadrupole errors with 
harmonic m will drive an arbitrarily large amplitude. Since driving 
error fields are unavoidable, in either the case of integer or half­
integer resonance the motion becomes unstable. The half-integer 
resonance has, in fact, a finite width Av within which the motion is 
always unstable. This •stopband1 width is given by 

Av = mth harmonic amplitude of [~ ~1] 
= c2 defined by Eq. {11) below (4) 

where p = p(s) is the radius of the closed orbit. The coupled 
linear resonances Vx • Vy = integer = m are driven by the mth 
harmonic of the skew quadrupole field given by al· The sum 
resonance Vx + Vy = m also has a finite width stopband. 

1.2 Momentum Effects 

A ring magnet lattice is capable of confining particles over a 
limited range of momentum, each particle traveling about the closed 
orbit corresponding to its own momentum. For planar orbits the 
orbits of different momenta are separated horizontally. The orbit 
displacement per relative momentum increment, Ap/p, is called the 
dispersion function D, which has, of course, also the sector­
periodicity and is given by 
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J
s+2irR 

D = ~ = 2 ~ ! cos[vir + ;(s) - ;(r)]dr uP1P vs1nirv p 
s 

(5) 

where ;(s) = Jds/P is the betatron oscillation phase. The relative 
circumference increment per Ap/p is called the momentum compaction 
factor a and is given by 

J
2irR 

a = iR~R = _l_ ~s 
p p 2irR p 

0 

(6) 

The amplitude function is also dependent on momentum. 
relative change in the amplitude function p per Ap/p is given by 

The 

j

s+2irR 

A 1 bl = 2 · 2 ~ Pcos2[vir + ;(s) - ;(r)]dr . 
sin ll"V p 

s 

(7) 

Integrating around the closed orbit gives the momentum dependence of 
the tune. The tune change per Ap/p is called the chromaticity, {, 
and is given by 

2irR j2irR 
= Av __ ...! J Mil ds = _ ...! bl ds 

{ - Ap/p - 2ir 
0

bp{p p 4ir 
0 

p p . (8) 

When the momentum deviation Ap/p is too large, the dispersion may 
cause the particle to strike the horizontal aperture or the 
chromaticity may run the tune onto resonance values. Thus both the 
dispersion and the chromaticity act to define the momentum aperture 
of the ring. 

1.3 Nonlinear Transverse Motion 

Nonlinear fields are introduced either deliberately or 
inadvertently through errors and beam-beam interactions in 
colliders. Sextupole field is introduced at places where the 
dispersion function D is large to modify or compensate for the 
natural chromaticity. Dispersion puts orbits with different momenta 
at different horizontal positions in the sextupole field, hence 
under the actions of different quadrupole fields. This introduces 
an additional momentum dependence of the tune which may be adjusted 
to compensate for the natural chromaticity. To modify the 
chromaticities independently in both transverse planes we need two 
sets of sextupoles placed at locations with greatly different ratios 
Py/Px and hence having very different effects on the horizontal and 
the vertical chromaticities. 

Octupoles must be introduced when half-integer is employed for 
slow extraction. 
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In any case, the dynamics of the beam particles is, in fact, 
always nonlinear. With nonlinearities, the tunes Vx and Vy are 
amplitude dependent. As the amplitudes grow the tunes will 
encounter a succession of resonances. The 4-dimensional phase space 
is thus crisscrossed with intersecting surfaces in the shape of tori 
on which the motion has resonant tune values. All resonances, 
linear and nonlinear, may be summed up in the formula 

(9) 

where j, k, and mare positive integers or zero. Each resonance is 
excited by the mth harmonic of the 2n-pole field where n = j + k is 
the 1 order1 of the resonance. The linear integer and half-integer 
resonances thus have orders 1 and 2 respectively. Nonlinear 
resonances are of orders ~3. Those with j = n, n - 2, n - 4,··· are 
excited by the normal field bn-1 and those with j = n-1, n - 3 1 ••• 

are excited by the skew field an-1· For example, those excited by 
normvx•2vy = m, and 2Vx*Vy = m, 3vy = m. 

To understand or visualize the features of nonlinear motions it 
vp x and vp x'-(P'/2)(x/vp) (prime means d/ds). Consider the 
turn-to-turn mapping curve of an oscillation with small amplitude 
tune v0 not on a resonance. In the normalized coordinates the 
mapping curve of a small linear oscillation is just a circle. For 
large oscillation, as the tune approaches a resonance, say nv = m, 
the mapping curve takes on the shape of a regular n-sided polygon 
with rounded corners. All stable phase points are contained in the 
central stable region, which is an area bounded by an n-cornered 
figure formed by the separatrices of the resonance. The corners are 
the unstable fixed points. To first approximation the radial 
distance of the unstable fixed points from the origin is given by 

1 

rn = [!voe: ~lin-2 
where Cn is the resonance driving harmonic amplitude given by 

n 

P2b 

(10) 

s x n - 1 Cncos(m -R - 1 phase1
) = - -=--=- (11) 2n P 

To this lowest order of approximation the separatrices can also be 
expressed in simple analytical forms. 

This stable region defines the dynamic aperture. Outside this 
region the motion is at least locally unstable. The stable area is 
somewhat smaller than ~(rn)2 and goes to zero as v0 approaches the 
resonant value m/n. The tune deviation Jv0 m/nl for which the 
stable area is just enough to contain the beam, namely just equal to 
the emittance of the beam (see Section 2 below) is defined as the 
half-width of the resonance. In practical cases this first-order 
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single degree-of-freedom picture always gives resonance widths much 
smaller than measured values, indicating that more precise 
two degrees-of-freedom computations are needed. Clearly the dynamic 
aperture has to be larger than the beam, but, depending on the 
magnitude of the driving term and the separation of the small 
amplitude tune from resonance, the dynamic aperture may be smaller 
than the physical aperture. In this case the stable particle motion 
is limited by the dynamic aperture. 

Nonlinear motions in two coupled degrees of freedom have the 
same behavior but are more complicated and more difficult to 
visualize. In the 4-dimensional phase space the mapping points of 
oscillations not on resonances lie on closed 2-dimensional tori. 
The projections of these mapping points onto 2-dimensional phase 
planes corresponding to each degree of freedom cover broad bands 
which encircle the origins. The projection points seem to scatter 
all over the bands. The scatter makes the emittance appear larger 
and have a fuzzier boundary. This makes the beam loss versus tune 
curves show broad valleys at resonances instead of narrow gulches. 

The shapes of the tori and of the stability boundaries, and 
hence the dynamic aperture, can all be derived analytically to any 
arbitrary order. To the lowest order the effect of the nonlinear 
term is to introduce distortion functions on the linear amplitude 
and phase. However, the algebra involved is rather complicated 
especially when many high-order nonlinear terms are present. It is 
easier to use a straightforward tracking program to compute the 
dynamic aperture numerically. This is the favored approach at 
present. 

The dynamic aperture was investigated ·long ago and understood 
in connection with sector-focusing cyclotrons and fixed-field 
alternating-gradient accelerators, in which the fields are extremely 
nonlinear and the physical apertures (at least the horizontal 
aperture) are essentially nonexistent. 

Another complication of the nonlinear dynamics is the existence 
of the stochastic regime of solutions. These solutions generally 
appear in stochastic layers near separatrices and unstable fixed 
points, where many high-order resonances overlap. In the 
projections of motion near the stability limit, sometimes higher­
order resonance loops do show up. These stochastic layers make the 
boundaries of the central stable region fuzzy, but they are fairly 
narrow and do not sensibly affect the definition of the dynamic 
aperture. The stochastic regime motion plays a more major role in 
determining the limitations for the beam-beam interaction in 
colliders. This will be discussed in Section 2 below. 

Distinct from the dynamic aperture is the physical aperture 
defined by beam collimators or beam pipe walls. The physical 
aperture is, of course, much more definite, easier to understand, 
and simpler to calculate. 

1.4 Longitudinal Motion 

The longitudinal motion of 
by the radio frequency electric 
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nonlinear and can be approximated as linear only when the amplitude 
is small. The nonlinearity is generally that of a sinusoidal 
electric field. The coordinate is the longitudinal displacement, z, 
from the synchronous position. The stable region in the 
(z, z' : dz/ds) phase plane is bounded by a single separatrix 
passing through a single unstable fixed point. The stable region is 
shaped like a tear drop and is called the rf bucket. Similar to the 
transverse motion, the small, approximately linear oscillation can 
be written as 

where 

Pz = J2~ _!_ trR2 
eV fJcos; ' 

0 s 

E = mc27 = total energy 

h = harmonic number 

Vo = peak rf voltage per turn 

fJ = ~ = revolution frequency dispersion 

;s= synchronous phase angle 

(12) 

except now Pz is an adiabatic constant and the motion is sinusoidal. 
The number of oscillations per turn, namely the longitudinal tune Vz 
is given by 

J
21rR 

1 ds R 
vz = 211" ...,... = P.. 

z z 
0 

(13) 

The longitudinal focusing is generally rather weak, and Vz is very 
small, approaching 0.1 only for high energy, high repetition rate 
synchrotrons. Thus, there are no pure longitudinal resonances. The 
longitudinal oscillation (also called synchrotron oscillation or 
phase oscillation) does, however, contribute to transverse 
resonances through coupling to the horizontal oscillation by the 
orbit dispersion. The lowest order coupling term in the Hamiltonian 
is proportional to 

(xD' + x'D) z, prime = d/ds . (14) 

The longitudinal oscillation therefore contributes to the side-bands 

vx • .l!.vz' !l. = integer , (15) 
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of the horizontal oscillation and creates the overall resonant 
conditions 

(16) 

This so-called synchro-betatron coupling, and hence the resonance 
strengths, become progressively weaker at higher i values. The 
coupling can be eliminated altogether either by placing the rf 
cavities in zero dispersion (D = D' = 0) straight sections or by 
judiciously distributing the cavities around the ring lattice such 
that all the coupling terms [Eq. (14)] add up to zero. 

The longitudinal oscillation remains fairly linear within the 
central half of the area of the bucket. The motion becomes strongly 
nonlinear only when it gets close to the wall of the bucket (the 
separatrix). As for all nonlinear motions, the longitudinal motion 
becomes stochastic within a stochastic layer next to the separatrix 
and the unstable fixed point, but the stochastic layer is usually 
very thin. 

2 INTENSITY DEPENDENT DYNAMICS 

2.1 Emittance 

Particles in a beam bunch oscillate about the synchronous 
closed orbit (plotted as the origin of the phase space) and populate 
a central volume of the phase space. The coordinate variables of 
the 6-dimensional phase space are simply x, y, and z as defined in 
Section 1 above and the commonly used momentum variables are listed 
in Table I, where Ps is the synchronous momentum. 

Coordinate 
variables 

x 

y 

z 

I 
Px 

Pz 
Pz(=p-ps) 

Table I 

Momentum variables 

II 
x' - Px/Ps 
y' - Py/Ps 
z' - ~Pz/Ps 

III 
p7x 1 = Px/mc 

P1Y' = Pz/mc 

p7z 1 = ~Pz/mc 

The independent variable is either time t or the distance s along 
the closed orbit. Set I gives the proper conjugate momentum 
variables. With these variables the 6-dimensional volume of the 
phase space has the unit (eV sec)3 and is an invariant of the 
motion. With variables of set II the 6-dimensional phase volume has 
the simpler unit m3 but shrinks as Ps-3· The set III variables 
provide both an invariant phase volume and the simple unit. 

The 2-dimensional area formed by projecting the 6-dimensional 
phase volume, which is populated by particle phase points, on the 
phase plane of one specific degree of freedom is called the 
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emittance in that degree of freedom. This is not a well-defined 
concept, because the density distribution in the populated phase 
generally fuzzy. Two extreme density distributions in the 2-
dimensional projection are usually considered, uniform and bi­
Gaussian. 

If the density is uniform inside an area with sharp 
boundaries,the emittance is simply the bounded area. 

For a linear lattice the "closed~ boundary shape (namely one 
that has the sector periodicity) is an ellipse. The extent of the 
ellipse along the coordinate variable x, say, is just the x-width of 
the beam. Denoting the half-width by B.x• we can write the area of 
the x phase-ellipse or the x emittance as 

f = x 

ra2 
x 

---,;_ (
un-normaliz-ed ) 
in x, x' plane 

(
normalized ) 
in x, frrx' plane . 

(17) 

If the density is bi-Gaussian in x and x', and therms beam 
half-width is qx, the emittance is usually defined as 

f = x 

6rq 2 
x p; 

6rq~ 
P1p:: 

x 

which contains 953 of the beam. 

( un-normalized) 

(18) 

(normalized) 

The density function of a real beam is never this simple, 
especially with nonlinear fields present. One has the choice of 
using either an iso-density curve or an ellipse that contains, say, 
953 of the beam, to define the emittance. The latter is more 
practical because in all likelihood the beam will be further 
transported in a linear periodic lattice, and the phase points 
inside the iso-density curve will be smeared out to fill an ellipse. 

The choice of 953 is arbitrary. The CERN convention is to use 
4rq2/p for the Gaussian distribution. Such an emittance contains 
86.53 of the beam. 

2.2 Static Beam-Field Effects 

Assuming the beam is stable and the density distribution in the 
beam bunch is in a steady state, one can calculate the effect of the 
electromagnetic field produced by the beam (beam-field or self­
field) on the motion of individual particles in the beam. In the 
transverse plane the effect is a detuning of the betatron 
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oscillations. It is convenient to consider the effect as resulting 
from two different contributions, the space-charge contribution and 
the image-charge contribution. 

The transverse space-charge (and current) force has an energy 
dependence of 1 - p2 = l/72, the result of the cancellation between 
the electric defocusing force (factor 1) and the magnetic focusing 
force (factor p2). The tune shift 6v contains, in addition, the 
energy factor l/p27, where p2 arises from the tune being expressed 
in terms of the angular velocity, and 7 arises from the relativistic 
mass increase. The dependence of the force on the transverse 
coordinates is related crucially to the particle density 
distribution in the beam. If the density distribution is uniform 
inside an elliptical beam, the transverse force is linear up to the 
edge of the beam, and the tune depression is independent of 
amplitude for oscillations inside the beam. The x and y tune 
depressions are given by 

2 r 

!x I 
>.ds ira 

6v _ _L x 
= E =-,-x P213 a x 

1+ .J.. x 
a x 

(19) 
r 

.!_ I >.ds 
ira2 

6v = 
_ _L 

E = -f. y f 13 e a ' y 
y 1+ ~ y 

a y 

where r : e2/mc2 = 1.535xlo-18 m = classical radius of proton, 
ax(s) anH ay(s) are the semi-axes of the beam cross-section ellipse, 
and ). = >.(s) is the local linear particle density. 

As expected, the tune shift is larger in the direction of the 
minor axis of the ellipse. This simple but rather unrealistic 
distribution is called the Kapchinsky-Vladimirsky distribution. In 
the 4-dimensional transverse phase space (x, x', y, y') this 
corresponds to a 6-function distribution on a 4-dimensional 
ellipsoidal shell. 

If the density distribution in the elliptical beam is bi­
Gaussian in x and y, we get a spread in the tune depressions. The 
depressions are greatest for the smallest amplitude oscillations in 
the dense core of the beam and are 

3r .!_I ..M!_ • 
6iru2 

6v p E 
x 

= - - p; x f 1
3 E U x max x 1 + .J.. 

u x 

(20) 

3r 

!y f 1 

>.ds 6iru2 

6v = p e =-r. Ymax p27a u y 
x y +-u y 
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where Ux and u are the standard deviations of the Gaussian 
distributions or {he rms half-widths of the beam. With the usual 
definition of E = 6~u2/p for the Gaussian distribution, the maximum 
tune shift is 3 times that of the uniform distribution. 

Neither of these distributions is realistic, but this 
discussion shows convincingly that the realistic space-charge tune 
depression has a spread from a value approaching zero for the 
largest amplitude oscillations to a value approaching but likely no 
greater than that given by Eq. {20) for the smallest amplitude 
oscillations. 

The image charge {and current) force does not contain the 
electric-magnetic cancellation factor 7-2 and therefore tends to 
dominate at high energies. To first order it depends only on the 
linear density of the beam and the cross-sectional dimensions of the 
imaging beam pipe and magnet poles, and not on the cross-section of 
the beam. Blowing up the transverse dimensions of the beam reduces 
the space-charge tune depression but not the image-charge term. To 
reduce the image-charge term, one has to enlarge the beam pipe. 
Also, since the image charge (and current) is external to the beam, 
the effects of its field on the beam are opposite in the two 
transverse planes as necessitated by the Laplace equation. 

The electric image tune shifts are 

r 
2~R>. 611 ___E_ = cl 2 <~h2/P > x p 7 x 

{21) 
r 

611 = _ c ~ 2~R>. 
y 1 p27 <~h2/Py> 

where 2h = vertical separation of the assumed electric imaging 
surfaces, c1 = numerical factor depending on the shape of the 
imaging surface {= ~2/48 for parallel planes), and<>= averaging 
around the ring. 

The magnetic image tune shifts are 

r 
2~R>. - N r N 611 = - c _£ + c _£ 

x 1 7 <~h2/P > 2 7 <~g2/Px> x 

{22) 
r 

2~R>. - N r N 
611y= c1 f - c _£ 

<~h2/P > 2 7 <~g2/Py> y 

where 2g = vertical separation of the assumed de magnetic imaging 
surfaces, N = J>.ds = number of particles in ring, and c2 = numerical 
factor depending on the shape of the surface (= ~2/24 for parallel 
planes). 
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In these expressions the first terms are the ac magnetic image 
terms and the second terms are the de magnetic terms. The shape 
factors c1 and c2 have been computed for other than the parallel 
plane geometry. 

We have assumed that the image forces are instantaneously in 
phase with the beam bunch. Since the bunch is moving and since the 
imaging vacuum pipe, magnet poles, etc., are all electromagnetically 
active elements, the image force can have out-of-phase components 
and can therefore induce oscillations in the beam. This will be 
discussed further below. 

For the longitudinal beam-field force, as a simple 
approximation, we assume the beam bunch to be a line charge with 
linear density A(z) along the center line of a beam-pipe that has a 
capacitance per unit length C. For a circular conducting beampipe 
of radius b and a circular beam of radius a, C = [l + 2ln(b/a)J-l is 
a reasonable approximation. The charge distribution then produces a 
voltage distribution eA/C and a longitudinal field 
Ez = -(e/C)dA/dz. If A is parabolic, say 

A(z) = £ ~z [1- :~ (23) 

z 

with 2az = bunch length and N = number of particles in bunch, we 
have 

eN 

Ca3 
z 

z ' (24) 

namely a linear force directed away from the midpoint of the beam 
bunch (z = 0). The response of the particles is defocusing below 
transition(~> 0) and focusing above transition(~< 0). Thus, the 
particle behaves as though it has a negative longitudinal mass above 
transition. The consequences of the longitudinal beam-field force 
and the negative mass effect on transition crossing will be 
discussed in further detail later. 

In reality the linear density distribution is likely to be more 
complicated than simple parabolic, and the varying transverse size 
of the beam will make the longitudinal self-field force dependent 
also on x and y. The above descriptions of both the transverse and 
the longitudinal effects are oversimplifications that help create a 
physical understanding of the basic processes involved and 
nevertheless give quantitatively reasonable and approximate 
estimates. 

2.3 Coherent Instabilities 

The particle beam traveling in an accelerator is surrounded by 
and coupled to a great number of electromagnetically active elements 
each of which can be represented electromagnetically by a complex 
impedance. These include, e.g., the resistive beampipe wall, 
discontinuities or structures formed in the beampipe such as bellows 
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and rf cavities, apparatus inserted inside the pipe such as kicker 
magnets, beam position monitors, etc. The bunched beam current I is 
rich in harmonic content and induces a voltage per turn IZ where Z 
is the total impedance of all the electromagnetic elements in the 
ring which are coupled to the beam. This voltage acts back on the 
beam particles with a force U + iV : eIZ. If the action on the 
particles is a positive feedback, and if the motions of the 
particles stay coherent for a long enough time that the positive 
feedback can be considered as acting on the beam as a whole, a 
coherent instability in the beam will result and the beam may be 
lost. Depending on the length of the decay time of this wakefield, 
a beam bunch may feel its own wakefield on the next turn around and 
become unstable; this is called the self-excited or turn-to-turn 
instability. Or the wakefield of one beam bunch may be felt by the 
succeeding bunches and induce the coupled-bunch or bunch-to-bunch 
instability. Rather complete analyses have been made of the 
behaviors of the different modes and the onset thresholds of these 
instabilities. Fortunately, in most practical cases the wakefield 
of one beam bunch is effectively attenuated before the next bunch 
arrives, and these instabilities are not excited. Even in the case 
when they are excited, these stabilities are easily cured or damped 
either by electronic feedback or by Landau damping ("decoherencing• 
motions of individual bunches). 

We are therefore left with only the intra-bunch or single-bunch 
instabilities. The frequencies of these single-bunch instabilities 
are too high for damping by available electronics and the effect of 
Landau damping is limited in magnitude. Together with some 
incoherent effects discussed below, the single-bunch coherent 
instability usually imposes ultimate limitations on the beam 
current. To increase the beam current that can be accelerated we 
must either reduce the impedance or reduce the coherence time (i.e. 
increase the Landau damping). 

Wakefields with long decay times are generally induced by the 
high-Q parasitic modes of the accelerating rf cavities and can 
usually be eliminated by damping out these modes in the cavities. 
Or we can •decoherence• the motions of the different bunches. 
Longitudinally we can make the synchrotron oscillation frequencies 
of the bunches different by adding a cavity operating, e.g., at the 
harmonic number h + 1. Transversely the betatron tunes of different 
bunches can be made different by using a radiofrequency quadrupole 
that imposes different quadrupole fields on different bunches. For 
proton synchrotrons it is generally sufficient just to damp out the 
harmful parasitic modes in the cavities. 

The longitudinal single-bunch instability, commonly known as 
the microwave instability, induces very short longitudinal lumping 
of the particles at microwave frequencies within a beam bunch. This 
instability is stabilized by Landau damping through a spread in the 
revolution frequency due to the momentum spread. The threshold of 
the instability expressed as the maximum allowed longitudinal 
impedance Z~ for given beam current and momentum spread is 
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(25) 

where n = (instability frequency)/(revolution frequency) =mode 
number, I = peak current in bunch, dp/p = peak momentum spread 
(FWHM) in bunch, and F.e_ =form factor of order unity. 

The attainable value of IZ.e.l/n has a practical lower limit, but 
with proper care a value of N 1 a can easily be attained. 

The transverse single-bunch instability is also known as the 
high-mode head-tail instability. The primary excitation mechanism 
is the following. The field generated by the transverse oscillation 
of the head of the beam bunch acts on particles in the tail. 
Because of the phase difference between the head and the tail 
produced through a non-zero chromaticity by the momentum swing 
during synchrotron oscillation, this excitation force has the 
necessary out-of-phase component to induce instability. The 
particles in the head and the tail are continually interchanged by 
synchrotron oscillation. Thus, the instability of the whole beam 
bunch is self-regenerative. This instability can be •cured• mainly 
by Landau damping arising from a spread in betatron tune. In 
principle, it can also be damped by a spread in the synchrotron 
oscillation frequency which produces a mixing of particles along the 
length of the bunch. But in practice it is difficult to attain 
sufficiently rapid longitudinal mixing. The threshold of the 
instability expressed as an upper limit for the transverse impedance 
per unit length, Zt, is 

(26) 

where Ft is another form factor of order unity and dv is the 
betatron tune spread. 

Both the momentum spread dp/p in Eq. (25) and the tune spread 
dv in Eq. (26) are limited by resonance. The limitation is stronger 
for colliders in which, because of the long storage time 
requirement, much higher resonances have to be avoided. Thus, we 
must reduce the impedances to the minimum. 

Again, the contributions to the impedances Z.e_ and Zt have two 
sources, that from the space charge/current and that from the image 
charge/current on the beampipe wall. The image contributions to Z.e_ 
and Zt are related to each other. For a circular beampipe of radius 
b the simple approximate relation is 

z z N 2R --8: 
t - {Jb2 n 

(27) 

As stated above, a practical lower limit for IZ.e.1/n is about 1 a, a 
value more or less independent of the size of the ring. This 
relation then shows that Zt is larger for higher energy machines for 
which R is larger and b is smaller. Therefore, one expects 
transverse instability to be more troublesome for higher energy 
machines. A great deal of effort has been devoted to computing the 
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impedances for special geometries of the beam and the chamber wall. 
But the eventual conclusion must be based on measurements. 

2.4 Transition Problems 

Several special problems are caused by longitudinal beam self-
field forces in crossing transition. Below transition the 
revolution frequency dispersion 

~ = ~~7~ = 1/72 - l/72t 

(where 7t is the transition energy in units of mc2), is positive 
(velocity increasing faster with momentum than orbit length) and a 
particle responds to longitudinal force as though it has a positive 
mass, i.e. accelerates in the direction of the force. Above 
transition ~ < 0 and a particle responds as though it has a negative 
mass, i.e. accelerates in the direction opposite to the force. This 
reversal of response is usually taken care of by making a phase jump 
in the accelerating rf field from a positive slope (converging 
force) to a negative slope (diverging force). Together with the 
change in sign of the •mass, 1 this phase jump keeps the effect 
always focusing. 

When the longitudinal self-field force becomes comparable to 
the force due to the external rf field, the following problems 
arise: (1) Unlike the rf force, the self-field force cannot be 
reversed in sign at transition and remains diverging both before and 
after; thus it subtracts from the rf force below transition and adds 
to it above transition, causing mismatch in the force constant and 
hence a blowup in the longitudinal emittance. (2) Near transition ~ 
is sensibly zero, and there can be no Landau damping to stabilize 
the beam against the longitudinal microwave instability. 

Both problems can be resolved or at least alleviated by 
employing the transition jump scheme. In this scheme fast pulsed 
quadrupoles are installed in the ring to jump the orbit length 
dispersion, C7t)-2, at transition crossing so that ~ is changed 
abruptly from a non-zero positive value to an appropriate non-zero 
negative value. With proper adjustments, matching can be 
reestablished even in the presence of the beam-field force, and, 
since l~I is never zero or even small, Landau damping is always 
present to damp the microwave instability. In addition to taking 
care of these longitudinal problems, one must remember to switch the 
chromaticity e from a negative value below transition to a positive 
value above transition to keep the transverse head-tail instability 
under control. 

All these transition problems, if not properly resolved, 
although they may not cause direct beam loss, will invariably blow 
up the longitudinal emittance and perhaps also the transverse 
emittance if the head-tail instability is not appropriately damped. 
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2.4 Incoherent High Intensity Effect: Intrabeam Scattering 

In the rest frame of a beam bunch the particles are confined in 
a potential well in all three degrees of freedom. In addition, the 
particles interact via Coulomb scattering. This intrabeam 
scattering can be expected to cause noticeable growth in the 6-
dimensional emittance if the particle density is sufficiently high. 
The total growth rate is given by 

2 
! = !2 crpN(log) <H(X1,X2,X3}> 
T 7 f (28} 

where rp = e2/mc2 = l.535xlo-18m = classical proton radius, 
N = number of protons in bunch, log = Coulomb logarithm ~ 20, 
r = c2~p7)3(ux2/Px)(uy2/py)(uz2/Pz> =invariant 6-dimensional phase 
volume occupied by beam in Gaussian distributions, and the 
expression <H(X1, A2, X3}> is a dimensionless and homogeneous 
•momentum shape factor•. The quantities (Xi)-1/2, (X2)-l/2, and 
(X3)-1/2 measure the principal axes of the momentum ellipsoid of the 
beam bunch, and <> denotes averaging around the ring. The function 
H equals zero if Al = A2 = A3, namely if the momentum spread is 
isotropic. This shows that the effect of the intrabeam scattering 
is to equipartition the momentum spread among all three degrees of 
freedom. On the other hand, in an alternating gradient lattice the 
X's cannot be equal everywhere. Hence the emittance will always 
grow. 

In the general case, the 
of elliptic integrals, but in 
namely when the momentum 
ellipsoid with the short axis 

function H can be expressed in terms 
the special case when Al > X2 = X3, 
distribution is an oblate circular 
along the 1 direction, one can write 

sin -1 ti -A2 x - 6 . 
1 

(29} 

Formulas, slightly more complicated, exist also for 1/Tx, 1/Ty, 
and 1/Tz, namely the individual growth rates for the emittances in 
each degree of freedom. 

For the Fermilab accelerators operating at the present 
intensity, intrabeam scattering has not been much of a problem. 

2.6 Luminosity Issues 

Colliding beams give the possibility of reaching high center­
of-mass energies. On the other hand the luminosity is naturally 
lower than that attainable with a single beam on a fixed target. To 
maximize the luminosity, the beams are focused hard to a tiny spot 
at the point of collision. This unfortunately increases the 
electromagnetic forces between the beams. These forces are 
extremely nonlinear and act to disrupt or at least blow up the beam 
so that the beam lifetime is reduced. 
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For the head-on collision of two circular beam bunches, each of 
radius a and having N particles, the integrated luminosity is just 

N2 N2 
Lb= - = P1-.-

'Ka2 p E 
n 

(30) 

where P* = amplitude function p at point of collision, and 
En = P1 ,,;a2/p* = normalized emittance. 

For given energy and particle number, to maximum L we must 
minimize En (low emittance beam) and P* (low P* obtained by an 
insertion of strong quadrupoles). If the time interval between 
bunches in each beam is 71>• the luminosity is 

Lb N2 
L = ;;:- = P1 * (31) 

b p Enrb 

The disruptive effects of the nonlinear beam-beam forces are 
difficult to calculate analytically. But for a given density 
distribution in the beam, i.e. a given mix of nonlinear forces, the 
effects in each transverse degree of freedom can be measured in 
terms of only one parameter, the linear tune-shift. We demonstrate 
this for the case of one transverse degree of freedom, say x. To 
begin with, neglecting the effect of the beam pipe, the electric 
potential of the second beam as seen by a particle in the first beam 
can be written as 

2 
V(x,s) = eNf (:2 , s) (32) 

where N is the number of particles in the bunch and f is a properly 
normalized function. It is clear that f is an even function of x 
and that x should be scaled by the half-width a of the beam. The 
effect of the beam-beam force alone on a particle in the first beam 
is given by 

d2
x 2 av 2 2 llf m7 - 2 = - (1 + p )e ..- = -(1 + p )e N ,.--

dt ox ux 

where the factor 
beams are going 
magnetic forces. 
becomes 

(1 + p2) arises from the reinforcement (because the 
in opposite directions) of the electric and the 
With s as the independent variable this equation 

d
2

x = _ 1 + p2 r N llf 
ds2 f1 p ax 

This shows that the total Hamiltonian of the motion could be written 
as 

1 2 2 H(x,p;s) = 2 (p + Kx ) + 
2 1 + p r Nf 

f1 p 
(33) 
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We make the usual canonical transformation to the angle-action 
variables ; and J by 

x = J2PxJ cos ; 

~ 
p = -JPx 

P' 
{sin; - 2x cos ;) 

and obtain the new Hamiltonian 

k(;,J;s) = vJ + 
1~7p2 rpNf[2!~J cos

2
;,s) 

We then define a scaled action variable 

2p 
I: ~ J 

a 

(34) 

(35) 

Keeping in mind that a2~px, and hence Px/a2 is independent of s, we 
can write the canonical equations of K as follows 

~ 6K Bf 
ds = (jJ = v - 4~(6vb) -al 

(36) 
llf 
a, 

where the beam-beam tune shift 

6v = _! 1 + p2 rpNpx - - ! !...:.._12 ~ (37) 
b - 2~ p2

7 
a2 - 2 P €n 

has the form of usual space-charge tune shift except that the factor 
1 - p2 is changed to 1 + p2. In Eq. (36) f = f (Icos2;,s) and the 
nonlinearity in Icos2; is derived from the original nonlinearity in 
x2/a2. Equation (36) shows that the motion is characterized only by 
the linear tune v and the beam-beam tune shift 6Vb. 

We can now write a phenomenological expression for the beam­
beam blowup rate, 

j ~ ~~ G [::~ 
c 

(38) 

where re = time interval between collisions of a beam bunch with 
others, and 6Vc = critical tune shift. 

The blowup effects from collisions with different bunches are 
not coherent, hence the dependence on re is taken to be V'f'C. G is a 
function that rises sharply for 6vb > 6vc. Experiences at the 
SppS indicates a critical tune shift value of 6vc N 0.003. 

To summarize, the disruptive effects of the nonlinear beam-beam 
forces can be measured by the linear beam-beam tune shift 6vb, and 
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experience shows that, to obtain reasonable lifetime for the 
colliding beams, 0"b should not be )0.003. 

In addition to the nonlinear effects, the simple linear tune 
shift per revolution is, as before, limited by resonances. To avoid 
resonances up to, say, the 7th order, we must have 

(39) 

where Ne is, for a given bunch, the number of collisions with other 
bunches in one revolution. If 0"b N 0.002, say, this imposes an 
upper limit on Ne of about 10. For pp colliders, or pp colliders 
with beam separators, the beam bunches collide only at the 
interacting points (!P's) for experiments, and Ne is equal to the 
number of !P's. A value of 10 for Ne is quite acceptable. But for 
pp colliders without beam separators, all bunches of beam 1 collide 
with all bunches of beam 2. A value of Ne = 10 will severely limit 
the number of bunches per beam. 

An entirely different limitation on the integrated luminosity 
per bunch crossing, Lb, is imposed by the resolving power of the 
detector for the events produced. The total cross-sections for pp 
or pp collisions are of the order of 100 mbarn = 10-25 cm2 at TeV 
energies. It is difficult to resolve more than, say, 2 events 
during the collision of two beam bunches. Thus Lb should be of the 
order of 1025 cm-2 and no greater, and to obtain a luminosity of 
L = 1033 cm-2 sec-1 we need 'Tb N 10-8 sec or N 10 nsec. This 
imposes rather stringent demands on the geometry of the interacting 
point. The bunches must collide more or less head-on (otherwise the 
luminosity will be reduced) at the IP, and 5 nsec (1.5 m) away on 
either side the bunches must be separated, at least by as much as 
their width. These demands can indeed be met, but only with 
difficulty. 

The strategy of getting Lb N 1025 cm-2 with the lowest particle 
number N is also clear. For this we want to use the lowest possible 
emittance €n and the lowest possible p*. We should then check that 
Eq. (37) gives a beam-beam tune shift 0"b smaller than OVc N 0.003. 

APPENDIX A SPACE-CHARGE TUNE SHIFT 

A.1 Circular Beams 

Case I Uniform density distribution 

The electric field is radial 
radial coordinate r. As long as 
the field is given by 
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one stays inside the beam (r < a) 



or 

1 
r 

E = 
r 

= -4..-ep 4e>. = - a2 (A-1) 

(r<a) (A-2) 

where a is the radius and >.(s) is the linear density of the beam. 
The force fr is then 

(A-3) 

where the 72 factor arises from the cancellation between the 
electric and the magnetic forces. Thus, the tune shift is 

1 Jpdf r 1 N 
li11r = 4,- pcfl drr ds = - f p273 er 

where r 
p 

e2 -18 = 2 = l.535xl0 m = classical proton 
me 

2 - ..-a "tt Er = ....,-::- = em1 ance, 
r 

N = J>.ds = total number of particles, 

and r denotes either x or y. 

Case II Gaussian density distribution 

In this case we write 

>. p =-- e 
2..-u2 

r 
and obtain 

2 r 

r2 
- 2u2 

r 

2 r 

1 
!r J>. 

- 2u2 u 2 - 2u2 

611 = -3r r r 1 - e r 
p273 

e -2 r p r 

radius, 

ds 

(A-4) 

(A-5) 

(A-6) 

where, again, r denotes either x or y. The maximum tune shift is 
obtained for oscillations with vanishing amplitude or as r + 0. 
This gives 
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where 
611"0'2 

Er E ~ = 95% emittance 
r 

A.2 Elliptical Beams 

Case I Uniform density distribution 

(A-7) 

With uniform density and an elliptical beam boundary with semi­
axes a and b, it is easy to see that a potential function 

V(x,y) = a ~>.b k2 + ~) (A-8) 

satisfies the Poisson equation 

2 a2v 82V >. v v = - + - = 411" =-r = 41rp 
ilx2 (ly2 'lrao 

(A-9) 

and the boundary condition that the elliptical beam boundary should 
be an equipotential. Thus the electric fields are 

av 4>. 
Ex = - 1ii = - a(a + b) x 

(A-10) 
av 4>. 

Ey = - !y- = - b(a + b) y 

and the tune shifts are 

611 = - ~ !._ J >.ds ' 
X .2 3 E -:--bl p 7 x + -a 

(A-11) 

Case II Bi-Gaussian density distribution 

The density distribution is 

p(x,y) = 21r;b exp[- x: - Y: ] 
2a 2b 

(A-12) 

where a and b are, now, the standard deviations. The potential 
function for such a density distribution is 
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" 1 - exp[- 2(a~x+ t) 
V(x,y) = e>. dt 

~~~--;::::::;::::=======-~ 

J (a2 
+ t) (b2 

+ t) 

2(b2 : t) ] 

0 

To get the x tune shift, e.g., we have 

exp - 2 av 
Ex = - BX = -e>.x 

00 

[ x2 
dt 2(a + t) 

(a2 + t)J (a2 + t) (b2 + t) 
0 

The x tune shift is then 

1 r I 1 8E 
{jvx= 4ir H e Px axx ds 

" [1 -a2 x2+ 1 exp [- ----'x"-=2~­J 2(a2 +t) 

2 

>.pxds dt ----------------

0 
2 J 2 2 (a + t) (a + t)(b + t) 

(A-13) 

(A-14) 

(A-15) 

The maximum tune shift is for vanishingly small oscillations 
corresponding to x, y + 0. This gives 

Similarly we have 

.. 
>.p ds x 

dt 

(a2 + t)J (a2 
+ t)(b2 

+ t) 
0 

Xds 
b ' 1 + -a 

2 _ 6ira 
e = ,-
x l'x 

(A-16) 

" (1- Y21exp[- x2 2 ] 

1 r b2 + J 2(a2 + t) 2(b2 + t) 
6v = - 4 Ta >.p ds dt ----::----;::::::========;:::====------

Y ir p 7 y o (b2 + t) J (a2 + t) (b2 + t) (A-17) 

21 



APPENDIX B FORMULAS RELATED TO LONGITUDINAL OSCILLATION 
(SYNCHROTRON OSCILLATION, PHASE OSCILLATION) 

(A-18) 

In Section 2, for clarity we used a unified notation for all 
three degrees of freedom. Here we are under no such constraint. 
The simplest and most directly obvious starting equations are 

M = "'o - hw 

d eV 
~ 0 • "' dt = 2irR sin ., 

where ; = rf phase as seen by the particle, 
w = cfl/R = particle revolution frequency, 
h = harmonic number, 
p = particle momentum, and 
w0 , V0 =frequency and peak voltage of rf. 

(B-1) 

To put the equations in canonical form we define the variable 
W, remembering that d; = (h/R)dz, by 

dW = ~ dp = ~ , E = mc2
7 = total energy 

and write the equations as 

M = "'o BB 
hw =aw 

dW eV o • 8H 
dt = 2irh sin; = - a; 

with the Hamiltonian 

H(;,W;t) = w W - E(W) 
0 

We define the synchronous values (subscript s) by 

Ps = (e/c)Bp (synchronous momentum) 

(B-2) 

where B = B(t) = guide magnetic 
radius, are all given parameters. 
phase ;s by 

field and p = constant bending 
This then defines the synchronous 

dp eV 
s 0 • "' 
~ = 2irR sin "s 



Expanding the first of Eq. (B-2) to the first-order term in w - W - W6 
gives 

where 

~-(w -hw) dt - 0 s 

dw 
dt 

eV 

2~h (sin ; - sin ;s) 
ClK 

= - 81 

ClK 
aw 

~ : ~;); = 7-2 - 7~2 = revolution frequency dispersion, 

(B-3) 

7
-2 : dR/R = 

t dp/p 
orbit length dispersion, and 7 = transition-gamma, 

t 

and where the rf is tuned such that The new Hamiltonian 
is 

-~w2 
mR2 2 

1s 
K(¢,w;t) = 

eV 
0 

+ 2~h (cos; + ;sin; ) . s 

The adiabatic phase trajectories are given by K = constant. 
The separatrix or the 'bucket boundary' is the trajectory that 
passes through the single unstable fixed point at 

w = O, 

and is given by the equation 

w = * 
1/2 

;sin; - c~ - ;)sin; l s s 

This gives the following dimensions for the rf bucket: 

(B-4) 

Horizontal extent: ;1 to ;2. Both are given by the solutions 
of 

(B-5) 

Then ;2 = ~ - ;s is an obvious solution. The other solution ;1 is 
on the opposite side of ;s as ;2 and must be obtained numerically. 

Vertical extent: 2wmax· It is easy to see that w is maximum 
at ; = ~s· Thus, we get 

with 

w max (B-6) 

(B-7) 
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so defined that PC¢s = 0) = 1. The other more physical momentum 
variables introduced in section 2 a.re related to w by 

h Es J 2 eV o 1 
Pz max = R wmax = c - r n PC¢s) ,-h s ., 

z' max 

h ~eVo 
p7z'max =!ca "'max = 7s - E 'I PC¢s) 

,.h s 

(B-8) 

Area of bucket: This is given in the basic units of (¢,w) by 

A(¢,w) 

where 

)

;2 
a(; ) = ~1~ [cos; + 

s 4.lz 
¢1 

= 8 RES 1~ eV o 1 

he J ,-h Es !) 

a(; ) 
s 

1/2 
cos; + ;sin; - c,--; )sin; ] d¢ s s s s 

(B-9) 

(B-10) 

so defined that a(¢s = 0) = 1. In the other more physical variables 
the bucket area is given by 

A(z,z') (B-11) 

The functions ¢1(¢s), a(¢s) 1 and PC¢s) are all given in 
tabulated form in CERN Report CERN/YPS-SI/Int.DL/70/4. 

24 



APPENDIX C FORIAULAS RELATED TO TRANSITION CROSSING 

We start with Eqs. (B-3) of Appendix B. For small oscillations 
we expand to linear terms in ; : ; - ;s (;s =constant). We also 
assume a linear increase of energy in time, namely 

where cPt is the particle velocity at transition. This gives 

and 

where we have 

a= 

d; -
dt -

2 .!!...!L N - 2 w -
mR 7 s 

dw 
dt = 

eV cos; 
0 s 
2irh 

defined 

"' 2 • 
2~1._> 

E 4 
0 7t 

0 , E 
0 

(transition at t = 0) 

t - t E w =a w 
0 

b cot; ; s 

2 
=me = rest energy, 

(C-1) 

(C-2) 

he 
"'~ = ~ = rf frequency at~ energy, and 

cpt eV sin; R 2 E • o s me o 1._ 
b = 2irR mc2 hc Pt = "'~ Pt > o 

We also define a scaled time variable x -
related to the synchrotron oscillation frequency 

o2 = 

or 

-abt cot; = lt
3
I 

s T 

0 ' It < 

t > 0 ' 

and (OT) 2= ltl/T . 

t/T where T is 

> .! 
2 

(C-3) 

So defined T is the time away from transition when the synchrotron 
oscillation phase has advanced one radian and is hence a measure of 
the •width• of the transition. 
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To solve Eq. (C-2) we make the transformations 

y = j x3/2 = j (~)3/2 and ; =xi 

and obtain for t the equation 

[ 
..(gfil2 ] 1 + y2 • = 0 . (C-4) 

This is the Bessel equation giving the solution 

! 
; = Ax ( cosx J 213 + sinx N2; 3) 

(C-5) 
2 1/2 -3/2 , . , aT x w - x ; = Ax(cosx J 213 + s1nx N 2; 3) 

where A and X are the "amplitude' and 'phase" constants. The phase 
plane trajectory or equivalently the boundary of the phase area 
covered by the beam is obtained by eliminating X in Eqs. (C-5). 
This gives 

(C-6) 

where 

and the "amplitude" A is related to the phase space area or 
longitudinal emittance E; by 

A2 = [!] [:~;2 ] (J2/3N-1/3 - N2/3J-1/3)-l (C-8) 

It is interesting that: 
At large y (y + •, away from transition) 
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and Eq. (C-6) becomes 

which is an upright ellipse with semi-axes 

~ = J.:t JaT2 x1/ 4 : 6 x1/ 4 : 6 
,.. 0 

A Jf" 1 -1/4 w= -L--x ,.. l'2 
~aT-

E.i 1 
= -t- 7J 

and Eq. (C-8) becomes 

f 

A2 _ :t T2 
- 3 a 

At small y (y + O, at transition) 

3 [ ) 2/3 
J2/3 + 2 f(2/3) ! ' 

-2/3 
N +- 2 [I.) 

2/3 .f3 r(l/3) 2 I 

and Eq. (C-6) becomes 

N +- 1 [I.) 
-1/3 J3 rc2/3) 2 

4/3 2 ~2 + 2 _.! fw + kaT2w2 = ~ 
kaT .f3 ,.. 

(C-9) 

(C-10) 

(C-11) 

-1/3 

(C-12) 

The ellipse is slightly tilted. The maximum extents of the ellipse 
are given by the usual relations to be 

(C-13) 
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where 

and 

1/3 
k E ~ (r(2/3)] 2 = 0.842 

6 = ~Jar2 
0 J~ (C-14) 

will be used for scaling below. Eq. (C-8) again becomes Eq. (C-11). 

where 

and 

The envelope equation of ; derived from Eq. (C-2) is 

ic[~m-6Y=;a 
x = ~ = scaled time , 

cot ~ f + 
1 

6 
E lcot ~:I = l-

1 ,,, > ! "s 2 
() 

Y = 0- = scaled envelope of ~ 
0 . 

(6 = ; = envelope of ;) 

(C-15) 

We are now ready to investigate the two unpleasant features of 
transition crossing. 

C.1 Microwave Instability 

The stability condition (with Fi= 1) is given by Eq. (25): 

IZil < ~ p2 I'll (~) 2 
(C-16) 

n el p 

Near transition, we have approximately 

and 

which, when substituted in Eq. (C-16), give 

3~k eIIZil/n 2 _ 
ltl > 16 E T = t

0 ; 
(C-17) 
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Thus the beam is unstable against microwave instability from 
t = (-t0 to t 0 ) or for 

• • 67 = 7 - 7t = (-7t
0 

to 7t
0

) • (C-18) 
One can calculate the 
t 0 to t 0 • The blowup 
shown below 

blowup factor eS where S is an integral from -
can be avoided by making a 7t jump of 27 t 0 as 

ft 

TRANSITION 

C.2 Space-Charge Mismatch 

We assume a parabolic longitudinal distribution with bunch 
half-length 

as follows: 

X(z) = ~ ! [1 - ;~ 
where X is the linear density and N is the number of particles in 
the bunch. Then the longitudinal electric field is 

with 

and 

Ez = -eg ~ = ~ egNz (C-20) az 2 83 

g ~ 1 + 2 ln (beam pla~ radius) 
beam r 1us 

(C-21) 

where, as defined, 
3 r 

Q:-_.P.EwgN 2 c 0 .. 
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2 
and rp : e2 = 1.535xlo-18m = classical proton radius. 

me 
The synchrotron oscillation Eqs. (C-2) now becomes 

M =at w 

+ 2G3]; . 
7 6 

(C-22) 

The mismatch arises from the fact that the sign of cot;s is switched 
from positive at t < 0 (before transition) to negative at t > 0 
(after transition) by shifting the synchronous phase from ;s to 
~ - ;s, but there is no way to switch the sign of the space-charge 
term G/(7263). Hence the synchrotron oscillation frequency is 
effectively shifted from 

02 
= a(b cot; + 2G3) (-t) before transition, t < 0 

s 7 6 

to o2 
= a(bicot;sl - 72: 3) (t) after transition, t > 0 . 

The degree of mismatch is exhibited by the s;renssen parameter ~00 , 
which is defined by 

(C-23) 

(S;renssen used 9t = Vi. 60 = 0.0290 instead of 90 • This of course 
makes little difference in the discussion.) If ~00 << 1 the space­
charge mismatch is negligible. Otherwise matching can be 
reestablished by making 7t and/or \6s appropriate functions of time. 

With space charge, the scaled envelope Eq. (C-15) becomes 

1c [~ ~~ - [6 + ~2 ~)y = ~ (C-24) 

where, as defined in Eq. (C-23) 
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Many different 7t or ~s jump schemes are possible. One such 7t jump 
that will reestablish matching is as follows. Some ~s jump schemes 
also do very well in rematching. But ~s ju.mp cannot avoid blowup 
due to microwave instability. 

TRANSITION 

If one wants both to reestablish matching and to cure microwave 
instability one must employ 7t jump or both 7t and ~s jump. The 
optimal design of the jump(s) is best done by using multi-particle 
numerical simulation. 
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