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Two-dimensional betatron resonances are much more important than their 
simple one-dimensional counterparts and exhibit a strong ·depdndenc.0 , on 
the betatron phase advance per cell. This paper enlarges upon a not~~ of 
limited distribution, which used a practical definition of "width" in order 
to display these relations in tables. 

A substantial introduction has been added to this note, primarily peda
gogical, to explain the tables, and also to encourage a wider capability 
for deriving resonance behavior and wider 11se of "designer" resonances. 
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Many years ago Don Edwards and I in a fundamental design paper for 
the Doubler argued strenuously against a "cost-saving" reduction of the phase 
advance per cell. To do so we used a table of widths for two-dimensional 

resosnances and pointed to the strong dependence on phase advance. Three 
years ago, following the first Snowmass Summer Study, I enlarged this table 
and refined the phase dependence in a small note of limited distribution, 
because of proposed "great cost-savings". Following the second Snowmass 
Summer Study, I shifted to non-r.;sonant distortion and "smearing" criteria 
(same purpose) in Distortion Functions, which is a complementary approach to 
resonance theory with a direct numerical relation to performance quality but 

which also contains much of interest for resonances. 

What remains from these efforts, apart from an excellent Doubler, is a 
recurring interest in the table of widths and I have been encouraged to 
insert a short explanation of the numerical methods into the small note and 
give it a wider distribution. 

Resonance theory is n lot of fun, so I could not resist meandering along 
a few of the many fascinating by-ways before explaining the last three hand

drawn pages which were the bulk of the small note. 

Resonance Width 

The terms resonance and resonance width are commonly used in physics, 
usually without explanation, but they have a special meaning for betatron 
tune resonances in accelerator rings for which there is no analgous behaviour 
in electrical circuitry. One betatron phenomenon does resemble a normal reso

nance - the growth of orbit distortion as the betatron tune approaches an in
teger. In this case there is a denominator (sin rrv) which approaches zero and 
in electrical terminology this is a very narrow resonance (measured down from 
the peak), but an accelerator operator would find it very wide. Note that for 
any small tune there is a stable beam, but not a useful one, and the tune it
self is unmodified. We now contrast this behaviour with "real" resonances. 

First we must distinguish clearly the tune from the tuning. Tune is the 
betatron phase advance per turn, measured in revolutions where the fractional 
part is the significant quantity. There are two tunes, v., vy, which can be mea
sured directly from the beam. Tune varies somewhat with the amplitudes and 
with momentum. Tuning is the setting of tuning quadrupoles, converted to 
tune units by simple formulas. For a well behaved, small beam with no mo
mentum error, the tunes follow the tunings. 



3 

Consider then tuning towards the half-integer. When just below one finds 
that the tune runs ahead of the tuning and reaches 1/2 when the tuning is 
slightly less. Coming down from above one again finds the tune running ahead 

to 1/2 but this time the tuning iR slightly greater than 1/2. For a tuning 
between these limits there is no stable beam. In this region the beam is 
represented by a tune of 1/2 multiplied by an exponential growth in amplitude 
(a complex phase angle). We use the tuning width of the region where the 
tune is locked to 1/2 as a measure of the resonance strength. Note that there 

are no missing tunes, they are just a little crowded on each side of the 
locked region. 

Now let there be a scatter of sextupoles in the ring. We will find a 
locked region at vx = 1/3, but in this case the tuning width is proportional to 

the amplitude. (If one uses 10-poles it would be amp 3 .) One way to quote a 
single tuning width for each resonance is to use a standard amplitude (lcm), 
however if we set v, near 1/3 and vary Vy we will find another, larger 
resonance when vx + 2vy =integer. 

On a tuning-plot, where 3vx is a vertical line, this two-dimensional 
resonance is a narrow band through (1/3,1/3) with a slope of -2/3. [Identifi
cation of resonances requires a line on a tuning plot, if you can't find a line 
then it isn't a resonance.] The tuning width for this resonance not only de
pends on the general level of amplitudes but also in a complex way on the 
specific mix of horizontal and vertical amplitude. We need a practical defini
tion of width in order to compare two-dimensional resonance strength. 

For "resonance width" I use the tuning width for beam loss, measured 
perpendicular to the resonance line, between boundaries where a gaussian 
beam - with equal u in both planes - loses 10%. This corresponds closely to 
the value that an accelerator operator would quote, and is an adequate 
measure for assessing the difficulties of avoiding beam loss. 

Betatron oscillations can be observed by a frequency analysis of position 
monitor signals, where they appear as side-bands to the orbital frequency. 
One is tempted to continue to think in terms of frequencies using electrical 
analogies for assistance, however there is no electrical counterpart to this 
particular non-linear problem. The locking above is not related in any way to 
the "pulling" of an oscillator - the pulled oscillator keeps on oscillating, and 
it's the linear oscillator that has no stable amplitude. The analysis of 
betatron resonances is best carried out in a time domain, that is turn-by

turn, and the physics of the process is particularly explicit using an ampli
tude-phase description of the oscillations. 
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Preliminaries 

We will examine resonances in the tunes mvx + nvy = intege1~, m + n = k. 
These "locked" resonances are narrow bands on a tuning diagram (vx vs Vy) 

with a tuning width Ii ( •li/2) measured perpendicular to the band. You will 
find easily that the tuning relation for the band edges is 

mv, + nv, =integer ' (m 2 + n 2)V2 (li/2). 

A phase <P is associated with v,, and tll with "" It is convenient to define 

a= m.p + ntll, and 00 = (m'+ n•)V2rr6 as the extra a per turn. 

At the "locking" boundaries 0 0 is, on the average, cancelled by additional 
phase from non-linear elements (multipoles). 

One can write the multipole fields as 

k 

By= BI [bk-1 f(X,Y) - Bk-1 g(X,Y)] 

B, =BI {Bk-l g(X, Y) + bk-1 f(X, Y)] 

(note: k=3 .. b, .. sextupole .. 2k-pole) 

f(X,Y) g(X,Y) 
----:-------------------------:----------------------

2 
3 
4 
5 
k 

x 
x2-y2 

xa-3xy2 
X4-6x2y2+y• 
(-l)nl2(kn)(m/k)Xm-1yn 

y 

2XY 
3X2Y-Y3 
4X3Y-4XY3 
- ( -1 ) n I 2 ( k n ) ( n I k) xm yn - 1 

for n=0,2,4 ..... and m+n=k, ("m)= k!/(m!n!) =(kn) 

In the generalized terms one is anticipating that m, n will become the same as 
used in the resonance expression, otherwise the terms could be simpler. 

We will want to define displacements as 

x = a cos¢, 

(dx/d.p)= x' =-a sin ''" 

X =(!l.//loJV2 X, 

y = b cos tll, measured at /lo 

(dy/da)= y' =-b sin a. 

x'=(/lx/lo)V2 X' + (/l'/2)x etc. 

It will be convenient to use h = (/lx//lo)V2 and v = (/ly//lo)V2. 

A kick tJ.X' at /lz must be converted to tJ.x'=(/lx/lo)V2tJ.X' 

tJ.x'= h/lotJ.X' =-h/lo(ByJ/[Bp]), for a short length I 
tJ.y'= V/lotJ.Y' = V/lo(Bxl/[Bp]), 
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We will want to continue to use phase-amplitude expressions because 
tune-shifts appear explicitly, so convert a small t;x' or Lly' to 

LI¢= -(t;x'/a) cos.,, 
Lia = -Lly' sin .,, 

LI&= -(Llx'/b) cos&, 

Lib = -Lly' sin VI. 

For example at Xmu ( ¢=0), a small kick moves the phase back to a positive slope 

without significant change in a = (x'+x'')V2• 

Resonance Algebra 

We must make a fundamental assumption that beam behaviour when not 
resonant can be well described by simple linear theory, that is the phase
amplitude equations above for x and y are meaningful. In this case the devi
ations caused by non-linear fields in any one turn are small, and in general 
remain small after many turns. 
of the field which are resonant 

Exceptional cases are created by components 
or which generate amplitude dependent tune-

shifts, and in these cases small deviations accumulate for many turns. 

In the analysis below we ignore the unexceptional terms. This is necess
ary to obtain a solution - a simple expression predicting beam behavior - and 
it is also a reasonable approximation. It is also necessary to avoid resonance

crossings, tune combinations which simultaneously satisfy more than one set of 
m and n. There is no egregious beam behavior at crossing resonances but it 
is too complex for solution. This particular method of analysis is simple and 
directly related to numerical evaluation, nevertheless the limitations and con
clusions are identical to more elegant methods. 

We first examine a simple one-dimensional resonance and then we use the 
generalized field terms to develop solutions for the principle two-dimensional 
resonances which are more important. The simple example is contained in the 
more general solution, and in its development we will take "simplifying" steps 
that could easily be omitted but actually mimic the two-dimensional case. 

An octupole field By = B b•X' with length 1 produces 

t;x' =-(/loh)(Bol/[Bp]) b3 (ha cos ¢)31 

tl¢ = (/loB/[Bp]) a• (h 4b31 cos4¢) 

t;a = (/loB/[Bp]) a• (h 4b3J cos3¢ sin ¢) 

cos4¢ =(1/B)[cos 4¢ + 4cos 2,o + 3), cos3¢ sin ,o =!l/B)[sin 4¢ +2sin 2,o] 

We will make the 4¢ term resonant by choosing v, =integer+ 1/4 + o/2. The 2¢ 

terms will be ignored, and the tune-shift contribution (3/8 in tl¢) will be 
considered later. 
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We are going to examine the effects of the 4<P component of an array of 
octupole fields by observing beam behaviour at one point in the ring for 
sucessive turns. We will now use a, <P for values at the start of a turn, and 
use ., + <Ps for the particle phase when it reaches a particular element. After 
one turn 4a will be the simple sum of contributions from all the elements. For 
one turn 4<P will also include the normal phase advance from the tuning. 

Let me use a for 4<P, as for 4.,,, 00 for 41To. We can express the 4's in 
terms of starting values and the following sums: 

A = (/loB/[Bp])}; (h 4b3l)s cos as, and B = ( .. ) }; (h 4b3J)s sin as 

For one turn, at resonance, as/2rr is an integer so A and B are essentially 
Fourier components and the combined amplitude (A 2 + B 2 )V2 is independent of 
the choice of observation point. We can simplify our formulas Ly choosing an 
observation point where B is zero and A is a maximum (positive), then 

4<P = (1/8) A a• cos a + 90° + 1To/2 per turn 
or 4a = (1/2) A a2 cos a + o. 

and 4a = (1/8) A a3 sin a 

This is a good time for comments on the derivation and evaluation of the 
driving term A. 

We are assuming that non-linear "kicks" are small, and when adding the 
effect of an element to the one-turn sums we ignore previous non-linear kicks 
on the same turn when we calculate X for use in ll3X3• This is called a first
order solution, and it is generally sufficient for random errors. A second
order solution can be developed (conceptually) by adding at s terms like 
3b3X24X to a new set of second-order sums, where 4X is the first-order effect 
of multipoles between the starting point and s. Now 4X already contains a 
complex dependence on <P + .,., so the trigonometric terms will become more 
complex and their expansion is a new set of second-order resonances. 

One can expect all sum and difference combinations of the first-order ex
pansions of the combined multipoles. For example, sextupoles have first-order 
terms <P and 3.,, and second-order expansions O, 2.,, 4<P, ( 6.,) (the driving term 
for 6<P is always zero). A combination of sextupoles and octupoles will have .,, 
3., .... 7.,. Significant resonances from these combinations are usually from 
systematic arrays, such as a few strong correction elements arranged to make 
undesirable first-order driving terms zero, but not higher orders or inter
actions with other corrections. 
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It is important when computing a systematic driving term to us the real 
values for ff and <P that describe the ring when it is tuned to the resonance 

frequency by the actual tuning quadrupoles. One often writes <P = vf, 

I = o .. 2rr but then assumes that tuning changes v but not I· This is never 
correct for a real lattice with straight sections. In the Doubler the tuning is 
confined to the arcs, which minimizes ;J changes, and the phase advances of 
the straight sections are almost unaffected. For very large rings it is prob
able that tuning will be confined to tuning cells in the straight sections. One 
must also be aware that "turning on" low beta straight sections (and restoring 
the tune) may drastically affect all driving terms. 

A last comment on driving terms - this is the time to transform A to 
sensible units. In the expression A =(;JoB/[Bp]);[(hkbk-1l)s cos k<Ps the first 
term will normally use tesla-m in both numerator and denominator so the units 
of bk-11 .. A, ie (length)2-k. One should use the same unit for A and a such 
that the amplitude is close to unity, such as cm. or mm. If one persists in 
using meters then higher multipole driving terms will have huge values even 
if they are negligible. For a dipole one can write A = ;Jo;[(hkbk-1fJ)s cos k111s 

where e is the bend angle and in this case it is units ;Jo bk-1 .. A. 

We return to the simple 4<P resonance, and having just found reasonable 
units for a, we promptly make an unecessary simplification and write a in 
terms of a new scaling unit so, where So= 1860 /AI"' (without explanation, all will 
be clear for two dimensions). Let me summarize: 

Vx: integer + 1/4 + o/2 

a = 4111 s.= 4rro 
A= maximum of (;JoB/[Bp]) ;[(h 4bJl)s cos as 

u = a/ao 

du/dN = 00 u 3 sin a N is turns 

dcc/dN = 00 (4u' cos a t 1) 

Locking is now quite explicit. There is no change in u or a, called fixed 

points, when u =.5 and, for a =180° ( o/2 pas), or a=O ( 6/2 neg). In both cases 
<P increases by exactly 90° per turn (tune= 1/4) but the tuning differs by o/2. 

I now invite you to verify by differentiation, first by u and then by a, 
and using the differentials above, that for any particle 

2u• cos a + u• = constant 
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This kind of expression is known as a constant of the motion, for our pur
poses however it is the trajectory in phase space which a particle will follow. 
It can be easily converted to lines on a x/ao vs x' /ao diagram. Solving a 
resonance problem means finding a constant of the motion, and many problems 
apparently do not have a simple algebraic solution. All solutions in this paper 
have been found by the good-guess-and-test process (as in integration). 

The most significant trajectory is the one containing the fixed-points. 
For positive o one inserts u = .5 and cos a= -1 to find 

2u' cos a + u 2 = 1/8 

which is known as the equation of the separatrix. In figure 1 this equation 

is plotted as solid lines on an x/ao, x'/ao diagram - .5 

hyperbolas with fixed-points at the intersections. 

Dotted lines represent other trajectories, with 
the dots indicating turns starting from the x-axis. 
For each value of cos a there are four values for ¥'• 

and hence a four-fold symmetry with successive 
turns moving from quadrant to quadrant clockwise. 

All outside particles (canst.> 1/8) are swept out 
along one of the four-fold separatrices and are lost. 
Particles inside ( < 1/8) are stable. The cos a term is 
not significant for a small constant, and the equation 
form a'= canst., as seen in the inner trajectory. 

. .. ' .... ····,_ 

...... -..... ,,_ 

·. · ............ . . ........ .... 

fig. 1 l/4's resonance 

reduces to its normal 

Consider how a fixed-point particle moves on the phase diagram as one 
follows it around the ring. As usual it will rotate clockwise many times but in 
this case the net phase advance after one turn is exactly 90°, precisely closing 
in four turns. The whole phase diagram rotates with the fixed-point in a 
Moebius rope which seems to be woven from four strands but actually is only 
one. When we chose the observation point so as to eliminate B we simply 
chose a particular orientation of the diagram (with simpler formulas). 

The strength of the resonance is given by the driving term A. To con

vert this to a tuning width it is necessary to multiply A by some amplitude 
squared. The usual choice is the fixed-point amplitude, thus 

u' =.25 ~ a' =.25(32rro/A) or o =.125 a' A/rr 

and to arbritrarily set the fixed point amplitude a to l cm. This definition 
ignores the normal tuning process and is not useful for two-dimensional 
resonances a 
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A better choice for the (amp) 2 is u2 , averaged over a, which when 
multiplied by rr is the area inside the separatrix, thus for our case 

u' =.1043 • a' =.1043(32rr8/ A) or 8 =.223 <a>' A/rr 

Consider a disk of particles in phase space with maximum nmplitude <a> and a 
uniform density, and at a tune well above resonance - the amplitude for the 
fixed-points is at least several times <a>. On tuning slowly down to the 
resonance, the separatrix squeezes down onto the beam, distorting the shape, 
and at 6/2 the beam will fill the separatrix (it keeps the same uniform 
density, that's Liouvilles theorem). Further tuning causes beam loss. If we 
start below the resonance and tune up, the same conditon is found at -6/2. 

This 6 is an adiabatic tuning width for a remote amplitude <a>, and it is 

conceptually more satisfying because the tuning process, which is essential to 
any definition, is explicit. Let me extend this further by assuming that the 
remote beam has a gaussian density distribution given by o- measured at /lo. 
I now choose the amplitude containing 90% of the beam as <a>, in other words 
I define the tuning width as 6 for 10% loss points, then 

<a>'= 4.605 o-• and 6 = 1.026 o- 2 A/rr. 

This definition, with some numerical effort, can be used for all resonances. 

Closed Resonances 

The resonance we have been considering is called open because the arms 
of the separatrix extend beyond the vacuum chamber (infinity). Most resonan
ces however are closed and the arms are joined. This is caused by the in
evitable dependence of tune on amplitude. In general 

LIVx = f(a 2, b 2, a 4, a 2b 2, b 4 ..... ) 

and, yes, v, does depend on the y amplitude. The coefficients in this 
polynomial have either sign, are not particularly correlated, and come from 
many sources - including beam-beam interaction. 

As an example we continue with the same 4'11 resonance but add a term 

then 
but 
and 

Llvz =-ca' and define c = 16rrC/A 
da/dN = (1/8) A a 3 sin a as before 
da/dN = ( 1/2) A a 2 (cos a - c) + 6• 

(A/48.) a• (cos a - c) + a 2 = canst. 
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When c is greater than 1, both the a =O and a =180° fixed-points are at 
positive o, and there are none for negative o, however only 180° has a 
separatrix. Figure 2 is drawn for c = 3. The four- -'--· 5 

fold "island" is relatively smaller for larger c. 
Because of the tune-shift, an adiabatic amplitude 
fills the inside at a o/2 that js larger than before. 

Further tuning towards 1/4 moves some part
icles into the island, and they may be lost because 
the peak amplitude is too large. Particles of 
initially small amplitude - at tuning close to 1/4 -
suffer the same relative increase and will be stable. 

,···· 

· .... 

The island is not "filled" with beam, (in fact 
fig. 2 closed by c=3 

for an infinitely slow tuning particles move directly to the outside), and the 
process of entering and leaving is complex. An initially uniform density disk, 
tuned thru a closed resonance, will have a distorted boundary and an effec
tive phase dilution. 

In general the effect of amplitude-dependent tune-shift on the low multi
pole resonances is to make them wide - particularly when we include the b 

dependence - and effective only on larger amplitudes. High multipole reso
nances have much smaller driving terms, but see the same tune-shift and so 
have narrow closed islands which have little effect. This is why the beam is 
stable in spite of an apparently overwhelming number of resonances. As a 
pain-killer, however, tune-shift has bad side effects - see Distortion 
Functions - and cannot be used to alleviate poor magnet quality. 

The significant strength parameter for a closed resonance is the area of 
the island compared to the area inside the separatrix. Some authors do ex
press the strength in terms of "tune width", but there are no missing tunes 
and it is difficult to find a simple tuning width which is relevant. The 
particular example above is unique in that A and C have the same dimensions, 
and can be combined in a single amplitude dependence. 

Some Other Solutions 

Consider the 10-pole. It is no suprise that one will expand 

(cos,,.;•= (1/16)(cos 5,,. + 5cos 3,,. r lOcos ,,.;, 

but it may be a suprise that the 10-po]e will probably have 1/3's resonances 
which are five times wider than its "principle" l/5's resonances! The sextu
pole resonances at the same tunes are probably larger, but not necessarily. 



11 

One can find a solution for combinations of multipoles contributing to a 
single resonance, for example the constant of the motion at 1/3 is 

(1/200 )[(A3a3 + (3/4)Asa•+ .. )cos 3¢ - (Baa3 + (3/4)Bsa 5+ .• )sin 3¢) +a• 

where the simple term Aa3 is now replaced by polynomials (one can eliminate B3 

by shifting, but that is all). As long as the polynomials are monotonic there is 
little change in the character of the resonance, but if they have roots, or 
multiple roots, then there are multiple sets of fixed-points and separatrices. 
If you, too, are addicted to recreational computation you will enjoy displaying 
some of these pretty resonance diagrams. 

Another type of solution can be found for exactly superimposed reso
nances where one is a simple multiple of the other, for example in the octupole 
case when the tune is 2/4 then both 4¢ and 2¢ in the expansion become 
resonant (with different driving terms). In this case the constant of the 
motion contains both angles, Again one finds some very interesting diagrams. 

There is a process called feeddown which comes from a closed orbit 
displacement in the multipole element - from orbit distortion, momentum dis 
placement or physical misalignment of the element. Expanding (X + d)• one 
finds x• + m d x•i .. which creates feeddown to lower multipoles. (Vertical 
displacement in normal multipoles generates skews, and vice-versa.) For 
random multipoles these contributions can be large and explain the restricted 
momentum aperture and the emphasis on closed orbit control. For systematic 
elements feeddown caused by orbit distortion can produce unexpected huge 
effects, which I call semi-systematic resonances. 

An orbit distortion may arise from a random set of dipole errors but the 
distortion itself is not random. The Fourier analysis of a random variable 
around the ring would probably have equal strength in all harmonics. The 
distorted orbit is dominated by one, or at most two harmonics at the nearest 
integers to the tune. A systematic array of multipoles will have its own 
harmonic structure at mutiples of the basic phase symmetry. Feeddown 
driving terms for k-1 resonances will be strong at the sums and differences 
of the orbit and multipole harmonics, which are normally terms that one 
would expect to be suppressed by the symmetry. Semi-systematic resonances 
within the normal tuning range must be avoided. 

One sometimes hears speakers say that they have measured a resonance 
width, and using "so-and-so's" formula calculated an improbable multipole 
strength, implying that resonance theory is inadequate. Of course one cannot 
work backwards from tune to source multipole without many measurements; 
worse yet is to apply one-dimensional formulas to two-dimensional resonances. 
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Two-Dimensional Resonance 

The analysis of two-dimensional resonances is pure drudgery. Gone are 
the pretty diagrams, they are hidden in a four-dimensioned phase space. In 
fact, short of blowing-up the beam it is difficult to detect the resonance -
simultaneous plots of x, x' and y, y' are not helpful, just smeared - and the 
best one can offer is a simple plot of a vs b. 

Each resonance, in its own way, defines "family" lines on an a, b plot 
(hyperbolas or ellipses) and each particle is assigned to s particular family 
according to its values of a and b, and remains on that line. For each family 
there is a single variable giving the position along the line and a "one
dimensional" resonance complete with fixed-points and separatrices. Some 
family members are stable, some are not, and all considerations of tune-shift, 
polynomial driving terms and superimposed resonances apply. The arithmetic 
is obviously messy but the real drudgery is that each family is different and 
the problem must be solved many times over. 

Nevertheless two-dimensional resosnances are more numerous and much 
stronger than their one-dimensional relatives. We will demonstrate this by 
devising and evaluating a suitable expression for the width of the principle 
resonances. 

In the expression m + n = k, if m and k have the same parity then the 
resonance is from normal multipoles, bk-1, otherwise it is from skew multipoles, 
ak-1· We illustrate the meaning of principle from the normal octupole 

By= -B 3b,XY2 and Br= B 3baX2 Y 

which, as I am sure you can now easily see, involve the following 

tl¢,d8 .. cos•¢ cos•&= (cos 2¢+2.9 +cos 2¢-28 + 2cos 2¢ + 2cos 28 + 2)/8 
da .. sin ¢cos¢ cos28 = (sin 2¢+28 +sin 2¢-28 + 2sin 2¢)/8 
db .. cos•¢ sin t9 cos t9 = (sin 2¢+28 - sin 2¢-2.9 + 2sin 2.Jl)/8 

The principle resonance is the first sum term. The difference terms are a 
kind of non-linear coupling which is of practical importance for beam dis
tortion (vr near vy), but in principle does not blow-up the beam. Notice that 
there is a contribution to the tune-shift polynomial, a b 2 term for vr and 
vice-versa, but we will ignore tune-shift. The remaining terms are presumed 
to be non-resonant at the principle tune. In other words, we are going to 
keep H simple. 



We now use the general expressions for the fields (for bk-1) 

Br= B (-1)•12 (•m)(m/k) bk-1 xm-1 yn 

Bx= -B (-1)•1• (•,.)(n/k) bk-1 X"' yn-1 
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and, as before, we find Llx, Lly; then .c.a, Ll<{J, .c.b, A&; ;ind expand saving the 
first term, with the angle called a. Again we separate starting angles from 
phase advance in the turn and collect a drivng term A which is set to a 
positive maximum by the choice of observation point. 

In this case we will express a, b and everything else, except A and er, in 
units scaled by an ao which will collect the nuisance constants. In summary 

mvx+ nvr = integer ! o/2, m + n = k, o perp. to res. line, 
a= ID<{)+ n&, o,, = (m 2+n•)V•rr.s 

A = (-1)•1• (B/Jo/[Bp]) I;(h"'v•b•-1l)s cos as max. 
(ao)•-2 = (2•-1/(k,.))60 /A = (2•-1;(•,.))(m2+n 2)V'rr.S/A 

da/dN = .s.(m/k) a•-1b• sin IX 
db/dN = .s.(n/k) a•b•-1 sin IX 
dlX/dN = 0 0 (1/k) [(m•a•-•b• + n•a•b•-2)cos a + k} 

I. na'- mb2 = F the "F" family line 
II. m• a•-•b• + n 2 a•b•-2 = k the fixed-ttoint line (ot = 180°) 

III. 2a•b• cos IX + a•= constant of motion. 

Expression I comes from the combination of da/dN and d b/dN, and is an 
hyperbola. Every particle belongs to a family and, even if it blows-up, it 
cannot leave the family line. [For 2"1-2.JI the sign of d b/dN is changed and 
na• + mb• = F, which is an ellipse, so the amplitudes are bounded. It can be an 
elongated ellipse.] 

The line of fixed-points in expression II has a wide variety of shapes for 
different resonances. The fixed-point amplitude pair, a,b, for a particular 
particle is the intersection with its family line. Substitution of these values 

and cos ot = -1 in III gives the constant of motion for the family. One can 
then solve for the minimum amplitude pair using cos a = O, but one must use 
(I) to eliminate a or b first to remain on the family line. 

In a similar manner one can find (a•b 2 )averat:e, over ot, which is related to 
the phase-space volume, and is the adiabatic "amplitude" far from resonance 
which just fills the separatrix st o/2. The family relation must be maintained. 
Please see the example on page 16. 
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It is apparent that we must use some standard distribution of beam 
among the families in order to reduce the adiabatic line to a single measure of 
tuning width. I will use a gaussian beam with the same u in both planes. 
The amplitude distribution for one plane is a Rayleigh, or circular normal 

P(a) = (a/u2 ) exp-a2/2u2 da 

or P (O .. a) = 1 - exp-a2/2o" integrated 

For two planes with the same u we have the folding of two circular normals 

P(a,b) = (ab/u4) exp-(a•+b2)/2u• da db 

or P(a•,b•) = (1/4u•) exp-(a•+b2)/2u2 d(a') d(b•) 

If one writes r• = a•+b• then the cummulative distribution 

P(O .. r) = 1 - (1 + r 2/2u2) exp-r2/2u• 

For our scaled values we must replace u in the above by u/ao. 

I define the tuning width as the difference between 10% loss points when 
tuning perpendicular to the resonance. To find this width one first finds the 
adiabatic amplitudes for many values of F, then guesses a value for u/ao and 
numerically integrates the distribution function to find how much of the beam 
is below the adiabatic line (expressed as a•,b'), and adjusts u/ao until the 
value is 90%. 

Let 
intrinsic width 

[ u/a.J.• :::p, and 6 = wok-• A/1f 
w = (1/pk-•) (1/2ft.-1) (k.)/(m•+n•r2. 

This calculation is illustrated by the lower diagram for the example on page 
16, where I have superimposed the final cummulative r• distribution. You can 
see which families cause most of the Joss for this particular resonance. 

On the next page there is a summary table of W's, which shows that res
onances near m = n are much the most important. The primary factor is the 
binomial coefficient (km) from the multipole expansion. 

The comparison of tuning widths between different values of k involves 
the relative magnitude of multipoles. For random errors in the Doubler, and 
for a beam with <T = 1 cm. (large!), one can expect Auk-• to probably fall by a 
factor of 15 for two steps in k. For m = n, W rises by 3 for two steps, so the 
probable widths fall fairly rapidly with increasing k. For systematic errors 
there is no prediction. 

The comparison of tuning widths for different m,n with the same k in
volves only W and b•v• = (/lxmt• ,81•1•//Jo). For multipole elements installed near 
quadrupoles, the latter term is 1 for one-dimensional resonances and 
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(.76)k (60° cells) or (.64)k (90° cells) for resonances with m = n = k/2. This 
somewhat mitigates the rise in W but it introduces a dependence on the choice 
of the phase advance for the cell. 

For random errors one must use the rms. average over the cell. This 
has been combined with W in the curves on page 18. Each curve is normal
ized to the probable width for the one-dimensional resonances. The original 
purpose of these curves was to convince designers that high phase advance 
per cell, which costs very little extra, substantially reduces resonance 
problems. They do show that two-dimensional resonances are dominant. 

Final Comments 

One can never expect to measure widths as given above. As we have 
seen real resonances are combinations and include tune shifts, polynomial 
driving terms and overlapped resonances. This does not invalidate the basic 
conclusions because the causes - binomial coeficients and /l dependence - are 
so fundamental. It is true that the quantitative relation between resonances 
and good accelerator performance is not obvious, and this led me to non
resonant Distortion Functions and to the "smearing" criterion which reaches 
the same general conclusion quantitatively. Nevertheless there are a number 
of reasons why one should be very familiar with the theory of resonances. 

Resonances large enough to be annoying in a ring with an adequately low 
distortion are most probably from some overlooked systematic multipole effect, 
particularly if they appear during low-beta turn-on which destroys phase 
symmetry. Except that the resonance is probably two-dimensional, there is no 
probability theory for goofs and one must understand all the simple and 
subtle ways that could produce the particular resonant frequency. The con
verse applies to the goof-free design of new multipole elements for the ring. 

The design of intentional resonances is the real fun. Slow extraction 
uses a designed resonance but there must be many more applications, parti
cularly in a rational ring like the Doubler and with today's superconducting 
higher multipoles. As an example consider a "separatrix" beam scraper to 
remove large betatron amplitudes. A strong amplitude dependence will sup
press momentum problems - so how about 10-poles, used at l/3's for increased 
strength, and in two-dimensions because that's what we should scrape, and 
maybe a little non-linear coupling, and perhaps we should tailor the tune-shift 
function, and ... but don't let me design it - you design it. 
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