
Fermi National Accelerator Laboratory

TM-1463
2390.000

A Multiple Node Software Development Environment*

P. Heinicke, T. Nicinski, P. Constanta-Fanourakis, D. Petravick, R. Pordes,
D. Ritchie, and V. White
Computing Department

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, lliinois 60510

June 1987

*Presented at the Fifth IEEE Conference on Real-Time Computer Applications in Nuclear,
Particle, and Plasma Physics, San Francisco, California, May 12-14, 1987.

0 Operated by Universities Research Association Inc. under contract with the United States Department of Energy

TM-1463

A Multiple Node
Soft.ware Develop111ent Environ1nent

Pet.er Heinicke, Tom Nicinski,
Penelope Constanta-Fanourakis, Donald Petravick,

Ruth Pordes, David Ritchie, Vicky White

Fermi National Accelerator Laboratory*
Computing Department / MS120

P. 0. Box 500, Batavia, IL 60510

ABSTRACT

Experimenters on over 30 DECnet nodes at
Fermilab use software developed, distributed, and
maintained by the Data Acquisition Software Group. A
general methodology and set of tools have been
developed to distribute, use and manage the software on
different sites. The methodology and tools are of
interest .to any group developing and using software on
multiple nodes.

Introduction

The Fermi National Accelerator Laboratory
(Fermilab) is a facility dedicated to basic research in the
field of high energy physics. Research takes the form of
"experiments", which are conducted by groups of
physicists. The experiments are highly computerized;
there are usually one or more minicomputers devoted to
the tasks of data acquisition and analysis of the
experimPntal data.

Most experiments have at least one VAX or
MicroVAX computer, one or more PDP-11 computers,
and possibly a few programmable microprocessors. Many
different experiments either actively take data or prepare
to do so simultaneously.

The Data Acquisition Software Group of the
Fermilab Computing Department provides software and
support for the experiments. Experimenters use the
provided software to perform online data acquisition
and analysis required for their experiment. In some
cases, the software is used in a turnkey manner; more
often, it is used as the basis for more elaborate and
experiment-specific software. In the latter case, the
experimenters obtain the basic package and then
customize it to their particular needs through their own
soft.ware development efforts.

Software is usually targetted for PDP-11 or
\"AX computers. Other targets include microprocessors,
such as 68020·~. etc. Target. computers are physically
lorat<'cl cit approximat.Ply 30 diffrrent sites i;cattered
·\"<'T thC' 6800 arrC'·s of Fermilab. Th<> V AX'F and
lino\"AX"s at these sitc>s arc ronnerted to one another

,·ja DECnet. These YAX':;. (or the Central Facility YAX
Clustf'r) arr usf'd by thC' . C'XpcrimC'ntf'rs for s~ftwarC'
ciC'Yciopmf'nt in <'nhancin~ thf' snppliC'd software a~ well
"'" for onlinr data arquisition and analysis. Roftwarc i~

transferred to these machines via DECnet from the Data
Acquisition Software Group's Development VAX. It is
also transferred via magnetic media to the computers
not connected via DECnet; (PDP-11 's not connected
mainly due to memory limitations and microp.rocessors).

Additionally, the software sometimes needs to
be transferred to the collaborating universities and
research institutions which participate in Fermilab
experiments. The experimenter may then continue
software development or equipment testing activities
while physically located at the home institution.

With so many sites and so much soft.ware in
use at these sites, we quickly realized that some
systemization of the task of organizing, maintaining, and
distributing the software was mandatory. Keeping track
of the software at the various sites is a formidable and
necessary job. We must be able to offer assistance with
the current version of the software at hand.

A requirement on the systemization was that
it mui<t support hai.-ing different versions of the same
software at different sites or even at the same site.

While it might be. possible in principle to
arrange to have the same version of the software at all
sites, in practice this does not occur. An ongoing
experiment does not necessarily want to avail itself of
the latest enhanced ver1iion of a piece of i;oftware; hugs
or side effects may be introduced which might
complicate the primary task of monitoring the
experiment. Even when an experiment decides that the
new features outweigh any risks of complication, it is
extremely important that the experiment be able to
switch back to the previous version as quickly and
reliably as possible.

In what. follows, we describe the organization
of our software into "Products", how these Products
are created, maintained and versioned, and how this
Product organization is used in the dii:;tribution of
software to the target VAX computers, and from there
to other target computers when necessary.

What is a Product?

A "Product" is an arbitrary group of logically
connected directories and files (stored on a VAX/VMS
system) and referred t.o by a Product name and
optionally by qualifying names, such as the Yersion
number, target operating system, or hardware int.erface.
ThP Product name is a printable ASCII !<tring describing
the group in a mnemonic way. For C'ach Product name.
there is a single development Yersion of the product
and/or one or more distribution YC'rsionis. It is not
nC'rC'ssary that a Produrt h" dC'YelopC'd by thr
Computinc: Dcpartm<'nl t.o fit into thi!' !'chem•'.
HoWf'\"rr. tlic Product (the dircctori<'l' <1nd fil<'' which

0p<Ti111'li by lll<' l'::iq•rsi1ic~ Rc:scarcli A~'ociatim:. hie. u11ri1·r rontrar1 wi1h tlic. U11itcd Sta1f'S D<'p11rtlll<'Il1 of E1wr~y

romprise it) must be organized in a prescribed way. The
constraints are relatively minor because we wanted the
ability to include all kinds of software as products--not
just those developed at Fermilab.

An example of a non-Fermi Product is
KERMIT, a communications package. KERMIT_ VMS is
the Product name for the VMS version of KERMIT.

When the source code contained in the
development version of a Product is updated, either for
maintenance or enhancement reasons, a new "Version"
of the Product is generated. This may occur even if
the source code of the Product is unchanged. For
example, if a Product is rebuilt using new "versions"
of code on which it depends (such as an object library),
but which is not a part of the Product itself, a new
version of the "Product is still generated. A Product
version is used to inform the user, developer, and
Product maintainer of not only which level of source
code of the product it contains but also the entire state
of the Product, its dependencies on other software
Products, etc.

As a simple example of a Product with
different Product versions, consider the COURIER
product for VAXONLINE. Version V 1.0 of the
COURIER Product refers to the first released version of
COURIER for VMS. It will normally have a product
directory by the name of COURIER_ Vl_O. Later
versions will have similar product directory names, e.g.
COURIER Vl 2. If a UNIX version is developed, the
support group - would need to decide whether to keep
the old name. If they decide to, they can rename the
"two products to be COURIER_ VMS and
COURIER UNIX, or leave it as COURIER and
COURIER_ UNIX.

Products can be divided into two levels of
complexity: "simple" and "compound." A simple
Product consists of a collection of software which is
expected to be used, upgraded to a new version, and
distributed to target sites independent of the state of
other software Products. The decision to organize a
product as a "simple" one is basically that of the
developer; it is a statement that this Product is
somehow basic and not further made up of component
:Products.

This does not necessarily mean that the
Product was not dependent upon other software external
10 the Product when it was "built" (compiled, linked,
etc.). Nor does it necessarily mean that the Product
requires no other software Product in order to function.

For example, many of our Products are
written in FORTRAN. These are definitely dependent
upon the FORTRAN compiler and the FORTRAN Run
Time Library--both of which are external to the
product and which (in the case of the Run Time
Library, at least) arc required in order for the Product
1o function.

A compound Product is a collection of different
component" Products (either simple or compound),

frcquc>ntly used together. These Products do not
11ecessarily have to be dependent upon each other
alt.hough in manr ca.~es they ar<'. They may be grouped
1ogPthPr only for ea~r of <li~trihution of many small
Produrts which change infreqnPntly. AlternatiYe]y, they
may Le grouped togrthcr because of depcndenries on
n1rh oth<'r; hC'nrr. ;, rhangr in a component Product
wou!d indicair thnt a 11rw Ycr~ion of onp or morC' of the
o~ hc-r romponent~ is ei1 h@r nPressnry or dC'sirn hie.

TM-1463

-2-

The distribution and installation of the
software is only a peripheral (but time consuming)
activity. To permit us to spend more time on soft.ware
development, we have devised a formal specification for
"Products" and specialized procedures, whose goals are:

Provide a Uniform Product Specification. The
product specification is meant to provide system
management tools and the user with a uniform interface
to the software we are responsible for. The
specification includes:

o the directory tree structure of the files in a product

o a list of required and optional files,

o the naming conventions for these files and directories,

o how logical names should be used.

Keeping Track of Product Versions on a
Svstem. Different sites use different versions of a product
creating a need to maintain a database of which
products and versions reside on a particular system. This
functionality is provided by a system management tool
we call SITE_PRODUCTS.

Simplification of Product Distribution. We need
to automate the distribution of versions of products to
remote sites (making use of DECnet) and the installation
of the products on the target site. Such automated
procedures are needed both for efficient use of our time
and to minimize the risk of errors or omissions.

Transportability to External Sites. Although
restrictions are placed on a products structure and
interaction with users (how the product is distributed
and how the system manager treats it), it is still
necessary to permit the product to be easily installed
and used on systems which do not follow our
methodology.

Permit Switching Between Product Versions. In
order to maintain and improve existing products, and
have the new releases accepted by experimenters, there
is a need to allow the use of the latest version of a
product, but also to instantly and transparently
"switch" to using a previous version residing on the
same system.

The ability to switch between versions on the
same system is also important for product developers
and maintainers. A user may discover a bug at a
previous release of the product - and the product
maintainer is then able to check for the bug in that
release just by switching to it. This capability is
provided by PRODUCT SETUP and the database of
products and their versions (maintained by
SITE_PRODUCTS).

Permit the Composition of a Product to he
Known Preciseh'. \\'e make extensive use of DEC's Cl\1S
(Code Management System) and MMS (Module
:Management System) to control tilt' source code YC'rsion
of a product and to automatP th<' c:onstruction of that
produrt from its sourres and any oth<'r libraries etc. it
ma:· be dependent on. (Cl\1S aJ1d l\1l\1S are similar
to thC' SCCS and l\1AKE ntiliti<'s on l":'\IX). In
situat ioHs whrr<' fl prodnrt nrn~· he drpPncl<'n t on
lihrnrie~ in other prod11C't.~ - the srwc.ifii:. \'f'r.sion of 1he

library-related products usf'd must bt• both controllablt>
and forever known. The time-stamps of the individual
tiles as used by MMS are not sufficient to control such
inter-dependencies.

The procedures, (which we call BUILD), permit
the dependencies of one product on another, either as a
part of a compound product, or just as a required but
separate piece of software, which must be present in
order to build the product, to be expressed in a formal
way. From this formal specification the order of
creation of the component parts can be determined and
the business of creating a very large software product
can be automated in a foolproof way.

The Resulting Tools

All the management tools we have developed
are written as DCL command procedures. Any language
could have been chosen, and the system could have been
implemented in a more operating system independent
way. DCL command procedures were chosen because of
speed of implementation, and because we underestimated
the full extent of the project we were undertaking.
Future implementations of this functionality will probably
use a different tool than DCL, since DCL is so slow,
and unmodular. \Ve are considering reimplementing the
system in FORTRAN or an inexpensive 4GL.

The remainder of this paper will discuss the
concepts and management tools introduced above which
together allow us to achieve the goals outlined in the
previous section. These include: Specification of a
product, use of the BUILD procedures, the
SITE PRODUCTS, DISTRIBUTE and
PRODUCT_SETUP procedures.

Specification of a Product

The product specification provides system
management tools and the user with a uniform
interface to the software. We have written a 50-page
specification of a product including the mandatory and
recommended requirements thereon. The product
specification addresses three areas:

o Directory tree structure and the files in a product.

o Logical names to be defined (associated with the
product).

o Required and optional command procedures and how
they are used. (definition of parameters).

Directorv Tree Structures

Products reside under rooted directories.
Actually, two rooted directories are associated with a
particular product. The "Version" Root is the rooted
directory for a particular Ycrsion of a product. This is
the rooted directory that a user will see when using a
product. Version Rooted direct.ories reside under an
~umbrella" Rooted directory. The Umbrella Rooted
diredory contains all the versions of a product.
However, more than onC' product and it~ YC'rsions can
reside' under the same l~mbrella Root. For exall.'lpie:

TM-1463

-3-

: DUil.O:l\'AXONLI I

I COURIER I

J couruER_\'1_0J J coumER_ \'1_1 J

I COURIER_\11_2,

Courier Product Directory

The leaves are products, while [V AXONL.C01JRIER] is
the Umbrella Root. The Version Roots for the products
are [COURIER_ Vl_O), [COURIER_ Vl_l], and
[COURIER_ V1_2]. A directory named [VERSION] is
necessary for the current implementation of the product
tools, and contains information about which product is
installed. Future implementations will probably centralize
this information with the rest of the database.

For each product version, there is a set of
required and optional directories:

~~-"'-'I
I

I ~I

BGL:JG

I Scum I
I I

"-----'' I !

'
j Listings ; Tests

Sample Product Version Directory

Th~ [PRD_ Vl OJ directory is the Version's Rooted
directory, while[COMJ and [SYSTEM] are required
directories, and [MAINT] is an optional directory.
Beyond these directories, the developer can use any tree
structure (under the product's version rooted directory).

Logical N arnes

To keep products sitr-indC'pcndent. logical
names are used to point to different fiies. All logical
names should be defined in term:; of one logical namc
which points to lower !eYel in the dirC'ctory trC'c:

"prodm·t '$ROOT
which is the roo1cd logi<-ai narnr pointing t.o tl11•

·r R 0 D r C T . ~ \" c rs i o n R o o t . D y c h a n ~ i n g
"product'$ROOT"" definition (with PROD1"CT SETUP).
h 1!~ri rilTl ra~j)y '"switch'" between rJjfff'if'll1 Vl'T~iOTI!' of

a Product. In the <>xample in the first figure, the
rooted logical name for COL'RIER is

S SHOW LOGICAL COURIER$ROOT
"COURIER$ROOT" ==
"disk:[V AXONL.COURIER.COURIER _VI_ O.j"

Required Files

The product specification requires that each
product provide two command files, of defined logical
names, to be implicitly invoked at system bootstrap time
and when a user wants t.o use the product. All
products must provide these files in a particular
direct.ory for the product version. The specification also
recommends a Help file to be provided with each
product; this is automatically included in the general
product Help library when the product is entered into
the SITE PRODUCTS database.

[COM] SETUP .COM is used to define logical
names and symbols on a per process basis. That is,
the user invokes SETUP .COM {normally at login time)
if there is a need to use the product.

SYSTEM PRSTARTUP.COM is used during
5ystem boot time product startup to define shareable
logical names in the logical name table generated for the
product, and to perform any other operations which
.affect the product system wide (such as INST ALLing
files, loading device drivers, starting a queue, etc.) and
o0ther privileged initialization functions.

Developing the Products (BUILD)

The BUILD procedure is used to construct a
product based upon its dependencies on other products.
BUILD takes into account that a product may:

o Depend on other products.

o Depend on specific versions of other products.

o Incorporate other products totally within it.
The construction of a product consists of compiling and

linking the softwa~e comprising the product.

A product developer uses a product
Maintenance Language (PML) file to describe how a
product is dependent upon other products. Only the
immediate dependencies need to be described, since
BUILD recursively uses the dependent product's PML
files to generate a final list (a product Maintenance
Output (PMO) file) which sequentially describes the
order in which products should be built (to satisfy all
dependencies).

For example, the product KERMIT Y1f5 is
to be ,.BUILT":

o KERMIT Y:t-.JS is dC'pC'ndcnt upon an another
;irnciwt rallr2GET _PORT

o KER!\IIT PDP is dependent upon KEIDIIT_RT.
1\ER:\1IT RSX. and KER:\HT RSTS. I3U1LD would
drtrrminc:-1h111 thr Jllrnducts wcmld ne..e.d 10 be. buil: in
t-he following uruer'.

GET PORT
KERMIT VMS
KERMIT-RT
KERMIT-RSX
KERMIT RSTS
KERMIT PDP

TM-1463

-4-

DUILD then will construct the products in the
appropriate order to generate the final product. To
save time, BUILD will not construct a product if the
required version already exists.

The actual details of construction of each of
the component pieces are left up to the component piece
of software. We normally use DEC's CMS and MMS
wherever possible. This is especially useful in
conjunction with our methodology of one development
version of a product and multiple distribution versions.
By having a single CMS library in the development
version of each product and creating classes for each
source release- level we avoid the need to keep the
sources with or for each version of the product. We
can always recreate any version at any time. This
saves disk space and also provides a centralized record
of who changed the software and when.

Build Temporary files

PML: List of
dependent Files

\
PMO: Ordered list of existing
products to b built and used

Command files which actuallv fetch
the sources, compile and link.

Built Files I ~
Temporary -----~ · 1

Final
Product
Version
Files

P.rea __-- I

~ ~ ~ ~~I I JTiii_;,_
1111 ~~II

Steps in "Build"ing a product

SYstcrn Management of Products (SITE PRODl"CT~)

SITE rn ODl°CTS Wa1' dn·elop!'d To kc<'p
track of which ~·ersion~ of which products residC' on a
~ystem. It not only maintain~ a datahas<' of proilurt.s
and their YC'rsion~. hut it !<rhPclnle!< thC' ~tarting up of
nrorl11r1, nt "'"'H'm hoo~ tim<' (or ;oinY orhrr tim"! and
;ii(' ~hutti111.;

0

cio"·n of product·~. SiTE PTIODUCT.S

avoids the n<'cd for the system managf'r to rhangf' thf'
system specific startup command procedure
(SYST ARTUP) every time a product or a version of a
product is added, modified, or removed.

Products are made "known" to
SITE PRODUCTS. The "Known Product List" file,
maintains this information.

For each known product, SITE PRODUCTS
maintains a "Product Version List" file -V.·hich resides
under the product Umbrella directory. The product
developer is able to add, modify, and remove product
versions without requiring privileges (only access to the
particular product's area is required).

The SITE PRODUCTS procedures point to
the Known Product List using a logical name. Users can
use SITE PRODUCTS to maintain their own Known
Product Llst, and Product Version Lists. This can f>e
extended for use on a VAX Cluster system, where a
common Known Product List is used to startup
(shutdown) all Products common to all nodes in the
Cluster. Then, by redefining the logical name, a node
specific Known Product List can be used to manipulate
software products licensed (or useable) only for that
particular machine.

SITE PRODUCTS allows the addition,
modification, and removal of products and Versions.
These operations only modify the Known Product List
and Product Version Lists, not the actual files of the
products. When a product version is declared to be the
default version on a system, its Help file is included in
a general product help library (if one exists) and a
Bulletin is posted on the system.

For each product, the Known Product List
maintains the product's name, the specification of the
Umbrella Root, and other miscellaneous information.
Associated with each product version in the product
Version List is a directory path from the Umbrella Root
t.o the rooted directory for the product version.

Whrn a product is sta;tcd up hy
SITE_PRODUCTS, a shareable (system wide) logical
name table is created to contain logical names defined
by the product. Then the product specific startup
command procedure is invoked. This procedure usually
jefinps logical names, device drivers, starts up queues,
installs privileged images, etc.

Using the Products (PRODUCT SETUP)

The final stage of any product is its use.
PRODUCT SETUP is used t.o "setup" a product for
use by a user. It also allows a user to choose which
version of a product to setup. Setting up a product
involves the definition of logical names and symbols
required for using the product.

A svmbol bv the name of SETUP is used on
;ill svst.Pms t.~ invoke. PRODUCT SETl7P. Users of a
sofn~·arc Product. such as our example KERMIT Yl\1S
simply type

SfTUP KER.MIT VMS

to use. the. def,.11H· v~ion of the. produc.t a11d boll its
ornponient Suh-Products.

The. abi,lity to. switr.h tr,.nspuenHy be.t~n
product v~o"s ;s provid~d by th~)agii:.al nam~ ta.hies
ere.ated for the prodl.(ct. When sw1rc:h•ne between prod\.\c.l

TM-1463
-5-

versions, PRODUCT SETUP <"r<'atps a new logical
name table (which overrides the old table} and defines
the logical names for that particular version. Therefore,
different product versions are not required to use the
same logical names.

Obtaining the Products (DISTRIBUTE)

DISTRIBUTE provides a system manager on a
remote machine the ability to copy products, from an
"Archive machine", and install them. Most of the time,
DISTRIBUTE is used over DECnet, but it also provides
a tape mode, which permits products to be distributed
and installed at external sites using magnetic tape as a
transfer medium.

DISTRIBUTE interactively queries the user for
the information it needs. The· questions are self
explanatory, so that no documentation is normally
required in order to obtain a product. Besides the
product name and version, DISTRIBUTE asfts where the
product should be placed (the disk and Umbrella Root),
and whether the product and its version should be
declared to SITE PRODUCTS.

Rrchiue Node

Intermediate
"'ode

Distribute Processci;;

\\'hen a product is select.Pd hy the ui;;er,
DISTRIBUTE uses that product's Product !\faint.enanc!'
Output (P!\10) file (generated during a BUILD) to
dE'tcrmin!' which componrnt prod11C'ts nerd to he ropird
oYcr a~ part of thl' chosen product. This proYides all
~it.ei< with a complete and consisteut Yiew of a product.
Product!' which arc not constrlll:.ted with DCILD irn<l
thrr<'forP haY!' no P!\IO fi]p rnn ;i]rn b!' di~trihnt!'ci -
all filr~ in tltr clirr>('tory tr<'<' ~t<•mn1iug from thr procl11rt
vNsio11 roolf'<l dirrC"to!";- will be takrn -to romprisr ~he
producl V@rsion.

DISTRIBUTE uses BACKUP save> sc>ts
<"ompatibl<' with the VMSil\'STAL utility (part of
VAX/VMS). Because the product conforms to the
product specification, only one KITINST AL file (used by
VMSINST AL) needs to be written for all products.
This frees the product developer from wi-iting code used
strictly for the purpose of installing a product.

A complete log of software distributed, date,
version and to where is maintained on the Archive
machine

Conclusions

The organization of products and the
procedures described in this paper have been in use for
more than a year now. Hundreds of products have
been -distributed to target sites. The sacrosanct nature
<Jf a product version once built has enforced a strict
discipline on program development and aided immensely
in tracking down complicated problems where any one of
a number of hardware and software variables could have
been at the root of the problem. The procedures
described were first developed for software to be
executed on a VAX(VMS). We have found them such
a useful aid for distribution, maintenance and archiving
that we extended the concepts to cover software for
<Jther operating systems in use.

We have found a standard product
specification to be extremely useful. Not only has it
enabled us to write the management tools described but
it has also helped enormously in the ease of
understanding, maintaining and supporting our software.
New members of the group and new users new to
Fermilab can very quickly produce software to conform
to the general specifications and obtain and use
software that is available. It is much easier for any
member of the group, regardless of particular area of
expertise to be able to distribute, demonstrate, find bugs
in, create a new version of any product. New software
products produced elsewhere at Fermilab or at other
institutions or vendors can be quickly added to the set
of available software and made available in the same
uniform way to all the users on site (via the same
SETUP command). Following software product
··standards" has saved manpower also in enabling us to
write general procedures. For example, the arrival of
Microvaxes with limited disc space created a need to
trim products. A general procedure which omitted all
list. map and documentation files from a distribution
Yersion could be written because of the standards
imposed, thus solving the problem in general for all
software which we maintain or distribute.

This entire program of work was
undertaken without a proper realization of the size of
it - really as a non-serious sideline, which people did a
little work on when the need arose. If we were doing
it again we would better understand the benefits and
scope of the project and would take it further than we
have today. The dat.aba!'e maintained by
SITE_PRODUCTS would be made extensible and easily
at"ressible as a database. Some of the svstem
management procedures would have been writte~ in a
high]cYel language instead of DCL. thus increasing both
t h<'ir ~P<'<'d and c>xtensihility.

Arknowif'dg/'mc•nts

ContribuJions to the. ideas, definition& and
procedures have. he.en made. at var-iou.s tirne.s by all
t'ne.thbus of the :J?ata Acq_uisltion, Software. and DEC
Systems Group in the. Computing Oepartment al

TM-1463

-6-
Fcrmilab - which ronsist of th<' authors, David Bng,
Eileen Berman, Andy Cohen, Tnry Dorries, Arkadv
Lubinsky, Carmcnita Moore, Liz Quigg, Dave Ritchi~,
Chip Kaliher, Nancy Hughart and Steve Kalisz. We also
acknowledge helpful feedback from various users of the
system (DISTRIBUTE in particular) ranging from on-site
local system managers to experiment participants
distributing software over DECnet from Italy.

References

PN's refer to Fermilab "Programming Not.es";
IN's refer to Internal Notes. Documentation is available
from the Computing Department Program Librarian.

[lj R. Pordes, Data Acquisition Software Group
Product Specifications, Fermilab Computing
Department Note, IN-141, August, 1985.

[2] P. H. Heinicke, Backup I Distribute Procedure
for Product Distribution, Fermilab Computing
Department Note, PN-261, September, 1985.

[3] T. H. Nicinski, SITE PRODUCTS I Maintaining
Known Products, Fermilab Computing Department.
Note, IN-140, February, 1986.

[4] T. H. Nicinski, BULLETIN I Maintaining an
Electronic Bulletin Board, Fermilab Computing
Department Note, IN-141, August, 1985.

[SJ P. C. Fanourakis, BUILD Procedure for
Product Distribution, Fermilab Computing
Department Note, PN-259, July, 1985.

[6] R. Aurbach,Using VMSINST AL with User-written
Applications, Fermilab Computing Department
Note, PK-262, October, 1985.

[7J T. H. Nicinski,PRODUCT SETUP User's Guide I
Set.ting Up Product.s, Fermilab Comput.ing
Department Note, PN-269, February, 1986.

