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Protons lost in a ring leave at a few preferred locations, deter
mined by some non-linear property the dipoles. This paper suggests tak
ing control of lost protons by beating the magnets at their own game - by 
means of a designed resonance used as a beam scraper. It is a study of 
suitable resonances, includina; estimates of the required multipole element 
strengths. The appropriate resonances are two-dimensional and not much 
has been written about them because of their four-dimensioned phase 
space. A large number of figures is included to help penetrate the 
mysteries. 
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Protons "lost" from a beam in a high energy ring tend to strike the 
vacuum wall at a few preferred places, presumably as a result of the pattern 
of non-linear field at extreme amplitudes. Thie process is not well understood 
and the preferred locations cannot be controlled. It does depnd on machine 
parameters and the locations are unpredictable for major changes, For super
conducting rings this concentration of losses greatly increases the probability 
of magnet quenches on small beam loss; for colliding beams experiments it may 
create an intolerable background if one of the locations is near a low-beta 
region. 

In low energy rings beam scraping -pushing the beam slowly against an 
internal "target"- has provided a (somewhat) controled way of disposing of 
unwanted, large amplitude beam. In high energy rings scraping is difficult 
because the small, penetrating beam traverses only the salient edge of the 
target which acts as a beam scatterer instead of a beam stop and losses at 
the preferred places are enhanced, A good scraper would be most useful, for 
example one could create narrow beams for probing field problems, as well as 
providing quench and background protection. 

The basic idea in this paper is to beat the beam to the punch by pro
viding a designed resonance which is effective at much less than extreme 
amplitudes and which directs the "lost" protons to our own carefully designed 
"preferred location". The actual scraper then is the resonance separatrix, 
which is very sharp and has no radiation thickness, 

This paper investigates the properties of some resonances that could 
well serve as practical scrapers, in general two-dimensional resonances. The 
choice of resonance depends on details of space availability in the lattice and 
is perhaps impossible within the constraints of the Doubler, but new rings 
could easily incorporate a separatrix scraper into the general process of beam 
disposal. 

The Basic Idea 

We describe beams in beta space where all amplitudes and displacements 
use a reference /lo (100 m. for the Doubler). To obtain real displacements one 
must multiply by (/l//lo)"'-. [This is also the "conversational" space for rings -
if I say that the amplitudes are 8 and 10 mm for horizontal and vertical, then 
one expects maximum displacements of 8 and 10 mm in the arcs, but of course 
one will be in the F quads and the other in the D's. It would be confusing to 
say 8 and 5 mm in the F's, which is the same thing.] 



In beta space the equations for linear motion are simple 

x=acos111 
x' = - a sin 111 

y = b COB di 

y'=-bsindl 
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and these define my terminology. 

Proton beams are suprisingly gaussian and much the same size in horiz
ontal and vertical, that is the beam density measured as a function of x and 
measured as a function of y are both normal dis- I !J•::l•f.:::.. 
tributions which have the same u when adjusted t"'1' 
to /lo. The amplitude a = (x' + x'') v. is a circular 
normal (Rayleigh) distribution with zero for a = 0 3 lt--/-:_-t-----'""""+-~-1 
and a maximum at u. The combined distribution 
for a and b is shown in figure 1. The important 
point is that large a with small b is not common, 
or vice-versa, but a = b is important. Any mult
iple scattering process, like gas scattering, in
creases u. Large but rare single scatterings pro- 1111~:::::=.;;i1~====!3:::_=--._J 
duce a wide, thin pedestal which must have much 

figure 1. 
the same type of distribution. 

1 
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Figure 2 shows how one might apportion the linear betatron space to 
the various stages of resonant scraping. The high 

~- energy beam in the lower corner extends about 2mm 

fig. 2 Scraping 

(u = 2/3mm). The line from 6mm to 6mm is an adiabatic 
separatrix from one of the later examples. The pos
ition can be adjusted downward by tuning closer to 
the resonance. This line is the stability limit for slow 
tuning (or slow emittance growth). Protons beyond 
the limit leave along the sloping trajectories. Note how 
all particles approach the same ratio of a to b. The 
growth per turn increases rapidly. A proton that just 
misses the target will strike at the dotted line (after 
~7 turns), about 4mm into the target. Just as in 

extraction, it takes a lot of "good" aperture to develop a good separatrix 
scaper. 

This device can operate in two ways. First one can, at regular inter
vals, remove halo by tuning towards the resonance and then away. It is 
presumed that this periodic cleaning would inhibit background but this re
quires such a special set of growth times that it is questionable. (Sharpening 
a beam at low energy would be done this way.) 
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A much better mode of operation would be to leave the separatrix in an 
intermediate position, as in the diagram, and to use a resonance which has 
very little effect at beam amplitudes. This mode provides protection against 
any moderately slow (msec) loss. The beam-beam interaction is very short 
range and will have no effect at the separatrix, for example the infamous 
tune-shift applies to small amplitudes and practically vanishes at 3u. 

The similarity to extraction is striking but there are important dif
ferences. Extraction primarily selects particles on tune variation with mom
entum (chromaticity), whereas we want to select on betatron amplitude with 
the chromaticity zero (for amplitudes near the separatrix). Furthermore ex
traction does not much care about effective emittance dilution for particles not 
yet extracted (it might help), but we most certainly do. Finally we must 
scrape in both dimensions, which somewhat complicates the expanding trajec
tories and would be an unnecessary complication for extraction. 

The Resonances 

Figure 3 is a tune plot showing the resonances that we will consider. 
a.,J.-a.a 

" ' ' .... 
J.-a·\· 

nwc 

Fig. 3 Tune Plot 

The dashed lines are resonances driven by skew 
multipoles and they are identical to their normal 
counterparts with vr and Vy interchanged (also a, b 
etc.). The label 3,2 indicates 3vr+2vr=integer. The 
label 4-1 indicates 4vr-v,,:int., an octupole non-linear 
coupling. One resonance which would be ideal, the 
octupole 2vr+2v,,=int. has been omitted because this is 
the only resonance guaranteed to affect beam-beam 
interaction. Operation near 1/4 is prohibited. We will 
also ignore the one-dimensional resonances ( 3vx and 

5vx). For these resonances to scrape all large amplitude protons would 
require coupling horizontal and vertical so that amplitudes exchange slowly 
but almost completely, This requires a weak coupling and tuning very close 
to Vz: V71 

coincide. 
tune from 

which is well into the "circle of confusion" where many resonances 
This is not a reliable operating condition and is probably a bad 
beam-beam considerations. 

These resonances are 4-dimensioned creatures which makes their prop
rties difficult to see and we will rely on diagrams for comparisons, but 
summaries of the equations are included for more serious study. You may 
want to consult the companion paper Resonances and Resonance Widths tor a 
better introduction. First we must define some terms. 
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We will use sextupole and decapole magnets. The strengths are 

(SJ), B,. = S (x• .... and (DJ), B,. : D (x<. •• 

The resonances are mvr + nv7 =integer + (m• + n•)V. 6 

where o is the perpendicular distance on a tune plot from the resonance line. 
There is a combination phase angle for each resonance 

a= m111 + nQ with 6a = 211(m• + n 1)¥26 extra phase per turn. 

Resonances are examined turn-by turn. Non-linear effects average out 
except for the resonant component which accumulates for many turns because 
6c is small. To make this componenet effective we must use a pattern of 
multipole magnets (Ml) which accentuates the driving terms, sums for one turn 

A = (Jlo/(Bp)) ;[;(h•v•(Ml)s cos a. B = ••••• sin a. 
h = (Jlx//10)¥2 v = (/J,.//10)¥2 

Usually we choose our "observation point" so that B = 0, A pos. to simplify the 
expressions (this is only a phase shift in a and has no other effect). Note 
that the driving terms are dimensioned, we will use (per cm.) for A from 
sextupoles and (per cm•) tor A from decapoles. [Thirds resonances arising 
from decapoles have a different dependence on h and v. These forgotten 
resonances are strong and provide an important scraper. Details below.] 

With the aid of the driving term one can express the motion in small 
changes per turn (differentials) as a function a, b, a, and 6a at the start of 
the turn. Before doing so however it will be convenient to express a, b in a 
scaling unit Bo which is chosen to make the resonance diagrams easy to 
compare. These units are of the form 

Bo= c 6/A (sex.) or a.3 = c 6/A (dee.) 

where c is a constant. (ao will subsequently be set near 1 cm.) 

We can always combine the equations da/dN and db/dN to find 

n a• + m b 1 = F the "family" constant. 

These are hyperbolas on an a-b plot. A proton under the influence of this 
resonance never leaves its family line. We use this to analyze the resonance 
properties family by family. Each family is effectively one-dimensional. 

There is a line of fixed points, combinations of a, b, (and a = 180°) for 
which a, b, and a do not change. We can also construct a constant of the 

motion which gives trajectories in phase space. The most important is the 
trajectory that contains the fixed point, the separatrix. Fixed points and 
separatrices vary from family to family. 
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3;v:r: + 2;v, =int + 6-\/'13 decapole 

A= (/Jo/Bp) l:(h 3v 2(Dl))s COS IXs 

ao3 = 26a/A 

da/dN = (6 .. /4) 3a•b• sin IX 

db/dN = (6 .. /4) 2a3b sin IX 

da/dN = (6 .. /4)((9ab• + 4a•) cos a+ 4) 

2a1 - 3b1 = F 

9ab1 + 4a3 = 4 

fam, 
fxd. pt. 

(3/2) a 3b 1 cos a +a•+ b• = canst. 

The straight line is F = 0 (slope -1(3/2)). 

3,2 res. (dee.) 

The fixed-point line is the 
outer one from a = 1, the inner one is the adiabatic limit. 

I 
8>--~~~-+~~~~-+-~~~~+-~~·~ 

• J.88 368 .. 

Trajectories F' = .5 (a=.5, b=O 

The darker points are for 
a, lighter for b. The fixed 
point is at the cusp at 180°. 
The separatrix is solid, and in
cludes an upward branch. The 
incoming branch has been omit
ted for clarity. Beyond the sep
aratrix a reverses and particles 
leave near 90°. Small ampli
tudes (a-.5) are almost unaffec
ted. 

Consider a stream of particles, of this family, moving just below the 
separatrix. If one slowly tunes away from resonance they will settle to 
constant amplitudes, still on the family line, preserving the phase volume. 
These are the adiabatic amplitudes plotted above and are the beet measure of 
the stabitlity limit. They are found from the average of a 2 b 2 along the 
separatrix. The line is plotted from such computations for many families. 

Note that the usual pair of plots x-x', y-y' would not give any indi
cation of the nature of the resonance because 'f' and {) continue forward 
without any apparent change even when a reverses direction. 



We now turn to the sextupole driven vr + 2vT resonance which has a 
new quirk of interest. The a - b plot is on the opposite page, and one sees 
that it is an ellipse from 0,0 to .5,1 to 1,0. Family lines with F negative, that 
is above the straight line F = O, will have two fixed points. The upper point 
is normal and locates the separatrix, the lower point near a = 0 does not have 
any connected trajectory but lies inside a special "Jocked" region (not really 
a coupling because a and b go up and down together but the effect is much 
the same). The darker part of the fixed point line terminates at F = -.5, 
which is the family line from 0,. 707. The special property of this family is 
shown in the figure below. 

• 
F: -.5 

.. 
3 • 

(a=O, b=.7) 
"' 

For this family all part
icles are unstable or Jocked in 
the island, which extends from 
a = 0 to the fixed point. On 
adiabatic tuning particles do 
not enter the island so this 
family is a stability limit. The 
phase volume of the islands are 
subtracted from separatrix vol
ume when computing the adia
batic stability line. 

During a faster tuning some particles do enter and leave the island 
which modifies the amplitudes. There are however very few particles with 
small a and modest b, as pointed out above, and the emittance dilution is in a 
region where it doesn't much matter. The primary nuisance from the islands 
is the distortion of the trajectories moving around them. 

Any resonance with m = 1 will have islands near the b-axis, and with 
n = 1 near the a-axis, so we will see something similar for vr + 4vy and even 
for the octupole coupling resonances. 

7 



8 

vr + Zv, = int. + 6-v'5 sextupole 

A= (Po/Bp)};(hv•(Sl))s cos Cls 

ao = 64 /A 

da/dN = (64 /4) b 2 sin Cl 
db/dN = (64 /4) 2ab sin Cl 

b 

da/dN = (64/4)(b1/a + 4a) cos a + 4) 

2a• + b• = F fam. 
b' + 4a• - 4a = 0 fxd. pt. 
(3/2) ab• cos a + a• + b' = const. 

F = -.25 (b=.5, a=O) 

F = .5 (a=.5, b=O) 

/ .i 
• .5 .. 1 

1,2 res. (sex.) 

There is a "locked" region 
near a = 0, which is normally not 
populated. The principle effect 
is distortion of all small a 
motion. 

This side has no "island" 
and is smoother (for small b). 
One should compare this dia
gram to any of the decapole 
cases, which are much smoother. 
A higher dependence on ampli
tude would be very helpful. 



,,,. + 4v:r = int. + 111/'l 7 decapole 

a= (/lo/Bp)"l:(hv< (Dl))a cos Cls 

ao3 = 28a/A 

da/dN = (80 /8) b 4 sin ct 
db/dN = (8a/8) 4ab• sin a 

1 

... 

.5 
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i 
I 
i 

I 

I 
.' 

/ 
dct/dN = (8af8)((b 4/a + 16ab1) cos a + 8) 

' ' 

4a' + b1 = F tam. 
b 4 + 16a1b' - Ba = 0 fxd. pt. 

(5/4) ab• cos a +a•+ b' = const. 

_·., : 

---.. 

•t==~~---±,--~--':'l'==-~~::+:,--~-==l 
3 11 "' 

F = -.25 (b=.5, a=OJ 

I \ 
1;.--~~~~~~-+--+--+-~~~~+--~---i~l-l 

r- --- -- -

r~----
F = 1 

a 

________ .,. ... ·-······ 
__ , ..... ··-·-

(a=.5, b=O) 

I 
I 

II I 

II .5 a 1 

1,4 res (dee) 

This resonance also has a 
"locked" island near a = 0 but 
because of the amp• dependence 
it has almost vanished at this b. 

The flattest trajectories! 
Unfortunately the adiabatic limit 
is wide open in the a direction 
and there is no point using this 
resonance instead of one of the 
others. 
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Thirds resonances come quite naturally from decapoles for example in 
one dimension we find ourselves expanding 

cos•,,.= (1/16)(cos 5_,. +5cos 3,,. ••••• 

and there it is, with a fat multiplier yet! Again to find one of our reso
nances, I used 

Bx: D ( ••• 6x•y• Bx: D ( ••• 4x8y 
expanding cos•.p cos1.9 = (1/16)(cos 3.p+2.9 '1- 3cos .p'1-2.9 + ••• 

and for the other resonance I used 

Bz: D ( ••• y• B,. = D ( ••• 4xy• 
expanding cos .p cos4.9 = (l/16)(cos .p+4.9 + 4cos .p+2.9 + ••• 

and both contribute to vz '1- 2v,. 

We now face four driving terms 

Au .. h'v' COB a, B11 •• h•v• Bin a, Au •• hv' cos a, Bu ••• hv' sin a 

which look familiar but now a = .p + 28. Only one term can be eliminated by 
shifting (B11). I will simplify the problem by defining 

Au = 2/3 Ao, A11 : JAo, B11 = 0 

2l'. A11 : 0, Bi• = JAo 

The fractions are a friendly choice which happens to make the adiabatic 
separatrix approximately symmetric for a and b. The two examples are tor 
driving terms "in phase" and "out of phase". Fortunately the diagrams are 
very similar. 

The diagrams have "families" (and phase angles) like vz + Zv,., as they 
should, but all other lines are just like a superposition of the two previous 
decapole resonances, with 3vz + Zv, dominating at low b and vi + 4v7 at low a, 
which is great. This is even more apparent for the out-of-phase case. 

In the out-of-phase case we can no longer use cos a= -1 for the fixed 
points. In fact one must choose .p = tan-l(-b'/Za•) which keeps shifting along 
the line. Actually one must be in the correct quadrant so 

sin .p = -2a•/(4a• + b')"', cos .p = b'/(4a• '1- b•)V• !Jed. pts. 

This kind of phase-shifting is endemic, when a dominates (and therefore A11) 
then the phase is as usual, but when b dominates features are shifted 90° 
earlier because Bu dominates. This causes only one minor operational change: 
the asymptotic exit phase is 45° instead of 9()0. 
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vr +2v, = int. + 61/'5 decapole, in-phase case 

A11 = 2/3 Ao= (/lo/Bp)"J;(h3v1 (Dl))s cos as 

Au= 1/2 Ao= (/lo/Bp)"J;(hv4(Dl))s cos as 

a.•= 6«/Ao 

da/dN = (60 /8)(2a•b• + b•) sin a 

db/dN = (60 /8)(4a•b + 2ab3) sin a 
da/dN = (00 /8){(8a• + 14ab• + b•/a) cos a + 8) 

2a1 - b• = F fam. 
Ba•+ 14a•b1 + b• - Ba= 0 fxd. pt. 

(3/4)(2a•b• +ab') cos a +a•+ b' =canst. 
in-phase 

a 

····· -·-·· ·········· .... -·- --- . . . . . . . . . ... -·-·· · ·· ·············· ......... . ··········· ............................. ············· ············· 
.................. ··················· ................... ·················· 

F = -.25 (b=.5, a=O) 

;,· .·. 

J. II 

F = .5 (a=.5, b=O) 

On the a - b plot one 'sees 
a very good shape for the adia
batic stability limit. This plot 
shows a small "island" and flat 
trajectories similar to the 1, 4 
resonance. The fixed point amp
litudes are different primarily 
because the family lines have a 
different shape. 

On this side the trajec
tories resemble the 3, 2 decapole 
resonance. All in all an excell
ent resonance for scraping. 
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v" + 2v, = int. + liv5 decapole, out-of-phase case 

Au= 2/3 Ao= (/10/Bp)J;(h"v'(Dl))a cos a 

B,. = 1/2 Ao= (/10/Bp)J;(hv'(Dl))a sin a 

ao3 = 11./Ao 

da/dN = (li./8){2a•b• sin a + b' cos a) 
db/dN = (li./8)(4a3b sin a + 2ab• cos a) 

1F-~-PX-;t--t--t--

b ,/ 

da/dN = (6./8){(8a3 + 6ab') cos a - (b•/a +Bab•) sin a) 

2a2 - b1 = F tam. 
J6aB +12a'b' + Ba•b• + bB - 8a(4a• + b 4)V. = 0 f.p. 
(3/4)(2a•b• cos a - ab' sin a) +a•+ b1 = const. 

.;·. ·.·\ 
f·:. ' \ 

• !5 • 1 

out-of-phase drivers 

11-~~~""4~~:_:·~.~~~~~-'>-~1-~~~-+~-+--'~~ 

..... ····-······· ·········· ....... ············-····-· 
··-········ ·················· ................... . 

......................... ····-··· ......................................... . 
... 

F = -.25 (b=.5, a=O) 

F = .5 (a:.5, b=O) 

The important point ia the 
similarity of the a - b plots for 
this case and the in-phase case 
on the previous page. The tra
jectories show some interesting 
phase shifts from Bu instead 

of Ai'" 

Note that the exit a is 
now approaching 45° instead of 
the usual 90°. Otherwise the 
phase shift has no effect on 
performance, but it does compli
cate the arithmetic. 



On Coming Out 

The magnitude of the driving term determines the etep spacing for exit
ting protons. It muet be large enough to make clean hite on the target but 
not eo large that protons juet mieeing are loet before they again have max
imum displacement at the target. Once the driving term ie chosen the tuning 
eete the amplitude level for the eeparatrix. We can make good eetimatee of 
theee quantities by aeeuming that sin a = 1, F = 0, and ueing the differential 
equations. In fact coe a • 0 on exit because it ie multiplied by a higher power 
of the amplitudes in the constant-of-motion expreesione; aleo the families lines 
converge on the F = 0 straight line. 

Let me assume for purpoeee of comparison that the target is a distance 
r = (a•+ b')"' = 1.2 cm. from the center along the F = 0 line, that a proton juet 
mieeing returns to the target in 10 turne (tunee near .4, .3), and that it 
should then be at r = l. 7 cm. I also assume that aa = .6 cm (1 on our 
diagrams) for the separatrix. In these expressions dimeneione are in cm. but 
are etill in beta space: 

"" + 2v,,, seztupole 
da/dN = (A/4) b• sin a 
da/dN = (A/2) a• 
dr/dN = (a/2) r 1/</3 
( 1/ra) - ( l/r1t) = N A/2./3 

A= .085/cm. 

2w 8./5 = A a. 
8 = .0036 

Theee are comfortable values. 
using correction style elements. 

3,,,, + 2v,,, decapole 
da/dN = (A/8) 3a1b• sin a 
da/dN = (A/4) a• 
dr/dN = (A/4) (3/5)'·s r• 
(l/ra 3) - ( 1/rN3) = ,349 A N 

A= .103/cm3 

2w 8./13 =A a.3/2 
8 = .0005 

(sin a= 1, F = 0) 

(r = a</3) 

(1.2 cm., 1. 7 cm., 10 turns) 

(from before) 

(ao = .6 cm.) 

The driving term A can be implemented 

(sin a = 1, F = 0) 
(r: B ./(5/3)) 

(1.2 cm., 1. 7 cm., 10 turns) 

(ao = .6 cm.) 

Not comfortable. decapolea are "' 20 times harder to build. 

13 
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v% + 2v,,, decapoles (in-phase case) 
da/dN = (Ao/8)(2a 2b 1 + b 4) sin a 

ds/dN =Ao s• 
dr/dN =Ao r 4/3¥3 
(1/ro•) - (1/rN3 ) = N Ao/¥3 

Ao = .065/cm3 

Au = .044/cm•, Ai• = .033/cm3 

Zn 6¥5 = Ao ao3 

6 = .0010 

(sin a = 1, F = 0) 
(r = a.V3) 

(1.2 cm., 1. 7 cm., 10 turns) 

(ao = .6 cm.) 

The out-of-phase case gives the same result. We have gained a factor 
of 2~ compared to the usual decapole resonance above, and we need it. 

The following is an example of an arrangement of decapoles which pro-
duces the driving terms for this resonance. I assume 600 cells: 

F D F D F 
(DJ) -1 -.6 l .6 -1 

" + 2tJ -180 -90 0 90 180 
h"v• 1/3 1/3¥3 1/3 113¥3 1/3 
hv' 1/9 1/¥3 1/9 1/¥3 1/9 

Au= 1 Bu= .4/¥3, .. 1.03 It 13° 
AH= 1/3 814 = 1.2/¥3, .. 0.11 Ii 64° 

The ratio is correct (accuracy not required). Our "observation point" 
will be 13° downstream (in a) from the central quadrupole. The unit decapole 
will be (DJ) = 1.3 T/cm3, or 100 cm. long and .013 T/cm•. At a 4 cm. radius 
the field would be 3.3 T, which practical but is not a "correction" element. 

It is interesting to note that the driving terms from this array for the 
regular resonances 5,0 3,2 1,4 are .0017, .005, and .015/cm•. The small 
value for the 5vz resonance is important if our operating point is near .4,.3 . 
A proper design would be much more sophisticated (see Distortion Functions 
for a design procedure for avoiding non-resonant effects). 

With an exit angle a = 900, significant combinations are 

" = 30 tJ = 30, or 210° 
"= 150 tJ = 330, or 1500 
" = 270 tJ = 270, or 90° 

because a target 150, 30, or 90° downstream ( tJ and ¥') will be at maximum 
displacement in x and y. 



Comments and Conclusions 

Decepole driven resonances ere hard to implement, and unless there is 
some serious tuning problem one would only consider the decapole Vr + 2vr 
resonance. The advantage of decapoles is the undisturbed beam permitting 
continuous scraping. 

The sextupole driven resonance is relatively easy to implement and 
would probably work very nicely for intermittent scraping. One wonders 
whether the beam distortion might be tolerable for continuous scraping. 
Possible problems can arise at four different levels. 

The first problem could be that a single beam does not work well close 
to this resonance, with or without the scraping turned on. One problem to 
remember is that second-order tune-shift from sextupoles can be enhanced by 
the first order distortion. If problems arise from random field errors then it 
is possible to "clean-up" the particular tune area, however if they arise from 
systematic elements there may be a conflict which cannot be resolved. One 
should remember that systematic effects will be very different when the low
beta sections are turned on and the ring loses all symmetry (in phase space). 

The simplest of the beam-beam effects is that the distortion degrades 
the beam density. I estimate that when using the 6 mm level of scraping the 
decrease is small, and would be compensated by less than 1% decrease in ;n.. 

It is possible that the beam-beam effect finds this particular tune 
disturbing (without scraping on) or, conversly, the scraping resonance finds 
the peculiar tune-shift curve from beam-beam interaction disturbing, Both of 
these problems could more easily occur if one tunes to the wrong side of the 
resonance where the beam-beam tune-shift, which is large only for small 
amplitudes, is towards the resonance. For P-P one should tune on the high 
side. 

Finally it is possible that the multipole field from the scraper driver 
combines with the non-multipole field of beam-beam interaction to create 
strange effects. This is clearly an effect that cannot be analyzed, which is 
why it is a popular explanation for beam-beam problems when analysis fails to 
find any problem with the beam-beam interaction itself, as it does for protons. 
It may even be real, in which case a failed scraper experiment would be a 
great success. 

My suspicion is that, with a little preliminary prophylaxis, none of the 
above will occur. 

15 
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There are some obvious limitations to the type of analysis in this paper 
for the exitting particles. The basic assumption that non-resoant terms will 
average out in a few turns is no longer meaningful. Driving arrays that loc
ally cancel non-resonant distortion, such as cos 111 compenents when creating 
cos 111+2.9 components, will produce trajectories much like the above. Tracking 
studies are needed for precise design of the actual trajectory. It may be 
possible to split the drivers on either side of the target and to gain an ad
vantage from a local non-cancellation of the other terms. 

Conversion from beta space to real space provides an opportunity to use 
any higher betas that are available. The above analysis was for arrays of 
normal elements which emphasizes vertical displacement at the target. Skew 
components work just as well and reverse the role of a and b and also .Br and 
,8,.. 

There are probably better ways to tackle resonant scraping. There is 
much room for invention and design. The hope is that this paper will stimu
late both theoretical and practical interest. I am sure we all agree that the 
dipoles should no longer be permitted to dictate where protons are lost, 
particularly in a superconducting ring with an excellent aperture, and with 
the forefront experiments. 


