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ABSTIACT 

[ZL/Qlsh or [Zr/Qlsh should be quoted instead of Z1/n 
or ZT when the impedance is a narrow resonance. 

INTlODUCTIO!i 

The longitudinal microwave instability formula for 
a Gaussian bunch isl 
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where ZL/D is the longitudinal impedance driving the 
instability, ~ the frequency dispersion parameter, E 
the energy of the particle with charge e, UE its RMS 
spread, and p the velocity in unit of that of light. 
This criterion is correct only when the impedance is a 
broad band wider than the frequency spectrum of the 
particle bunch. However, there are contributions to Z1 
that a.re sharp resonances. These sharp resonances have 
been proved experimentally2 able to drive microwave 
instabilities also. If these resonances are from cavi
ties containing bellows or beam monitors, one likes to 
a.rgue that the actual size of each module is generally 
slightly different so that the resonant frequency will 
be slightly different for each module. The sum of the 
resonances of these module may become a broad reson
ance; so broad that Eq. (1) can be applied. However, 
most of the time, we do not know bow much the spread in 
the size of the module is. Also, in many cases, the 
total widening of the resonance is not bigger than the 
frequency of the bunch so that Eq. (1) cannot be 
applied. 

Here, we give a simple intuitive derivation of a 
stability criterion for sha.rp resonances; the more 
exact derivation is given in the APPENDIX. 

SillPLB DBlIVATIDN 

A closer look at the derivation of the criterion 
reveals that Z1 in Eq. (1) is in fact an effective 
impedance [Z1]eff which is given approximately by 

(2) 

where w0 is the revolution angular frequency, n the 
harmonic where Z1 is peaking, and p0 (w) is the frequen
cy spectrum of the unperturbed bunch which is normaliz
ed to unity. Thus, if Z1 is much broader than p0 (w), 

(3) 

which is indeed the peak of the broad band and there
fore we have the stability condition in Eq. (1). 

If Zi, is a sharp 
than p0 (w), we get 

resonance at WR = ru.i0 narrower 

(4) 

where the first bracket is the peak of the frequency 
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spectrum of the bunch with a RMS time length of Ur 
while the second bracket is the area under the resonant 
impedance. Here, [ZL]sh is the shunt impedance and Q 
the quality factor. Substituting into Eq. (1), we 
obtain 

(5) 

where IAv is the 
the peak current 

average current 
Ip by 

which is related to 

IAV 111oar 
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For narrow resonance, 
is better than criterion 
[Z1]eff· The reasons are: 

we think the criterion (6) 
(1) with Z1 rep1.aced by 

(a) If we quote the threshold [Z1]eff computed using 
Eq. (2) and use criterion (1) 1 we are quoting something 
that is dependent on the bunch length Ur [see Eq. (4)] 
which may not be a constant during acceleration and 
storage. 

(b) With criterion (6), we do not need to assume some 
sort of resonance broadening. Remember that criterion 
(1) can only be used when there is a broadening mechan
ism that makes the resonance wider than p0 (w). 

(c) [Z1/Q)sb is independent of resistivity of the wall 
material. As a result, it can be read off readily from 
a URMEL computation, from TBCI computation with Fourier 
transform, or from a wire measurement experiment which 
certainly is not able to produce the correct Q. 

For the dipole mode, by exactly the same reason, 
the criterion to microwave stability is 

IZTI ~ 4./2•1jiDCE/eln[iEJ, 
p 
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where ~ is the average betatron function 1 is good only 
when the transverse impedance ZT is a broad band. In 
the case of a narrow resonance, we have similarly, 

[Zn s 8./2/•l"IDCE/e)r°'EJ 
Q-J sh 7i1Av l'E · (8) 

Note that in Eq. (7), there is the harmonic number n 
which is usually taken hand-waivingly as the cutoff 
harmonic or ring radius divided by beam pipe radius. 
But there is no such n in Eq. (8). This provides ano
ther reason why for a narrow resonance we should use 
criterion (8) rather than try some phony way to broaden 
the resonance and guess at an n so that criterion (7) 
can be used. 

The derivation of criteria (6) and (8) is not 
exact. As is carried out in the APPENDIX, the narrow 
resonance is approximated by a 6-function with the 
imaginary part neglected. But the neglect of the ima
ginary part violates causality. However, we believe 
that Eqs. (6) and {8) should be correct due to intui
tive feeling, although some more work needs to be done 
in the exact derivation. Neverthelessi we strongly 
a.dvocate the quoting of two stability limits in each 



Low Frequency Average Microwave Region 

Z1/n (D) Zr (llll/m) 
broad band Z1/n, ZT 

narrow band [Z1/Qlsh• [Z1/Qlsh 

Wall resistivity 1.01 3.51(1.7Q) 

Lambert sons 0.23 0.52 Z1/n = 0.35 a ZT = 0.08 llfl/m 

Kickers 0.03 0.87 

Beam monitors 0.37 0.87 [Z1/Qlsh = 6.4 kD [Z!/Qlsh = 0.18 llfl/m 

Bellows 2.46 1.32 [Z1/Q] 5 h = 37 kD [Z!/Q] 8 h = 0.26 llfl/m 

Total 4.11 7 .OQ(5.25) 

Estimated limits 7.18 
(most stringent) 

6.16 Z1/n =1.3 D ZT = 54 llfl/m 

[Z1/Q] sh=' .1 kD [Z1/Q] 5 h = 5.6 MD/m 

Table I. Impedance estimates and stability criteria for the Fermilab Main Ring. 
Whenever the vertical and horizontal transverse impedances a.re not the 
same, the vertical one is enclosed in brackets. 

case, one for the broad-band Z~ (or Zf) and one for the 
narrow band [Z1/Qlsh (or [Zf/QJshl· In the computation 
of impedances, also [Z1/Q sh and [Z1/Qlsh should be 
quoted. An example is shown below in Table I for the 
Fermilab Vain Ring3. 

APPBNDII 

According to Ref. 1, in order that a bunch will 
execute microwave instability with a collective fre
quency a, the perturbed frequency density p1(w) must 
satisfy the eigen-equation4 

p1(•) = Jdw'T(w,w')p1(w'), 

where the kernel T(w,w') is 

T(w,w') 

In above, 

(9) 

(10) 

(11) 

is the same spectral distribution of the unperturbed 
Gaussian bunch that appears in Eq. (2) and is normaliz
ed to unity. (This p0 is proportional to the p func
tion in Ref. 1.) The function h(x) is defined as 

h(x) = ~{eix{e-{2/2d{, 
0 

(12) 

the argument is x = OE/ (I '71./WW' UE) . This function has 
the property that, for Im(x)~O or a growth, 

lh(x) I S 1, 

with the equality holding for x = 0. 
(13) 

For a broad-band impedance centered at w1 = Wi'o 
much bigger than w0 a.nd the frequency spread of the 
bunch, we can substitute for w N w' N w1 in Z1(w'+O)/~' 
and h(x). Then, the eigen-equation (Q) can be solved 
by letting p1(w) = 1, the eigenvalue gives 

2 

(14) 

Putting in the absolute value signs and noting Eqs. (6) 
and (13), we arrive at the criterion (1) for a broad 
band impeda.nce. 

If the impedance is a narrow resonance at WR with 
width much narrower than the bunch spectrum, we write 

(15) 

Then, the eigen-equation becomes 

(16) 

Setting~= WR, and noting that lh(x)I ~ 1 when there 
is a growth, we immediately arrive at criterion (5). 
However, Eq. (15) is not exact, a na.rrow resonance 
should also contain an imaginary part 

where P denotes 
of the imaginary 
eigen-solution. 
where. 

(17) 

principal value. With the inclusion 
part Eq. (16) will no longer be the 
This problem will be examined else-
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