
A v Fermi lab 

Review of the Status of the F ASTBUS 
Standard Routine Specification* 

Ruth Pordes 

Computing Department 
Fermi National Accelerator Laboratory 

Batavia, Illinois 60510 USA 

November 1986 

TM-1427 
2320.000 

*(Submitted to the 1986 IEEE Nuclear Science Symposium, Wa,hington, D.C., October 29-31, 1986) 



Paper submitted to the 1986 IEE Nuclear Science Symposium: 

REVIEW OF THE STATUS OF THE FASTBUS 
STANDARD ROUTINE SPECIFICATION 

Ruth Pordes 
Computing Department, 
Fermi lab, P.0.Box 500, 

Batavia, II linois 60510 

Abstract 

Within the next few months the FASTBUS Software Working group 
hopes to distribute the Specification for Standard Routines for 
FASTBUS. The draft specification wit I go to the members of the 
overseeing NIM committee for review. This paper presents the current 
status of the specification. It includes a list of the goals of the 
specification; some detai Is of the concepts embedded in it; as well as 
an overview of the software implementations of the previously 
distributed draft versions of the specification. 

Introduction 

In this paper I present the status of the Specification for 
Standard Routines for FASTBUS. I wi II address some of the concepts 
contained in the specification and give an overview of the activities 
of the FASTBUS Software working group over the past year, and of 
existing software that implements drafts of the proposed 
specification. 

History 

As stated in papers presented at previous Nuclear Science 
Symposia, one of the goals of the committee that developed the FASTBUS 
hardware specification was to publish a technical specification on a 
standard software interface to perform actions on the bus. The goal 
is to define a common language with which to perform FASTBUS 
operations. The goal, for example, is to have every person who reads 
a register from the data space of a FASTBUS slave write the same line 
of code; He should not have to type FRD on a VAX using a UPI interface 
to FASTBUS, FRDAT on an IBM PC using a TSC interface to FASTBUS, or 
FREAD on a 68020 using a Aleph Event Bui Ider interface to FASTBUS, etc 
and should be able to specify the same parameters on any system. 

Work supported by the U.S. 
DE-AC-2-76CH0300. 

Department of Energy, Contract 



The reasons for trying to achieve this goal are to aid 

- portability of code, 

- portability of programmers, 

- those implementing software for new FASTBUS hardware 

- designers of FASTBUS hardware that must be controlled or accessed by 
software 

- in making software to access FASTBUS easier to maintain, understand 
and share. 

Institutions such as Fermi lab find that in the long term the 
definition of and adherence to software standards is beneficial to 
software implementers and users alike. The Fermilab Computing 
Department provides and supports software for many different 
experiments that use different computer systems, different programming 
languages, different interfaces to their hardware, and who write very 
different kinds of application programs. The existence of standards 
greatly ease this task; allows collaboration on and sharing of code; 
enables more effective education on the use of the code; and provides 
a common language for the discussion and development of applications 
of the code. 

In the real world, of course, one must al low for implementations 
to use the specific features provided by the FASTBUS hardware 
interface being used. The specification for standard routines for 
FASTBUS must allow for such extensions and implementation specific 
detai Is without making the whole specification so rigid as to be 
unusable. This is one of the areas that has made the achievement of 
the specification such a long process. 

Software Needed for FASTBUS Applications 

When any computer is used to access modules in a FASTBUS network 
there are several levels of software. The interface between the 
computer and the bus may itself contain software (microcode). The 
interface wi II be control led by system level software, whose form and 
content are specific to the requirements of the interface and the 
computer system being used. There wil I be user interface software (to 
access the system software) which is included in the program of each 
user of FASTBUS. The users will write independent application 
specific programs that access FASTBUS. In addition, for large FASTBUS 
systems, there is clearly a need for system wide resource management 
and data base software to manage the al location and use of the bus. 

A goal of the Standard Routine specification 1s to provide a 
uniform software interface to the applications programmer. It is 
recognised that the system software and interface microcode wi II be 
much more specific to the hardware being used. 



Since any microcode and system software must be provided before 
any applications programmer libraries, and it is these levels of 
software that dictate the functionality and throughput of the system, 
some implementations of FASTBUS software have concentrated only on 
these levels where standardization is more difficult. These 
implementations are not mentioned in this paper. 

Status of Standard Routine Specification 

At the FASTBUS Software working group held in conjunction with 
the Nuclear Science Symposium last year, the 1985 Draft specification 
was considered to be in good technical condition when applied to one 
particular type of FASTBUS interface - list processing interfaces. 
Much technical editing has been done in the last year. It is expected 
that fol lowing the meeting in November we will be able to make the 
specification document available for review by members of the 
overseeing NIM committee. 

During the long editing process, the technical specification of 
the software routines that perform the simple FASTBUS operations, such 
as reading a single FASTBUS register, has been essentially frozen. 
The name and parameter sequence of the transaction routines are 
defined as I reported at the Real Time Data Acquisition Conference in 
Chicago, eighteen months ago. 

It is the meaning and use of the 'non-FASTBUS' entities such as 
the parameters and error control facilities, required in order to 
actually implement the routines, that have caused the most problems in 
arriving at a general standard and I expand on these more below. 

Environment and Parameters 

These are non-FASTBUS entities that are relevant to any software 
used to perform operations on FASTBUS. 

Environment 

It is not, in general, sufficient to provide a FASTBUS address, 
amount of data to transfer and a destination or source of the data, in 
order to perform the expected actions on the FASTBUS. 

Associated information, such as the FASTBUS arbitration vector 
the interface should use for the operation, the time the interface 
should wait before timing out, whether the interface should regard a 
slave-status response of 2 as an error or not, all affect the actual 
performance and completion of the FASTBUS actions. This and other 
information that affect the actual operation of the requested FASTBUS 
actions are termed the 'Environment' accompanying each request. A 
wel I defined interface for initializing, changing, and interrogating 
the Environment, and for associating an Environment with requested 
FASTBUS actions, is included in the standard routine specification. 



Parameters 

Included within the Environment are parameter values that affect 
any operation performed. These parameters may be set or read by the 
user of the software. When FASTBUS operations are performed to Slave 
registers in data space, either one or two addressing cycles may be 
necessary, depending on whether the slave is addressed geographically, 
by slot position, or logically, with an assigned address that the 
slave recognises internally. 

In the latter case, where no secondary address cycle should be 
done as part of the FASTBUS operation, a parameter is set by the user 
prior to cal ling the routine to do the FASTBUS operation. This 
parameter is stored within the Environment associated with the 
requested FASTBUS operation, and the FASTBUS interface does not do the 
cycle. 

Error Control and Processing 

The prov1s1on of three status response 
independent timeouts that can be active when an 
not respond make FASTBUS powerful and flexible. 
the status response to a FASTBUS cycle wil I vary 

I ines, and several 
addressed device does 
The interpretation of 
between applications. 

The Standard Routines specification includes mechanisms for the 
user to selectively define the response of the software or hardware 
interface to the slave status response. These selections are kept as 
part of the Environment. As an example, it is often possible for a 
FASTBUS interface to retry an operation that receives an SS=l (Busy) 
response from a slave, without requiring any software intervention. 
The Environment defines whether this should be done for a particular 
operation, or whether SS=l is to be regarded as a fatal error 
response. 

Given the number of possible different error responses, the 
Standard Routines specification includes definitions of error codes, 
and routines for selectively decoding and reporting errors. In 
particular, when executing a list of operations, the user may wish to 
report only a selected set. The specification includes mechanisms 
of necessity quite complicated to allow for the automatic and 
selective reporting of errors. 

List Processing And Embedded Processor Interfaces 

Often the software overhead involved in giving instructions to a 
FASTBUS interface is much greater than the time taken to perform the 
actual FASTBUS operation. For this reason, some FASTBUS interfaces 
are designed to be List Processors; that is they can be given a single 
instruction to execute a list of FASTBUS operations. 

The standard routine specification provides for list processing 
Environments, where calling a FASTBUS operation routine merely adds 
the encoded instructions for performing the operation to an existing 



list, {but 
operation). 
execute the 

does not immediately tell the interface to perform the 
Once such a list is built another routine 1s cal led to 

I ist as a whole. 

Alternatively, some FASTBUS interfaces have been bui It that 
incorporate a dedicated processor with the bus interface provided as 
an extension of the processor itself a so-called 'Embedded 
Processor'. Such interfaces do not support lists. Whenever the 
processor encounters a FASTBUS operation instruction, it is sent 
straight to hardware to be executed. 

Thus, list processing cannot be a required part of any general 
specification and can be only a wel I defined extension to a basic 
standard. 

Implementations of Draft Specifications 

There have been two clearly identified Draft Versions of the 
Standard Routine Specifications. Implementations of these are in 
widespread use in the FASTBUS community. Below I give a short review 
of those of which I am aware with apologies for those I have omitted. 

1983 Draft 

The 1983 Draft Standard, otherwise known as the Blue Book, was 
implemented by the Computing Department at Fermi lab and the University 
of II linois Physics Department, for the IORFI-II and UNIBUS Processor 
Interface (UPI) for PDP-lls running the RT-11 or RSX-llM operating 
system and for the UPI under VAX/VMS; The PDP-11 software is being 
used by experiments and diagnostic test stands at Fermi lab and 
collaborating institutions. TRil-'IF has implemented a subset of the 
1983 specification for the IORFI-II interface on a PDP-11 using 
RSX-UM. 

A subset of the 1983 draft has been implemented by CERN for the 
FIORI, CFI, Fast Sequencer and LeCroy 1821 FASTBUS Interfaces, for 
VAX, NORD and 68K computers. This software is in use at CERN and at 
collaborating institutions al I over Europe. It has been imported to 
Los Alamos, TRIUAF and Brookhaven. The software has been used in 
several experiments at CERN, and is being used by the LEP experiments 
in diagnostic test stands. 

A subset of the 1983 draft has been implemented by LeCroy in the 
internal microcode of the LeCroy 1821 segment manager. This interface 
is being used by several fixed target experiments at Fermi lab. It 
provides special features tailored to reading out the LeCroy FASTBUS 
TDCs and ADCs. Most of the large new fixed target experiments at 
Fermi lab include a few FASTBUS crates among their mostly CAMAC data 
acquisition systems. 



The data from FASTBUS is fed into buffer memories. The event data 
spread out among several buffer memories on a single FASTBUS crate -
are read out into the host computer using an 1821. This topology is 
becoming quite common, and in addition Fermi lab is building a Smart 
CAMAC Crate controller which can feed data into the same FASTBUS 
buffer memories. 

A (different) subset of the 1983 draft was also implemented at 
the Stanford Linear Accelerator on the VAX for the SLAC Scanner 
Processor; The National Laboratory for High Energy Physics in Japan 
(KEK) has implemented the 1983 draft for the FASTBUS Processor 
Interface, a high speed interface between the VAX and a FASTBUS cable 
segment. 

1985 Draft -----
The 1985 Draft Standard, otherwise known as the FASTBUS 

Revisions, was implemented by the Collider Detector Facility (CDF) at 
Fermi lab for the UPI (and QPI) interface. It is in heavy use for 
diagnostics and data acquisition at CDF itself and at institutions 
collaborating on the experiment. This implementation, based on the 
kernel of building and executing lists of operations, provides a very 
useful wel I defined interface for the coding of Compound Operation 
routines. These routines internally cal I many FASTBUS operation 
routines to execute a particular higher level function, for example to 
download a segment interconnect route table and initialize a FASTBUS 
segment. 

This same implementation has been been adapted at the SLAC Linear 
Collider Detector (SLD) for use with the IORFI-II on a MicrovaxII 
system, and at New York Computing (NYCB) for the FASTBUS-MicrovaxII 
interface. A subset of the 1985 draft has been implemented at the 
University of Illinois for the IBM-PC interfaced to FASTBUS through a 
Test Segment Controller. 

1986 Draft Standard 

The proposed 1986 standard is now in the process of being 
implemented by CERN for its newly developed Aleph Event Bui Ider and 
GPM interfaces, and will eventually be implemented for the new CERN 
Host Interface. The Fermi lab Computing Department intends initially 
to implement the standard for the LeCroy 1821 interface. 

Problems 

Differences between Implementations of the Draft Standards 

Implementations of the different draft standard are clearly not 
compatible. They do not satisfy the practical goals of providing 
common or portable software. In addition to the software mentioned 
above, there are several implementations of software that al low access 



to FASTBUS that do not pretend to fol low any standard. Whether, in 
spite of these obvious problems, a published draft standard routine 
specification wil I achieve any of the practical goals we have 
established remains to be seen. Experiments cannot change software in 
the middle. The Col lider Detector Facility at Fermi lab hopes to take 
a significant amount of data in the next year. It can clearly not 
change software interfaces at this stage. 

At Fermi lab, we are attempting to make al I computers used for the 
data acquisition and test stands, those with 32-bit words; this 
precludes use of PDP-lls. It is therefore unlikely that any of the 
PDP-11 software would be converted to match a different standard. 

On the positive side, in practice none of the draft standards are 
violently different. It is straightforward to see how to change a 
user level program from using one to using another. The same concepts 
are addressed in al I drafts; it is the detailed descriptions that 
vary. 

Our hope is that if a software standard is published, in the long 
term designers and implementers of software control led FASTBUS Masters 
wil I try and adhere to it. 

Generality of the Specification 

One of the problems facing people writing the technical general 
specification has been that we are nearly al I implementers. It has 
proved very difficult to separate out the requirements preferred by a 
specific implementation, from the requirements and detai Is of a 
general specification. Thus the 1983 Draft specification was designed 
in conjunction with the hardware and microcode of the Unibus Processor 
Interface (UPI). The 1985 Draft fol lows closely the Collider Detector 
Facility requirements for their VAX/VMS data acquisition system using 
the UPI. The 1986 specification, which we hope to propose as a 
standard, tries to address a wider range of potential FASTBUS hardware 
interfaces. 

User Level Documentation 

One of the lessons I have learned from writing a general 
specification has been that one cannot use such a specification as a 
replacement for a user's guide to a particular implementation. The 
standard specification is directed to the implementer of software, it 
does not provide the user of the software al I he needs to know to use 
it, for example that you must cal I routine A before B, etc. The 
standard specification cannot provide the level of detai I needed by 
the applications user of the software. The specification now includes 
the statement that 'All implementations shall be accompanied by 
documentation describing them; their features that match the general 
specification and those that differ.' 



Bibliography 

Interested readers are referred to the proceedings of 
Science Symposium for the past six years, and the 
proceedings of the Conference on Computer Applications in 
All the existing implementations mentioned in this paper 
1n these proceedings. 

the Nuclear 
last three 
Real Time. 

are reported 

The FASTBUS Users Guide, which is being developed by the FASTBUS 
Users Guide Working Group, wi 11 include a bibliography of known 
publications on FASTBUS. The aim of the guide is to provide 
information on FASTBUS that supplements the specification, and to aid 
the hardware designer and the FASTBUS user in the use of FASTBUS 
systems. The bibliography is available from the working group. The 
Fermi lab Computing Department Library maintains an index of FASTBUS 
documents available internal I ly, that includes many entries with 
authors outside the laboratory. 

Acknowledgements 

Publication of the FASTBUS software specification wil I have been 
made possible by the efforts of all the present and past members of 
the FASTBUS Software Working group, the Revisions and Editing 
sub-committees of that group, as well as the organizations that 
support the individual members of the group. In particular, the 
editor, Ken Dawson of TRIUMF, has spent many hours in order to arrive 
at a mutually acceptable and consistent document. 

My work has been supported by the Fermi lab Computing Department. 


