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The calculation of the electrostatic potential due to a charge distribution 
with "ellipsoidal symmetry'.' is most easily carried out in ellipsoidal coordinates. 
Since these may be unfamiliar to some readers, the present note outlines the 

calculation in some detail. 

I I. E'll i psoi da 1 She 11 

Let us assume a ch~rge density which is a function of the variable 

s = (x2/a2) + {y2/b2) + (z2/c2) 

and has the form 

(2 .1) 

x2 y2 z2 x2 y2 2 2 
p(x,y,z) = f(ar + v + zrl = fds f(s) o(s- ar - v - zr). (2.2) 

We shall first explore the potential and field due to a shell of charge whose 

density is 
2 o{s - .c_ - r_ - ~) a z bz c2 . (2.3) 

The surface charge density on this ellipsoidal shell is not uniform. It is 
governed by the coordinate w , normal to the surface, whose direction cosines 
~.m,n, are determined by 

x j'_ z ~ dx + m dy + n dz 
ds/2 = - dx + dy +-- dz = ( ) az b2 c2 a x,y,z (2.4) 
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where 

and 
m = 

Since the coordinate perpendicular to the surface satisfies 

dw = £ dx + m dy + n dz , 

we can write the charge density as 
x2 y2 2 2 

2 cS(s - a2- - V - (Tl = o cS(w) 

corresponding to a surface charge density a. 

III. Field Inside the Ellipsoidal Shell 

Consider the point P within the 
shell and a small conical spherical 

angle d~ which intersects areas dA 1 
and dA2 on the surface of the shell. 
The "radial" vectors (r1 ,12) have the 

direction cosines 
x -x 

= ±( 1 . 2 
r12 

The solid angles are defined by 

where the unit 

(£2,m2,n2). 
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( 2. 5) 

(2.6) 

( 2: 7) 

( 2. 8) 

I 
1--------

( 3. 1 ) 

( 3. 2) 

The contribution to the field at P due to dA1 and dA2, with surface charge 
densities [J 1 and ()2 is 
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(3.3) 

Using (2.6) and (3. l), we have 

Thus 

(3.5) 

and 
->-

dE p = 0. ( 3. 6) 

We have therefore shown that the field inside the ellipsoidal shell defined 

in (2.3) vanishes, due to pair cancellation, as occurs in the uniform spherical 
charge shell. 

IV. Ellipsoidal Coordinates 

Using Stratton's 1 notation with a scale change for x, y, z, the ellipsoidal 
coordinates are defined for a > b > c by 

2 - c < t; ( 4. l) 

x2 y2 z2 
---+ = s ( 4. 2) 

a 2+ 11 b 2 + 11 -c 2 
- 11 

x2 2 ·2 
y_ z = s ( 4. 3) 

a 2+ s -b 2
- s -c 2

- s 
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The coordi~ates n, s correspond to angle-like coordinates, while r; corres­
ponds to a radial-like coordinate. (In fact, f; + r 2/s as r + 00 .) 

The Laplacian separates in such a way that the solutions inside and 
outside the shell can be written as product functions in each of the variables 

f;, n. s . Since we already know that the solution inside the shell is con­
stant, and since the region inside and ou'tside the shell is defined by f; < 0 

and f; > 0, continuity of the potential at the shell requires independence of 
n and s both inside and outside the shell. The potential ¢ is therefore a 
function only of f; , and Laplace's equation can be written as 

where 

Thus 

4 d dcji 
= -s~(~f;--n~) (~f;--s~)- R(f;) df; ( R( Ud[ ) ' 

00 dt 
=BJ R('t) 

f; 
f; > 0 

is the solution of the potential outside the shell, and 

00 dt 
¢(f;) = B { RTf) ' 

2 -c < f; < 0 

(4.4) 

(4.5) 

(4.6) 

(4. 7) 

is the solution inside the shell. Clearly V2 ¢(f;) vanishes for r; > 0, r; < 0. 

Near f; = 0, the discontinuity in the slope of R(f;)d¢/df; leads to 

(4.8) 

If we differentiate (4.1) with respect to x,y,z,f;, we obtain 

) df; (4.9) 

Near r; = 0, this can be written as 
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ds = di;/o2 

= (i;+a 2)(n+ a2)((+ a.=_J__ 
(a2- b2)(a2- c2) 

2 - ~2)(-n-c2)(-(-c2) 
z /s - (a2- c2)(b2- c2) 

one can show, for i; = 0, that 

1 

7 

Thus 
ds = 

and (4.8) becomes 

02~(') = _ 4B abc <(c) = 4B s(s 
' ~ s s n( 0 s - abc 0 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

2 2 2 
-;--Y2_z2) 

a b c 
(4.16) 

confirming the uniform density within each shell. Comparison with (2.2) then 
1 eads to 

B = a
4

bc f ( s ) ( 4 . 17) 
EO 

and 

i; > 0 

(4.18) 

op dt 
{ ITT1T , t; < 0 



The region of integration is 
shown shaded in the figure. 

2 2 2 
_x_ + _y__ + _z_ = s(t) 
a2+t b2+t c2+t 
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Interchanging the order of integration leads to 

q,(x,y,z) 

or 
<P(x,y,z) 

00 
b 

00 
dt _ a c 

- 4E
0 

{ R\1J"" f ds f(s) 
s(t) 

00 
= abc / - 4s~ o 

dt s ( t) 
R\t"T £ ds f(s) 

(4.19) 

(4.20) 

where (4.19) is normalized such that ¢(00) = 0, and where (4.20) is normalized 
such that ¢(0) = 0. 

If the functional form of the charge density, f(s), is known and can be 
integrated, (4.19) and (4.20) reduce to a single integral. 

V. Special Cases 

A. 3-D Gaussian cha~distribution 

If we choose a Gaussian charge distribution defined by 

f( s) =-·-_g__ 
11 312 abc 

-s e 

where Q is the total charge, one finds from (4.19) 

( 5. l ) 



= __ () __ 

4rr 312 s 
0 

00 

J 
0 
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( 5. 2) 

normalized such that cp(oo) = 0, and valid for all relative values of a,b,c, 
(not just a>b>c). 

B. 2-0 Gaussian charge distribution 

The potential for the 2-0 Gaussian charge distribution can be obtained 
from (5.2) by proceeding to the limit c + oo • The charge per unit length, T, 

for finite z , is 

in which case (4.20) leads to 

00 

T = 
- 4rr '°o J dt 

0 

x2 L 
l -exp ( -ii2+f - hz+t) 

{(a 2+t)(b 2+t)}i, 

(5.3) 

(5.4) 

where the potential is normalized such that cp(O) = 0. With this normalization, 

it is clear that cp( 00 ) +-oo, as expected. 

C. 3-0 uniform distribution 

In this case we choose 

in which case 

f ( s) = 

00 

J dsf(s)= 
s(t) 

{ 3Q(l-s~/(4rrabc) 

1 } 

s > 1 

(5.5) 
s < 

l } 

s > 1 
(5.6) 

s < 
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Thus (4.19) becomes 

x2 2 2 
00 {l-a 2+t -b{+t -ci+t) x2 ~ z2 /dt { (a 2+t) (b2ttl (c2+t) }'2 ,-:-y+b +-:-z-<1 

J 
0 a c 

_ _]__Q_ l ( 5. 7) ¢ (x,y,z)-l61TE l 3U o 
00 x2 r_ z2 
I dt ,-2+bz+2>l 
to 

a c 

where t
0
{x,y,z) is the value of to for which 

2 2 2 _x_+ y + z (5.8) = 
a2+t b2+t C

2tt 
0 0 D 

Inside the distribution, ¢ is a linear function of 

cients are elliptic integrals. 

2 2 2 x ,y ,z whose coeffi-

D. 2-D uniform distribution 

The potential for the 2-D uniform distribution is obtained once again 
by proceeding to the limit c + oo , in which case Q = 4Tc/3, so that (4.20) 
leads to 

2 2 

4'2u(x,y)= 

oo ( _X_+_i'__) 2 2 
J az+t bZ+t ' dt !_+L< l 

-TI o {(a2+t)(b2+t)}'2 a2 b2 

41TE l x
2 ±_ 

D to . dt 00 il2+f+ bZtt 
{ {(a2+t)(b2+t}}~ + ~ 0 {(a2+t)(b2+tT}~ dt 

X2/a2 t y2/b2 > 1 

is the value of 

x2/(a2+to) 

t
0 

for which 

+ y2/(b2+t ) 
D 

= l 

( 5. 9) 

(5.10) 
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The potential is normalized such that ¢(0) = 0, leading necessarily to 
q,(oo) +- 00 Within the ellipse, one can easily show that 

2 2 
x +L 
a b 

(5.11) 

leading to the usual linear space charge force for a Kapchinskij-Vladimirskij 
phase space distribution. 2 
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