
Fermi lab 

A VIEW OF SOFTWARE FOR HEP EXPERIMENTS 

H. Johnstad, P. Lebrun, E. S. Lessner, and H. E. Montgomery 

May 1986 

TM-1400 
2300.000 



A VIEW OF SOFTWARE FOR HEP EXPERIMENTS 

H. Johnstad, P. Lebrun, E. S. Lessner, H. E. Montgomery 

ABSTRACT 

A view of 
experiment 
most of the 

the software structure typical of a High Energy Physics 
is given and the availability of general software modules in 
important regions is discussed. 

The aim is to 
inadequacies and 
perhaps also to 
Energy Physics. 

provide a framework for discussion of capabilities and 
thereby define areas where effort should be assigned and 
serve as a useful source document for the newcomer to High 



Contents 

1. Introduction 

2. General Environment 01 

3. Fixed Data Handling 09 

4. HEP Modeling 11 

5. Streaming, Decoding 15 

6. Pattern Recognition 17 

7. Analysis of Analog Data 20 

8. Data Summary Tape Analysis 21 

9. Conclusion 23 

REFERENCES 

1. Articles 24 

2. Programs 27 

FIGURES 

1. Flow Chart 31 



1 INTRODUCTION 

In modern high energy physics experiments the effort expended in the 
analysis of the data often exceeds that to construct the hardware for the 
experiment. Historically the HEP community has been slow to recognize this 
issue and solutions to software problems for individual experiments have 
often been taken on an ad hoc basis, with little consideration for the 
existing software tools and packages. 

While the probability that for any given experiment it makes sense to 
use only general packages is small, it is nonetheless important that there 
be an awareness of what is and is not available. Further, it is important 
that within the Computing Department we have a clear view of the subject, 
as a foundation from which one may attempt to address the issues by some 
innovative technique which becomes feasible as advances in both hardware 
and software are made. 

The series of CERN Schools of Computing (1) have covered many aspects 
of the subject, although there has, of course, been significant progress 
from the situation described in some of the earlier schools. 

This document is a discussion of the components of the suite of 
software necessary for a typical experiment. The individual sections are 
delineated in terms of the particular view represented by the Flow Chart 
shown in Fig. 1. 

With some physics idea in mind, the physicist starts from a physics 
modelling program which probably uses Monte Carlo techniques. Having 
understood the kinematics and the interesting features, he starts to model 
some apparatus, again using Monte Carlo techniques. This program which 
aids him now in design will eventually develop into a complete simulation 
of the apparatus, enabling the generation of simulated data which are then 
passed through the analysis software chain in parallel to the real data. 

The real data, usually on several thousand 6250 bpi magnetic tapes, are 
first of all organized into different streams based on hardware trigger 
information; they are unpacked from the more or less arbitrary format of 
the online data tape and are structured in suitable fashion for the 
subsequent analysis. The data (both real and modelled) are then passed in 
turn through the pattern recognition, track fitting and vertex fitting 
stages of the analysis. Following stages contain analog data analyses, 
which depend on the results of the former, before the Data Summary Tape is 
written. In many experiments, this is the point at which the maximum 
information per event is available; subsequent stages of analysis reduce 
gradually both the number of surviving events and the information for each, 
to a point usually controlled by local computing conditions. The data is 
then examined for physics results from many different viewpoints and, with 
each move, the Monte Carlo data is treated the same way to provide the 
deconvolution functions for the combined operation DETECTION----•ANALYSIS. 
Having obtained some model independent results, there remains the pleasant 
task of killing current models, speculating widely, convincing the 
collaboration and preparing the publication. 



This document, while wide ranging, will attempt to be brief and will 
contain little or no information on the actual use of the software cited. 
In its discussion stage conclusions may be reached which after a more sober 
discussion may turn out to be too extreme. 

For details of 
prospective user 
Library (2). 

local implementation of many software packages, the 
should consult the Fermilab Computing Facility Program 



1 

2 GENERAL ENVIRONMENT 

2.1 Languages 

FORTRAN has dominated all other programming languages in the field of 
scientific and engineering computation for more than two decades. It has 
consistently shown itself to be attractive to scientific users because its 
basic simplicity and power of expression appeal to non-specialists. 

The history of FORTRAN was not always glorious. It 
largely from the lack of competition from other languages, 
develop appropriate standards and universality to become 
alternative to FORTRAN, especially when it comes to 
efficiency of object code. 

has benefited 
which failed to 

an attractive 
ease of use and 

Most of the world community of FORTRAN programmers has now changed from 
FORTRAN 66 to FORTRAN 77 standard (3,4). With this changeover it was also 
demonstrated that the use of FORTRAN in absolute terms was actually 
growing. It is difficult to measure the use of different programming 
languages, as very few statistics are available, and also it is unclear 
whether the relevant parameter for comparison is the number of lines of 
code written, or the number of compiler calls, or the total execution time 
of the programs, or other. It is probably important to notice that the use 
of FORTRAN programming has spread into microcomputers. Also it is a fact 
that the big manufacturers, like CDC, IBM, VAX, etc. are strongly 
supporting FORTRAN and also further development of FORTRAN compilers. This 
is probably a response to a perceived user demand. 

In spite of this strong position of FORTRAN among compiler languages, 
FORTRAN is not regarded as being an ideal tool for scientific programming. 
In the following we shall mention some of the FORTRAN deficiencies: 

1. Storage association in Fortran is essentially done through the 
COMMON and EQUIVALENCE statements. This makes it impossible to 
define any scope of variable other than local or global; it is 
impossible to restrict the scope of a variable to a group of 
subprograms only. The EQUIVALENCE statement allows potentially 
dangerous aliasing of locations, for example between variables of 
different data types. 

2. FORTRAN lacks structures; it allows only for arrays and COMMON 
blocks. Arrays are restricted to elements of a single data type, 
and COMMON blocks cannot be manipulated as an entity. The 
high-energy physics community has produced several memory and data 
management packages to overcome this problem. See elsewhere in 
this document for a more detailed discussion on data structures. 



2 

3. The FORTRAN source form is inappropriate for entering and editing 
source code from a terminal. 

4. FORTRAN has poor or no error recovery from the hardware conditions 
such as overflow and underflow, although it has some built-in 
error recovery functions, such as error recovery from parity and 
end-of-file conditions on external files. 

5. FORTRAN cannot handle bit type data, although the bit is the most 
fundamental data type and has to be manipulated by many programs, 
especially in high energy physics; for example, the true/false 
values of physics conditions are often represented by bits packed 
into bytes or words, and are an essential part of many particle 
physics programs, such as histogramming packages, organization of 
data structures, etc. One usually has to resort to a local 
assembler language, or to specific non F77 standard routines 
provided by the computer manufacturer. 

6. There are no means in FORTRAN to ensure that computer arithmetic 
is stable across a range of computer architectures, and this has 
often been a tremendous problem, for example, in track fitting and 
matrix inversion algorithms. 

7. FORTRAN has essentially no query functions; it has, for example, 
no ability to pose questions about the run-time environments of a 
program. Again the users had to resort to home-grown software 
packages to resolve this problem. Simpler questions, like 
time-of-day, have become available in most FORTRAN compilers. 

Some of the above deficiencies can be cured by use of Non Standard F77 
extensions, which are intrinsically machine dependent. For instance, VAX 
Fortran supports structures. However, code transportability becomes 
seriously affected when using such extensions. 

The implementation of new standards in FORTRAN Bx, as defined by the 
ANSI (American Standards Institute) committee, known as X3J3, will produce 
a total revision of the FORTRAN language, backward compatible with the 
current standard, making FORTRAN Bx a superset of FORTRAN 77. FORTRAN Bx 
will, however, have several so called deprecated features; for example the 
EQUIVALENCE and COMMON statement will be deprecated, and so will BLOCK 
DATA, DIMENSION, DOUBLE PRECISION, and DO statements, among others. 

Major new features 
associated features. 
documented in numerous 

in FORTRAN Bx are its 
This area contains 

publications (5). 

array processing syntax and 
a multitude of new features 

The goal with FORTRAN Bx is to introduce features which have at least 
been demonstrated in the context of other languages, even if not in FORTRAN 
dialects themselves. This should make FORTRAN Bx modern, reliable and 
portable. 



3 

Many other compilers than FORTRAN continue to be used, also in high 
energy physics programming. 

PASCAL is used in many small-scale applications, and it is also heavily 
used as a teaching language. PASCAL has many limitations which make it 
inappropriate for large-scale scientific programming: it has poor I/O, it 
has no extended precision, it has no complex arithmetic, no exponentiation, 
and so forth. 

The C language is also used in small-scale applications. It is used in 
connection with the UNIX operating system. 

ADA compilers are now available and are becoming popular in real-time 
applications and process control. ADA has powerful numerical capabilities. 
It is unlikely, however, that ADA will reduce the FORTRAN community by any 
significant amount, in particular if the new definitions of FORTRAN 8x will 
have a rapid and successful implementation. ADA is more difficult to learn 
and use than FORTRAN, which can be used by non-specialists almost without 
training. ADA may possibly become an interesting language for experts in 
large specialist applications during the next decade. 

Finally we shall mention PLl (Program Language 1) which was designed by 
IBM to be the language to end all languages. However, the language never 
caught on, due to its huge size and unwieldly syntax. Its use is now 
mainly in high-level systems programming on IBM systems. 

2.2 Source Code Management Systems 

Particle physics software is usually quite bulky, and it is typically 
developed by a large number of users on several different types of computer 
architectures. 

The user has a continuous need to store and update several libraries of 
source materials, not only subroutines and complete programs, but also data 
sets of long term constants, data sets, JCL (Job Control Language), etc. 
It is important for the user to keep track of changes made to the source 
library, and also to be able to make temporary changes on selected parts of 
the libraries without interfering, or having to interfere, with other users 
also working on developments on the same library. 

There are several code management packages which will perform these 
services on specific computer architectures, such as CDC, IBM, VAX, UNIVAC, 
etc., but there were earlier no packages available which would perform 
across different type main-frames in a smilar fashion, and which would 
allow the user to transport the libraries from one type main-frame to 
another type without effort, modifications, special adaptions, etc. 



4 

A software package to achieve these goals was developed in the high 
energy physics community more than two decades ago, and is currently being 
used for almost any kind of distributed software in particle physics. 
Since this package has most of the features available in almost any 
specific main-frame maintenance tool, the package is also to a large extent 
used for local development and maintenance. 

The package is called PATCHY(•), which actually consists of 1 main 
utility, the YPATCHY program, plus 10 auxiliary utilities, YTOBCD, YTOBIN, 
YTOCETA, YFRCETA, YEDIT, YSEARCH, YSHIFT, YLIST, YINDEX, AND YCOMPAR. 

YPATCHY itself performs the important selection of source material to 
be used, for example, for input to a compiler on a given type computer, or 
also selection of data sets to be used by a program, etc. It allows for 
local editing of the source library on a line-by-line basis without 
altering any part of the source library itself; thus it is a powerful tool 
in multi-user, multi-programming, and multi-computer environments. 

The PATCHY auxiliaries perform services like editing source libraries, 
index and listing of contents, transport between different mainframes, etc. 

HISTORIAN is a recent commercial software package that allows the user 
to store and update a library of source materials, while simultaneously 
keeping track of all changes made to the library. Like PATCHY, HISTORIAN 
allows for multi-computer usage and maintenance of the source library, and 
for the transport of source libraries between mainframes of same or 
different type computers. HISTORIAN is available for most of the larger 
mainframes but as yet is not widely used in HEP. 

2.3 Data Structures and Management 

Most off-line software in high-energy physics is written in FORTRAN, 
which is the most universal high-level language available. However, as 
mentioned previously, FORTRAN has no dynamic data structuring facilities, 
except for arrays of homogeneous elements and COMMON blocks, which cannot 
be manipulated as entities, nor defined dynamically at execution time; 
further, there are no pointers available to link these structures together 
at a higher level. 

* References to 
Whenever available 
included with each 

programs cited are 
the Fermilab Computing 
product reference. 

listed at the end of the article. 
Department Library numbers are 



5 

A careful design of the organization and handling of data is much 
needed during the development of particle physics software. The 
flexibility needed to follow changes in the hardware and changes in the 
analysis methods is very important in this organization. The data 
structures should also be automatically documentable so that the content of 
individual arrays can be easily communicated between several users and 
program units. 

The high-energy physics community has produced several memory and data 
management packages to achieve these goals and to compensate for the 
FORTRAN deficiency of lack of manageable data structures. 

Such systems allow for a truly dynamic creation of data-structures and 
the routing of such data structures to and from an external storage medium. 
The user communicates with the system from a FORTRAN subroutine by CALL to 
the library of various service routines in the system. The user has to 
follow a minimal set of rules and conventions. 

Once the user program has been written in this fashion, it becomes 
simple to read and understand and to use and further develop the program. 
Addons to the program can usually be done without having to re-write or 
even re-compile those parts of the program already ready for production 
running, thus extensions to the program can be done without side-effects to 
the program itself. 

The cost of overhead in time and memory resources 1s typically 
insignificant for such a system. Time is sometimes gained by not wasting 
parallel development of related features of the program which might have to 
be done using only conventional FORTRAN facilities. 

The most ambitious systems developed so far are the HYDRA (1972), ZBOOK 
(1974), and more recently the ZEBRA (1985) system. Other systems like YBOS 
and others, also developed in the high energy physics community, enjoy much 
less support, development and popularity. 

An attempt is being made to standardize the development of software in 
particle physics, and ZEBRA was written to unify the most valuable features 
in most previously existing systems. ZEBRA became operational in 1985 and 
the conversion of several distributed application software packages relying 
on the service of the ZEBRA routines is underway; for example, GEANT3 (the 
detector description and simulation tools for optimization of the design of 
detectors and test of the analysis programs) has been converted to use the 
ZEBRA system. 



6 

2.4 Histogramming 

Histogramming is an important part of the particle physics software. 
This part of the analysis may consume up to half of the cpu cycle resources 
of a typical experiment, and it is therefore important that this be done in 
an efficient and organized manner. This becomes even more important as the 
absolute volume of data in a typical experiment increases, programs 
containing histogramming algorithms may have to grind through several 
thousands of magnetic tapes with raw data, and it is preferable that this 
be done only once during the lifetime of the experiment. 

Histogramming is a common need in several applications, and a large 
number of packages exist; most mathematical and statistical libraries, like 
DASL, NAG, etc., contain such service routines. 

Several packages have been developed within the high energy physics 
community during the last two decades, like SUMX, KIOWA and HBOOK. 

SUMX being the oldest of these packages has certain deficiencies with 
respect to today's software environment; in particular, it has no provision 
for graphics output. SUMX is, however, still the most powerful tool for 
in-depth physics analysis on the DST-level. A further discussion of the 
SUMX capabilities is presented in Section 8 of this document. 

KIOWA is a program similar to SUMX, but much simpler in its operations, 
and all user interfacing is done via subroutine CALL to the KIOWA routines. 
Like SUMX, KIOWA has no graphics interface. KIOWA is more or less obsolete 
in today's environments. 

HBOOK is a much simpler graphics package, practically without any 
internal structure, and, so far, no organization of data structures or 
memory management. It is in some sense, an efficient package; due to its 
simplicity, it is quite powerful for those features it provides, although 
they are much fewer than in the SUMX system. 

HBOOK is a FORTRAN-callable histogramming facility, whose purpose is to 
define, fill and edit histograms, scatter plots, and tables. The input to 
HBOOK is always a subroutine CALL. The output consists of resulting 
histograms, scatter plots, or tables, edited on the line printer file. In 
more detail, the HBOOK user entries provide for the creation of histograms 
and scatter-plots with various statistical options; projections of 2D 
distributions onto x- and y-axes; representation of functions of 1 or 2 
variables; filling (incrementation of data) of histograms; access to 
parameters for individual histograms in memory; arithmetic operations 
between histograms; least square fitting of parametric functions to the 
histogrammed data; smoothing of histograms using spline fits or other 
algorithms; random number generation; output of histograms to mass storage 
and editing of histograms with various printing options. 



A very important additional feature of HBOOK is its excellent 
interface, the independent HPLOT package, which gives the user 
capabilities for graphics representation, in 2D and simulated 3D, 
data, almost without any effort whatsoever. 

7 

graphics 
advanced 
of the 

HPLOT consist of FORTRAN subroutines and the user input to HPLOT is 
always a subroutine CALL. HPLOT output is designed to produce drawings and 
slides, and it does not produce all the numerical information of the HBOOK 
output routines. HPLOT relies on the low level routines of other graphics 
packages, of which there are many, G03, PLOTlO, PIGS, MGKS. Recently links 
to commercial implementations of graphics packages such as GK2000, OI3000, 
written with GKS (6) or CORE (7) standards have become available. 

Viewing of pictures can also be done in a semi-interactive way via the 
higher level package HTV, which in turn relies on the services of HBOOK and 
HPLOT routines. 

The HBOOK/HPLOT histogramming/graphics package has become very popular 
in the high energy physics community, and is currently the most frequently 
used of the various histogramming packages. 

2.5 Graphics 

The importance of graphics (8,9) is growing at all levels in HEP 
computing. Both on- and off-line applications are becoming more 
sophisticated. In the course of planning and analyzing an experiment, 
graphics will help with the design of the detector by allowing the 
physicist user to follow the development of simulated events. Also the 
quality of the reconstruction program can be checked out by graphics tools. 
High-resolution vector devices with the capabilities of rotating the viewed 
event in space, or enlarging specified regions, allow the user to check the 
fine details of the analysis programs. Also 30 graphics are being 
implemented. Further, portable packages, such as HTV, allow 
semi-interactive plotting of histograms and functions. 

Earlier graphics packages have been developed locally. Portability is 
not so easily achieved in graphics software which of ten depends on local 
environments and available hardware interfaces. Several packages have been 
developed at CERN, but very few of these had truly portable capabilities. 
Even GD3, which has been distributed from CERN for more than a decade, 
would essentially only run relatively problem-free on CDC and IBM 
computers. 

Recently, the emphasis on graphics software has shifted towards 
commercial products which are based on adopted international standards for 
graphics, such as GKS and GKS Metafile systems. It is hoped that graphics 
based programs will become more portable in these new environments. The 
goal of current efforts is to develop both 2D and 3D standard GKS graphics 



8 

packages with an associated standardized transportable Metafile-based data 
base. 

At this time, it is clear that none of the local or semi-portable 
graphics packages used so far, such as GD3, PLOTlO, PIONS at CERN, or DIGS 
and GD3 at Fermilab, have the potential needed for the basis of a modern 
graphics package. CERN has recently decided to develop an entirely new 
graphics systems based on standard GKS and Metafile systems. It is 
optimistically estimated that such a package will become available at the 
end of 1986. DI3000 is a Precision Visual implementation of non-standard 
CORE based 3-D graphics. A local Fermilab interface of HPLOT and GEANT3 to 
DI3000 is under development. 

2.6 Interactive Capabilities 

As an example of a graphics application to high energy physics software 
we shall mention the common problem of determining how many hits of a 
particular type of event will be registered by a certain part of the 
detector and how many background events will produce the same signal. 
Monte Carlo calculations will establish the level of the expected 
background. When the background is subtracted, the observed signal becomes 
clearer. These calculations often require large amount of computing time, 
and therefore the programs are normally run in batch mode, producing 
metafiles for graphical output. The metafiles can be inspected by 
displaying the generated pictures, or by plotting them on a hardcopy 
device. This may result in modifications to the detector, the generation 
of new Monte Carlo events, or the display of results. Given enough 
computing power, a session in front of an interactive graphics terminal, in 
closed loop with the programs, could speed up this process considerably. 

The example given illustrates the need for a workstation in high energy 
physics programming, and also the need for a unified graphics system which 
will perform the same functions whether the application is in batch mode or 
highly interactive mode. Such a universal graphics package is not yet 
available, but the need for such a graphics package has been recognized, 
and several working groups have approached the problem, and one has more or 
less arrived at a definition of requirements and standards which outline 
the performance of such a package. 



9 

3 FIXED DATA HANDLING 

The state of an experiment at the time of data taking is quantitatively 
described by a large number of fixed data constants. These range from the 
allignment data for the physical pieces of the apparatus through the data 
describing the state of the trigger electronics to the calibration data for 
different detectors and magnetic fields. The accumulation techniques for 
these data are also diverse and have widely differing timescales. The 
calibration data for a calorimeter may be the result of months of data 
taking in a test beam followed by months of detailed analysis, whereas the 
information on the state of the electronics trigger may be obtained as part 
of the normal data taking stream. 

While termed constants these data may have a time dependence which 
demands hourly update which then must track through subsequent analysis. 
All this diversity potentially implies complete confusion and each 
experiment requires some organization of these data to make them accessible 
in appropriate manner to most, if not all, of the program modules in the 
analysis chain. The more recent development of intelligent machines 
embedded in data acquisition systems leads to a need for some subset, at 
least, of the calibration constants to be available on-line, to permit 
sensible decision making by such modules and also by higher level 
processors in real time. 

The general rule for experiments has been to design and construct their 
own fixed data handling techniques, often doing some parsing of free format 
data to permit a degree of flexibility in the presentation of the data to 
the system. In the more advanced cases the handling program also 
structures the data into the chosen Data Structure format 
(YBOS,ZBOOK,HYDRA ... ) for that experiment. There is no current, generally 
accepted program package, although the HYDRA title package TQ is available. 
As with many HYDRA applications packages and as implied by the name "TITLE 
PACKAGE", it was developed for the world of bubble chamber analysis with 
its important but perhaps limited problem of the handling of optical 
mapping constants. 

The problem in general would seem to be a natural for treatment by data 
base techniques and it is perhaps worth evaluating the use of some 
commercial package in this role. Note that some data e.g., allignment, may 
not be presented in machine readable form and often convenient interactive 
facilities for interactive examination of the data are necessary. On the 
other hand, the interfacing to the data structure of the experiment is a 
necessity. There are in fact some efforts by experiments in this area and 
since traditionally "handling the allignment data• has been treated as a 
menial chore, it is perhaps ripe for a general treatment. 

As mentioned above, the variety of data which form the input to such a 
data base is wide; we will therefore only discuss one particular subset, 
magnetic fields, where we think some benefits from a general treatment are 
available. 



10 

Monte Carlo and particle tracking programs require a detailed knowledge 
of the existing magnetic field. Accurate measurements of the field are 
necessary for the determination and subsequent correction of field 
imperfections that may arise from inhomogeneities in the magnetic 
materials, presence of magnetic materials in the surrounding structure of 
the magnet and asymmetries in the coil assemblies. Sensing methods most 
commonly used in magnetic field measurements are those based on magnetic 
resonance, Hall effect, magneto-resistance effect and search coil and 
integration. 

For a given 
mapping is a 
analysis of the 
constraint that 

magnet and a set of magnetic field measurements, field 
series of operations consisting of the measurements per se, 
data and final representation of the field, under the 
it does not violate Maxwell's equations. 

The purpose of the analysis is, therefore, to provide (10): 
- removal of inconsistencies in the data and check for smoothness; 
- fitting of the data, allowing for a consistency check (the data should 

satisfy Laplace's equations); smoothing and reduction of the individual 
errors on each data point and ability to predict the field at points other 
than the measured ones; 
- representation of the field suitable for use in Monte Carlo and particle 

analysis programs. 

The overall fit can be done by minimizing a family of harmonic 
polynomials or of trigonometric and hyperbolic functions. The latter 
method is implemented by the program MAGNET, which evaluates a magnetic 
field component of a magnet from boundary observations only (11). One 
limitation is that values cannot be extrapolated outside the volume of 
computation, a possible problem for points near the pole faces; also, the 
number of terms in the fit is not easily controllable. 

At Fermilab, an automatic field mapping device for high energy 
experimental magnets, known as ZIPTRACK, has been generally adopted as the 
magnetic field measuring system (12). ZIPTRACK maps the field by 
integrating the field induced current in three mutually orthogonal search 
coils as these are moved through the magnetic field. 

The fact that each experimental group would produce its own analysis 
and representation of the field, for the particular magnets used in the 
experiment, has suggested that a general package should be written which 
should comply with the analysis aims cited previously. Such a general 
package is under development by the Physics Software Projects Group and 
will treat raw data integrity, drift correction, rotations and data 
smoothness. Finally, a representation of the field for use in particle 
analysis programs will be provided, so as to enable fast evaluation of the 
field at any point in the physical domain of the magnet. 



11 

4 HEP Modeling and Monte Carlo Programs 

Experiments in HEP need reliable Monte Carlo simulations, (see, for 
instance, (13) not only at the design phase of the apparatus, but also 
during the analysis phase, in order to monitor acceptance, event 
reconstruction efficiency and resolution. Modeling may refer to the theory 
of the basic phenomena studied in the experiment (e.g., the production of a 
hadron jet, charmed particles and so forth) as well as to the physics 
engineering (magnetic field, scattering, simulation of the electronics, 
etc). 

A good Monte Carlo program must have (at least some of) the following 
qualities: 

- Reliability: correct within the required accuracy. The degree of 
accuracy needed in particle tracking or shower simulations often dictates 
the refinement needed in modeling the detector and, also, the amount of cpu 
time required to run the Monte Carlo. Therefore, a good estimation of such 
accuracy should be made prior to encoding or appropriate flexibility built 
in to the code. 

- Reasonable speed: although the amount of cpu time required for Monte 
Carlo simulation may be small compared to the total amount needed to 
complete the off-line analysis, there are exceptions, particularly in 
electromagnetic/hadronic shower simulations, where the number of traced 
particles increases drastically. 

- Flexibility: easy to write or modify, especially during the design 
phase of the experiment. 

- Modularity: the user must be able to perform only a specific part of 
the simulation, while using results from the previous phase of the 
modeling. For instance, using a data file containing lists of particles, 
when studying the tracking, instead of regenerating every time the 
kinematics of the particles, saves a lot of time. Also, the tracing 
through the detector does not need to be repeated when the number of wires 
in a particular chamber changes, since the tracking and digitization are 
clearly two separate functions. 

- Good •general computing environment•: Good graphics, I/O, interactive 
versions, user friendliness, transportability and so forth. 

Although all detectors are different, many HEP simulations share some 
basic knowledge: decay of particles, tracking in magnetic field, showering, 
etc. Thus, in order to save programming effort, some experiments 
successfully use specific Monte Carlo programs to understand different 
aspects of their detector. The following list of such programs is probably 
incomplete, but mentions the most used packages. 



12 

Basic HEP theory: 

NVERTX, SAGE: Generation of particles produced in a collision, 
according to phase space distributions. 

- ISAJET, LUND: Generation of hadron in HEP collision, according to the 
naive parton model or Quantum Chromodynamics with added models of 
hadronization. 

Experimental HEP, phenomenology and engineering: 

- TRANSPORT, TURTLE, HALO: Beam transport and muon halo simuation. 

- EGS: Electromagnetic shower simulation. 

- CASIM, GHEISHA: Hadron shower simulation program. 

GUIDE7: Simulation 
reflective materials to 
Cerenkov counters. 

of light ray propagation in refractive or 
be used in the design of scintillating counters, 

- GEANT: As experiments increase both in physical size and complexity, 
•organized' physicists felt a need not only for specific purpose programs, 
but also for a sound programming environment, with intelligent data 
structures, where the detector model can be easily maintained as the 
experiment evolves. GEANTl was written at CERN for that purpose. Based on 
the memory management ZBOOK, it is interfaced with I/O systems 
(FFREAO,EPIO) with a histogram package (HBOOK). The code is maintained 
through PATCHY. GEANT2 has the same facility but has more specific purpose 
physics tools, such as handling of tracks in a magnetic field and multiple 
scattering. Finally, GEANT3 emerged as, to our knowledge, the best •expert 
system• in HEP Monte Carlo calculations: all of the required features 
mentioned above are more or less satisfied; it has a very wide knowledge 
base, including electromagnetic and hadronic showering, which is interfaced 
with the LUND Monte Carlo. Using the •rather crude" graphic package PIGS, 
the user is able to see interactively how his detector can be built from a 
wide variety of elementary volumes. Among the possible improvements to 
such a package let us mention: 

- Implementation of a richer data structure/memory management package: 
move from ZBOOK to ZEBRA. Hopefully this latter will be achieved soon at 
CERN. 

- Increase and refinement of the physics knowledge. For instance, 
Cerenkov counters are poorly represented since a GEANT3 medium ignores 
index of refraction, optical absorption and so forth. 



13 

- Implementation of a better graphics package, for instance, of DI3000 
at Fermilab. 

Magnetic Field Modelling 

Again, magnetic field modelling and design is often a large part of the 
early phase of an experiment, deserving extra emphasis. 

The high requirements for the design of magnets used in high energy 
experiments have to be met by accurate algorithms and codes for the 
calculation of magnetostatic fields. The several methods of approach to 
solving the Poisson equation, the governing equation of magnetostatics, can 
be loosely separated into three major groups: differential, integral and 
coupled methods. In addition, the scalar potential or the vector potential 
can be chosen as the dependent variable. An alternative approach is to 
solve the integral form of the field equations in terms of the magnetic 
field components. 

- Integral methods are based on the evaluation of the integral form of 
the field equations. Their major advantage is that discretization is 
required in permeable regions, only, thus avoiding the necessity of 
imposing the far field boundary conditions. However, the solution depends 
on the inversion of a dense matrix, whose computer solution time can be 
quite high (14-16). 

- Differential methods are based on the differential formulation of the 
defining equations. These methods can be quite accurate and are generally 
faster than the integral methods. Their major disadvantage is that the 
solution depends significantly on the position of the far field boundary 
(17). 

Coupled methods apply differential operators in non-linear regions 
and integral operators in linear ones (18). 

In any of the above methods, the choice of dependent variable is 
important. Many algorithms use the reduced scalar potential (19,20), The 
gradient of which is the field generated by the magnetized regions. It is 
single-valued everywhere, but numerical cancellations between the current 
source potentials and the calculated potentials may occur in regions of 
high permeability. This difficulty may be overcome by using a total scalar 
potential that includes contributions from the magnetization and source 
fields. However, that potential is multivalued in regions containing 
sources. Reduced vector potentials can be used also as the dependent 
variable, but they are plagued with cancellation problems similar to the 
reduced scalar potential ones. An alternative is the use of total vector 
potentials that are continuous everywhere. The cost is in computer memory, 
since, for 3-dimensional geometries, 3 unknowns are required per mesh 
point. Finally, algorithms exist based on the integral formulation of the 
magnetization vector, for which problems of ill-conditioning and 
convergence may occur in regions of high permeability. 



14 

In summary, there is no ideal algorithm that could be applied 
universally. It is the general consensus that an efficient code should use 
a scalar potential, reduced for source regions, total potential, elsewhere; 
differential operators for non-linear regions and integral operators for 
linear ones. Perhaps a newer analysis of applicability and efficiency of 
the aforementioned methods is in order, in face of the existence of large 
memory computers (appropriate for vector potential formulations) and of 
high speed computers (appropriate for integral formulations). 

The following is a comprehensive list of available magnet design 
computer codes. 

- ANSYS - 3-dimensional code; uses the reduced scalar potential together 
with finite elements methods. 

- ADS/Magnetic: integral formulation of the vector potential. 
materials and cylindrical geometries allowed. 

Non-linear 

- BIM2D and 
geometries, 
reduced and 

GFUN: 

LINDA: 

NASTRAN/MSC: 

PE2D: 

POISSON: 

TOSCA: 

BIM3D: integral formulation for 2-dimensional and 3-dimensional 
respectively. The dependent variable can be the reduced or 

total scalar potential and reduced or total vector potential. 

integral formulation of the magnetization vector for 
3-demensional geometries; problems of ill-conditioning 
for high permeability materials. 

2-dimensional problems with simple interfaces of iron 
with finite non-uniform permeability. 

highly accurate finite elements routines for 2 and 3 
dimensions, which can be coupled to reduced scalar 
potential formulations. 

differential formulation of reduced scalar, reduced 
vector or total vector potential. Non-linear materials 
allowed. 

2-dimensional code; it uses finite difference methods 
for the solution of either potential or magnetic field 
components. It can be used for non-linear materials. 

3-dimensional code for problems consisting of coil carrying 
known currents and regions of hard or soft permeable 
magnetic materials. It uses both the reduced and scalar 
potentials with a finite elements method. 



5 STREAMING, DECODING,STRATIFICATION, FORMATTING 

The data generated event by event in an 
characteristics peculiar to the hardware 
organization of the data taking. 

experiment has, in 
of the experiment 

15 

general, 
and the 

The data, as accumulated in the on-line computer, will in general have 
a different number of bytes (or bits) associated with different pieces of 
information. There may be one element of information per channel of 
hardware or there may be only data which is significant (not null) with 
associated address information; there may or may not be markers associated 
with counter or detector boundaries. 

A typical experiment has several (tens of) triggers and each may cause 
the readout of different components of the apparatus. At different times 
different combinations of these triggers will be active. 

Often constraints of tape economy force the packing of data, bits into 
bytes, bytes into words, bytes spanning word boundaries. All these factors 
complicate the situation at the start of analysis, since the on-line 
information on how to chain down an event and unpack it, or how to minimize 
the unpacking to the relevant pieces, may be minimal. 

The first necessary task is to reorganize the data based on trigger 
types (Physics A, Physics B, ... Calibration A, Calibration B, ... ) which 
require significantly different subsequent treatment. The task is to read 
the tape(s) and depending on the trigger type, usually found in an event 
header record, redistribute them to other tapes or disk files. Since the 
number of tapes may be very large, this is often a significant logistical 
problem. 

The redistribution of events may or may not be accompanied by an 
internal reorganization of the data. If subsequent space consideration is 
not important, a complete decoding of the event into a format suitable for 
the subsequent analysis package may be attempted at this stage. For 
example, the data may be organized into the relevant Data Structure 
(ZBOOK,ZEBRA,YBOS ... ). If on the other hand, circumstances dictate 
otherwise, sufficient ancilliary structuring must be embedded in the data 
to ensure efficient subsequent access to relevant pieces. 

The problem can be attacked at several different levels. 

- The capability of the data acquisition hardware is increasing to the 
extent that appropriate reformatting of the data occurs before writing to 
tape, either in the on-line computer or in the readout controllers. Care 
is required in the design to ensure that at the time of hardware 
configuration the desirable format is known. 



16 

- The current mode of operation relies on the availability of efficient 
bit and byte handling utilities, associated to a considerable effort on the 
part of some physicist-programmer to track (by hand) changes in readout and 
hardware and to insert (by hand) appropriate changes in a large packing and 
streaming software module. 

There is as far as we are aware no general approach to this problem, 
but one possible scenario which should be considered is as follows. 

a) Decide at the design stage the data ustructure to be supported. 

b) Create/define a package which would unpack efficiently into the 
general form of the relevant data structure. 

c) Drive this decoding from the data itself. 

The implication is that the overhead associated with the relevant on-line 
directive data would be offset by the decrease of anguish, since any 
changes in data acquisition configuration would be automatically propagated 
through the whole system. 

Such a scenario is not guaranteed to be viable, however, the potential 
gains suggest that at least an in depth study of the problem would be 
worthwhile. 



17 

6 Basic Tracking: Pattern Recognition and Elementary Fitting 

Basic tracking (21,22) is the central phase of the offline analysis of 
a given experiment, since: occurring after data taking and prior to any new 
physics discovery, it influences strongly successive analysis paths and 
potential results; it requires a substantial fraction (of the order of 1/2) 
of the total amount of cpu time, as well as a strong and coherent team of 
physicists and programmers. 

Let us introduce a rather arbitrary distinction between •analog or 
calorimetry• and "digital or tracking" event reconstruction. Analog means 
that the most elementary information is an amplitude; for instance, the 
pulse height recorded on a phototube base. Thus, analog pattern 
recognition deals primarily with energy measurements or particle 
identification using Cerenkov counters. Algorithms treating this kind of 
problem tend to be very specialized. Common concepts do exist, such as 
calibrations or "cluster finding•, but their application varies from one 
experiment to the other; they will be discussed further in Section 7. 

"Digital" event reconstuction deals primarly with PWC (Proportional 
Wire Chambers) like devices, or Drift chambers, the goal being to 
reconstruct particle trajectories from unrelated measured space 
coordinates. PWCs are very common devices and also the most simple ones in 
terms of data characteristics. Thus, physicists have tried for a long time 
to write general purpose tracking reconstruction programs. 

Special tracking programs exist in the CERN library (X-package), but do 
not have a large audience, essentially because their scope is too limited 
or they are too cumbersome to use, since their COMMON BLOCK structure is 
somewhat obscure. Thus, most fixed target experiments rely on their own 
package, with little shared knowledge; the only common software tools are 
either a histogramming package (HBOOK, KIOWA) or a mathematical library 
(IMSL or CERNLIB). Then, it becomes obvious that the only programming 
language is straight FORTRAN. 

Although called a "high level" language, FORTRAN, as discussed in 
Section 1, is not rich enough to support easily and efficiently the 
complexity of a tracking system. For instance, the simple tracking 
operation •consider all XUV hit combination in such a chamber" translates 
in FORTRAN into a bunch of DO LOOPS, index manipulations or BRANCH IF, with 
very little semantics between the tracking operation and the actual coding. 
Also, many elementary tracking operations overlap each other when 
translated into a FORTRAN program; when performing the above tracking 
operation, the FORTRAN routine may also execute a fit or skip over an 
inefficient detector. Thus, these codes are hard to understand and are 
basically unmaintainable. The addition of a new tracking device in the 
experiment is so cumbersome to implement that many of the routines must be 
rewritten from scratch. 



18 

Studies of HEP tracking semantics should be pursued. Many elementary 
tracking operations have been recognized, their corresponding algorithms, 
found virtually in every fixed target tracking programs, are now better 
understood. It has been recognized that these algorithms are strikingly 
similar to those found in RELATIONAL DATA BASE systems (23). 

In fact, the input hit coordinate ("raw hits•) list can be understood 
as a DATA BASE. The goal is to establish "RELATIONS" between such hits, 
i.e., to select a hit subclass satisfying some geometrical criteria. Such 
a related subclass is called a •track". Note that these tracks are 
themselves the elementary "hits•, in the context of vertices. Solving the 
basic pattern recognition means essentially deducing the •track" lists from 
the "hit 1 list. 

Elementary tracking operations expressed in HEP jargon for instance, 
•projecting•, •setting up roads" or •arbitrating tracks•, can be understood 
in terms of elementary relational data base operations. 

While assembling tracks, two logically distinct phases should be 
recognized. In the first phase candidate tracks are formed, based on some 
raw geometrical criteria--the initial one is relational in nature, as one 
computes pointers to the hit list, copies, selects or transfers blocks of 
data. Thus, good data or memory managements tools are needed. 

In the second phase, these candidate tracks are "fitted" to a 
particular model. If the result of such is acceptable, the track is 
considered as established. This latter aspect includes the •real" 
calculations, and thus requires complete mathematical libraries. Because 
of this aspect, and also because of the fast I/O requirements, commercial 
data base packages are inadequate. 

While resolving the basic pattern recognition, the complexity of these 
fits is dictated, on the one hand, by the accuracy needed to distinguish 
between some nearly equivalent track candidates and, on the other, by 
practical computer limitations (memory as well as cpu time). Thus, such 
•reconstruction• fits are in most cases much less sophisticated than the 
final fits, where the tracks parameters are finally estimated. 

Having recognized the elementary tracking operations, it is then 
possible to build a true TRACKING RELATIONAL DATA BASE SYSTEM. Such a 
system is tuned to the particular tracking problem, and does not attempt to 
provide general memory framework. Also, it is certainly possible to build 
such a system with a user-friendly philosophy: the graduate student should 
not need to know about pointer rules nor reference links subtleties. 
Optionally all relevant information should be transmitted through 
straightforward F77 subroutines calls. 

The success of such a package will depend not only on its quality but 
also on the HEP community's response to a more modern approach to 
computing, where the user must integrate himself into a programming system 
rather than writing his own "DO LOOPS" independently of his nearby 
collegues. Hopefully, such conversions will occur. 



19 

The approach described above is emphasized as an example of a new 
approach to Pattern Recognition Problems; however, it is not claimed to be 
the only one. Indeed we would be remiss if we did not mention that efforts 
are again being made to investigate the use of algorithms tailored to 
vector machines (24). 



20 

7 Analysis of Analog Data 

The previous section treated the problem of extracting tracks from 
digital data from wire chambers or other similar apparatus. There are, in 
addition, several aspects of data analysis which deal with analog data. 
For the purposes of this document we consider in this category all types of 
particle identification data: Time of Flight, DE/DX, Cerenkov, Lead Glass, 
and Transistion Radiation (TRD) data. The analysis of the data on such 
properties may be quite involved and often it is necessary to utilize as 
input the information derived from the tracking detector data. There is 
also, however, the situation which pertains when the analog device, for 
instance, a calorimeter, is the primary source of tracking information. 
This is the common situation at higher energies, especially in collider 
detectors. The two situations will be discussed separately below. 

It is rare that adequate particle identification can be achieved with a 
single device; it is more often the situation that a given track traverses 
several devices, Cerenkov, TRD, ... , with each producing analog data as a 
result In general, the problem is to compare the response for the series of 
detectors with those expected, given the variety of possible hypotheses for 
the particle identity: Electron, Muon, Pion, Kaon, or Nucleon. Often a 
"Maximum Likelihood' approach (25) is used which permits the ultimate 
combination of all data. A necessity for such an analysis is a thorough 
understanding of (and therefore ability to model) the detector behavior. 
Possible backgrounds and inefficiencies must be handled in detail. 
Although extensively studied there are, as far as we know, no generally 
available packages for this problem. 

Pattern recognition in calorimeters, the establishment of appropriate 
clustering algorithms and the subsequent solution of events, is a 
relatively new field except in the particular field of Pizero detection. 
There are some examples of major detectors such as The Crystal Ball (26) 
and the GAMS detector (27) which have relied on calorimetric information at 
modest energies but here also with Pizero and Gamma detection as the 
primary aim. In recent years, the use of calorimetry for charged particles 
as a bonafide alternative to tracking has emerged, at very high energies. 
The current understanding is that the possible techniques depend critically 
on the segmentation available in all three spacial dimensions and the 
correlation or not of the data in several views. A calorimeter with 
interleaved longitudinal segmentation but with only two view readout, in 
principle, permits the solution of the well known •crossed hodoscope• 
ambiguities but, in practice, a modest multiplicity already poses 
insuperable problems for the software. 

In all experiments it is important that resolution effects be properly 
handled so that the final results are correct, both in magnitude and in 
assigned error. This is a general problem for the total analysis but in 
the field of calorimetric pattern recognition, unfolding of responses from 
detectors with finite resolution is the primary aim. There has been 
considerable discussion of this problem and a review is given by Blobel 
(28). 



21 

8 Data Summary Tape Analysis 

Eventually for each experiment there comes a stage at which the details 
of the data are thought to be understood, the systematic defficiencies 
adequately treated and the data reduced to a collection of 4-vectors and 
particle identities. What remains is the "Physics Analysis•. In general 
it is necessary to work with at least three data sets; one is Real Data, a 
second is Monte Carlo Truth (Physics Model) and the third is the Monte 
Carlo after passage through the experiment simulation and analysis chain. 
Comparison of the latter two permit the understanding of how to map 
backwards from the Real Data to the Real Physics. Each of these data sets 
may contain many tens of thousands, hundreds of thousands or even millions 
of events and the significant effects may be quite subtle. It is the 
proverbial "Needle in the Haystack" problem. 

In order that the maximum physics be extracted it is necessary to 
minimize the mechanical effort involved in this exercise, since maximum 
creativity is needed. It helps if the previous stages of analysis have 
adhered to some rational data structure, but flexibility is the key. In 
past times there have existed tools which were appropriate, such as SUMX or 
KIOWA, which permitted the application of many cuts, slices and conditions 
to the data and minimized the confusion. 

The actual data processing in SUMX is done by a number of so called 
blocks or processors. The orderly sequential operation of the various 
processors is regulated by the master program SUMX, which is a main control 
subroutine in the root segment of the efficiently overlayed program SUMX. 
This organization provides for high efficiency both in cpu cycles and 
memory resources; each processor is a plug-in unit which is physically put 
into memory and into operation on the request of the user at execution 
time. The various SUMX processors provide special features for 
input/output; create and plot histograms, scatter plots, slices and profile 
histograms; find mean values and variances; provide for multi-dimensional 
analysis by way of a special SELECT processor which evaluates the 
truth-values of specified conditions; create mini-DST of selected events, 
or group of events, depending on the truth/false value of conditions, and 
store the truth/false value of these conditions in bits on the mini-DST. 
Other processors provide a dictionary facility for the organization of 
conditions, a breed facility for the creation of sub-events, for example, 
performing grouping of tracks by perturbation, etc. 

The user provides information to SUMX either by subroutines which 
communicate with the SUMX processors through defined COMMON blocks, or via 
data given as input to the SUMX program. The data may specify conditions, 
book histograms, group histograms, perform arithmetic operations on one or 
several histograms according to conditions, specify the selection of 
parameters and events which will be stored on a mini-DST, etc. 



Although 
DST-analysis, 
environments, 
editing. 

22 

SUMX is still the most powerful package available for 
it lacks several capabilities needed in today's HEP software 

such as graphics interface and interactive data handling and 

The appropriate environment today would seem to be that afforded by a 
high performance work station and this option has been discussed (28). 
This approach bears much resemblance to the attitude taken in the CAD and 
CAE arena where maximum interaction of the engineer with the projected 
solution is yielding high productivity. It is also consistent with the 
approach being taken to the development of algorithms for reconstruction of 
highly complicated events as demonstrated by the UAl and UA2 experiments at 
CERN. 

At the present time there are no active projects in this field at 
Fermilab and it seems to be an area with great potential for progress. It 
should not be forgotten however that depending on the size of the data 
sample there may be a need for many MIPS (Million Instructions Per Second) 
and much taping spinning. This aspect of the problem has led some to 
suggest (29) that it is necessary not only to address the development of 
the environment but to apply large systems of microprossessors in 
conjunction with Optical Disks. This approach may get under way in the 
next year or so since the appropriate microproccessors now appear to be 
available (30). 



23 

9 CONCLUSIONS 

In this document we have attempted to skim the subject of High Energy 
Physics Software from the point of view of desired functionality as related 
to the phases of analysis of a experiment. It is by design lacking in 
detail but has already served its minimum purpose of educating its authors. 
The summary is the obvious, but perhaps not emphasized often enough, 
statement that the computing environment for a HEP experiment should 
permit, ideally, the close envolvement of the physicist in every stage of 
the data analysis, for which the availability of packages allowing for 
fast, easy to implement, adjustments to new methods on information, coupled 
to good graphics tools, is essential. We do feel that this document has 
identified several areas.where a common approach and general software 
techniques might have significant impact were they available, such as 
treatment by the data base techniques of the fixed data handling stage; new 
analysis of efficiency/applicability of magnet design methods; general 
approach to Streaming, Decoding, Stratification and Formatting; further 
development of pattern recognition methods; general packages for analysis 
of analog data and last, but not the least, a closer look to the work 
station environment and graphics packages. The list is daunting; however, 
the motivation is correspondingly high since the estimated manpower 
required to generate the software for each of the current large experiments 
is of the order of 100 person years (31) and will clearly grow as the 
detectors become even more complex. 



1. 

REFERENCES 

Proceedings of the CERN SCHOOL OF COMPUTING, CERN 71-6, 
72-21, CERN 74-23, CERN 76-24, CERN 78-13, CERN 81-03, 
82- and CERN 85-09. 

24 

Cern 
CERN 

2. Fermilab Central Computing Facility Program Library, Fermilab 
Computing Department, December 1984, GC0002.3 

3. M. Metcalf, "An introduction to FORTRAN 77 1 , CERN Computer 
Center, DD/VS/11. 

4. "Programming Language FORTRAN-ANSI x3.9 - 1978. 

5. ACM Newsletter: Fortran Forum. 

6. F.R.A. Hopgood 
System, GKS", Ch. 
1983. 

et al, 'Introduction to the Graphical Kernel 
11, 145-149, Academic Press, New York, 

7. See DI3000 as an implementation of CORE based graphics. 

8. J. A. McDonald, J. Pedersen, "Computing Environments for Data 
Analysis•, SLAC-PUB-3577, STAN-LCS-09, February 1985. 

9. J. A. McDonald, J. Pedersen, "Computing Environments for Data 
Analysis", SLAC-PUB-3578, STAN-LCS-10, February 1985. 

10. C. Best, A. M. Osborne, "The Analysis of the Magnetic Field of 
the Forward Spectometer Magnet•, CERN, EMC/78/26, 1978. 

11. H. Wind, 'Evaluating 
Observations Only•, 
117-124,1970. 

a Magnetic Field Component from Boundary 
Nuclear Instruments and Methods, 84, 

12. R. Yamada et al, "Fermilab Magnet Mapping System•, Nuclear 
Instruments and Methods, 138, 567, 1976. 

13. F. James, "Simulation in High Energy Physics•, Proceedings of 
the 1970 CERN Computing and Data Processing School, 443-466, 
CERN 71-6, 1971. 

14. C. W. Trowbridge, "Progress in Magnet Design by 
Proc. 4th Conf. Magnet Technology, Brookhaven 
Laboratory, Brookhaven, New York, 555-565, 1972. 

Computer•, 
National 

15. M. T. Newman, C. W. Trowbridge, L. P. Turner, "GFUN: An 
Interactive Program as an Aid to Magnet Design•, Proc. 4th 
Conf. Magnet Technology, Brookhaven National Laboratory, 
Brookhaven, New York, 617-626-1972. 



25 

16. J. Simkin, C. W. Trowbridge, "On the Use of the Total Scalar 
Potential in the Numerical Solution of Field Problems in 
Electro-Magnetics•, Int. J. Num. Meth. Engn, Vol. 14, 423-440, 
1979. 

17. 0. C. Zienkiewicz et al, "The Coupling of the Finite Element 
and Boundary Solution Procedures", Int. J. Num. Meth Engn, 
Vol. 11, 355-375, 1977. 

18. T. W. Daniel, R. B. Fernandez,P. R. Root, R. B. Anderson, "An 
Accurate Scalar Potential Finite Elements Method for Linear, 
Two-dimensional Magnetostatic Problems•, Int. J. Num. Meth. 
Engn, Vol. 19. 725-737, 1983. 

19. 0. C. Zienkiewicz, T. Lyness, D. R. J. Owen, "Three
Scalar 

Trans. 
dimensional Magnetic Field Determination Using a 
Potential a Finite Element Solution•, I.E. E. E. 
Mag. MAG-13, 1649-1656, 1977. 

20. J. Simkin, C. W. Trowbridge, "Three-dimensional Non-linear 
Electro-magnetic Field Computations, Using Scalar Potentials", 
I.E. E. E. Proc., pt. B, no6, 368-374, 1980. 

21. L. Bugge, J. Myrcheim, 'Tracking and Track Fitting•, Nuclear 
Instruments and Methods, 179, 365-381, 1981. 

22. H. Eichinger, M. Regler, "Review of Track-fitting Methods in 
Counter Experiments•, CERN 81-06, Data Handling Division, June 
1981. 

23. T. Nash, S. Bracker, I. Gaines, •Fermilab's Advanced 
R&D Program•, Fermi National Accelerator Laboratory, 
2380. 000, April 1983. 

Computer 
FN-383, 

24. C. H. Georgiopoulos, J. H. Goldman, D. H. Leventhal, 
M. F. Hodous, 1A Non-numerical Method for Track Finding in 
Experimental High-Energy Physics Using Vector Computers•, The 
Florida State University Supercomputers, Computations Research 
Institute, FSU-SCRI 85-11, 1985. 

25. L. Lyons, W. Allison, "Maximum Likelihood or Extended Maximum 
Likelihood?", Nuclear Physics Laboratory, Oxford, 1985. 

26. E. D. Bloom, Proc. 1979 International Symposium on Lepton and 
Photon Interaction at High Energies, Fermilab, 1979. Ed. 
T. B. W. Kirk and H. Arbanel, Fermilab, 1980. 

27. Binon et al, "Hodoscope Gamma Spectometer GAMS200", Nuclear 
Instruments and Methods, 188, 507-516, 1981. 

28. V. Blobel, "Unfolding Methods in High Energy Physics 



Experiments•, Proceedings of 
Computing, CERN 85-09, 1984. 

29. T. Nash, Private Communication. 

26 

the 1984 CERN School of 

30. T. Nash et al, "The Fermilab Advanced Computer Program 
Multi-Microprocessor Project•, presented at the 1985 Computing 
in High Energy Physics Conference, Amsterdam, Netherlands, 
June 1985. 

31. "Computing for Particle Physics, Report on the HEPAP Subpanel 
on Computer Needs for the Next Decade", pp97-108, 
U. S. Department of Energy, DOE/ER-0234, August 1985. 



PROGRAM REFERENCES 

ANSYS - G. J. De Salvo, J. A. Swanson, "ANSYS-Engineering Analysis 
System User's Manual", Swanson Analysis Systems, Inc., Houston 
Pennslyvania. 

ADS/MAGNETIC - A. 0. Smith Data Systems, Milwaukee, Wisconsin. 

BIM2D, BIM3D - M. J. Newman, "BIM2D User Guide", Rutherford Appleton 
Laboratory, RL-79-088 1 Rutherford England. 

CASIM - A. Van Ginneken, "CASIM-Program to Simulate Transport of 
Hadron in Cascades in Bulk Matter•, Fermilab, FN-272, 1100.050, 
January 1975. 

DIGS - J. Ingebretsen, "Device Independent Graphics System•, Fermi 
lab, SP0012, May 1985. Fermilab SP0012. 

DI3000 - "DI3000 User's Guide", Precision Visuals, Inc. Boulder, 
Colorado, September 1984. Fermilab SP0018. 

EGS - R. L. Ford, W. R. Nelson, "The EGS Code System•, SLAC 
PUB-210, June 1985. Fermilab PM0060. 

EPIO - H. Gretel, I. McLaren, "EPIO Manual", CERN Computer Center 
Program Library, CERN I-101, DD/EE/81-2, May 1982. 
Fermilab SU0025. 

27 

FFREAD - R. Brun, R. Hagelberg, M. Hansroul, J. C. La Salle, G. Misuri, 
"FFREAD - Format Free Input Processing User Guide and Reference 
Manual', CERN Computer Center Program Library, CERN I-302, 
DD/EE/78-2, DD/US/71, June 1982. Fermilab SU0026. 

GEANT2 - R. Brun, F. Carena, M. Hansroul, J. C. La Salle, "GEANT User 
Guide and Reference Manual Version 2.001 , CERN Data Handling 
Division, DD/US/86, June 1982. Fermilab PM0049. 

GEANT3 - R. Brun, F. Bruyant, A. C. Mc Pherson, 1 GEANT3 User's Guide", 
CERN Data Handling Division, DD/US/86, DD/EE/84-1, February 1985. 
Fermilab PM0062. 

GD3 - R. Miller, "GD3 User Guide", CERN Computing Center Program 
Library, DD/US/9, February 1985. Fermilab SP0015. 

GFUN - A. G. Armstrong, C. J. Collie, N. T. Diserens, M. J. Newman, 
J. Simkin, C. W. Trowbridge, "GFUN3D User Guide", Rutherford 
Appleton Laboratory, RL-76-029/A, 1976. 

GKS - "Guide to the Use of GKS at CERN", Draft Manual, Version 1.4. 
CERN Data Handling Division, September 1985. 

GUIDE7 - T. Massam, "GUIDE 7, A General Program for Evaluating the 



28 

Properties of Scintillation and Cerenkov Counter Optical Systems", 
CERN Experimental Physics Division, EP-76-21, December 1976. 
Fermilab PM0047. 

HALO - Ch. Iselin, "HALO - A Computer Program to Calculate Muon Halo", 
CERN Experimental Area Group, CERN 74-17, August 1974. 
Fermilab PM0033. 

HBOOK - R. Brun, I. Ivanchenko, P. Palazzi, "HBOOK User's Guide", 
CERN Computer Center Program Library, CERN Y-250, DD/EE/81-1, 
DD/US/22. Fermilab PM0039. 

HPLOT - R. Brun, H. Watkins, "HPLOT User's Guide", CERN Computer 
Center Program Library, CERN Y-251, DD/EE/80-2, DD/US/17. 
Fermilab SP0014. 

HTV - R. Brun, "HTV - The Interactive Version of HBOOK + HPLOT", 
CERN Computer Center Program Library, DD/EE/80-5, DD/US/87. 

HISTORIAN - F. James, 'Introduction to HISTORIAN", CERN Computer 
Center Program Library, DD/US/49. 

HYDRA - J. Zoll, "Hydra Topical Manuals", CERN Computer Center 
Program Library. Fermilab PU0045. 

IMSL - "IMSL User's Manual", IMSL Lib-0009, Edition 9.2, Houston, 
Texas, November, 1984. Fermilab SM0002. 

ISAJET - F. Paige, S. Protopopescu, "ISAJET 5.10, A Monte Carlo 
Event Generator for p-p and pbar-p Reactions", Brookhaven 
National Laboratory, Upton, New York. Fermilab PM0059. 

KIOWA - J. Friedman, "KIOWA", SLAC Computer Group, CGTM No. 136. 
Fermilab PM0016. 

LINDA - A. Nelson, "LINDA", Fermilab, IM0012, April 1971. See 
also. J, S. Colonias, "Particle Accelerator Design•: 
Computer Programs•, Academic Press, 1974. Fermilab PM0012. 

LUND - T. Sjostrand, H. U. Bergtsson, G. Ingelman, "The LUND 
Monte Carlo Programs•, CERN Pool Programs W5035, October 
1985. Fermilab PM0050. 

MAGNET - R. Messerli, C. Petit, "Magnetic Field Analysis Program•, 
CERN/EP/DHR 76-7, 1976. Fermilab PM0051. 

NAG - "The Finite Element Library• Release 2.0, Numerical 
Algorithms Group, Inc., Downers Grove, Illinois. 

NASTRAN/MSC - R.H. Mc Neal (ed.), 'The NASTRAN Theoretical 
Manual", NASA SP-221(01). 

NVERTX - A. E. Brenner, D. C. Carey, R. Pordes, J, H. Friedman, 



"A Computer Program for Monte Carlo Phase Space with 
Importance Sampling and Histogram Display•, Fermilab PM004, 
April 1977. Fermilab PM0004. 

PATCHY - H. J. Klein, J. Zoll, "PATCHY Reference Manual•, CERN 
Computer Center Program Library, October 1983. Fermilab PU0013. 

PIONS - J. Bettles, D. R. Myers, 1The PIONS User Guide•, CERN 
Data Handling Division, CERN DD/EE/85/1. 

PE2D - C. S. Briddlecombe, N. J. Discerens, C. P. Riley, J. Simkin, 
"PE2D User Guide, 2D/Axisymmetric Static and Dynamic Electro 
Magnetic Analysis Package•, Version 6.3, Rutherford Appleton 
Laboratory, RL-81-089, 1983. 

PLOTlO - C. S. Curran, "Introduction to Using PLOT-10 /TCS/AGII, 
or CDC /MFZ/MFA/MFB", CERN Computing Center Program Library, 
DD/US/61. 

POISSON - R. F. Holsinger, Ch. Iselin, "The CERN-POISSON Program 
Package (POISCR) User Guide", CERN Computer Center Program 
Library, T604, 1983. Fermilab PM0054. 

SAGE - J. Friedman, "SAGE - A General System for Monte Carlo Event 
Generation with Preferred Phase Space Density Distributions•, 
Lawrence Berkeley Laboratory, Group A Programming Note No P-189, 
January 1971. Fermilab PM0022. 

SUMX - F. Beck, J. Zoll, "SUMX User's Guide•, CERN Computer Center 
Program Library, CERN Y-200, 1973. Fermilab PM0007. 

TOSCA - C. P. Riley, J. Simkin, A.G.A.M. Armstrong, "TOSCA User 

29 

Guide, 3D Static Electro-Magnetic/Electrostatic Analysis Package•, 
Version 3.1, Rutherford Apleton Laboratory, RL -81-070, 1982. 
Fermilab PM0055. 

TRANSPORT - K. L. Brown, D. C. Carey, Ch. Iselin, F. Rothacker, 
"TRANSPORT: A Computer Program for Designing Charged Particle 
Beam Transport Systems•, CERN Super Proton Synchroton Division, 
CERN 80-04, 1980. Fermilab PM0008. 

TURTLE - D. C. Carey, "(Trace Unlimited Rays Through Lumped Elements), 
A Computer Program for Simulating Charged Particle Beam Transport 
Systems•, Fermilab NAL-64, December 1971. Fermilab PM0009. 

YBOS - D. Quarrie, "Programmers Reference Manual Version 3.00", 
CDF Computing Group, Fermilab, CDF Note No. 156 (V3.00), 
November 1984. 

ZBOOK - R. Brun, F. Carena, M. Hansroul, J. C. La Salle, W. Wojcik, 
"ZBOOK User's Guide and Reference Manual", CERN Computer Center 
Program Library, CERN Q210, DD/US/73. Fermilab PU0032. 



ZEBRA - R. Brun, M. Goossens, J. Zoll, "ZEBRA User Guide", CERN 
Computer Center Program Library, CERN QlOO, DD/EE/85-6. 
Fermilab PU0046. 

ZIPTRACK - A. Ito, W. Bosworth, J. Rutherford, A. Lynch, L. Tung, 
W. Yang, "ZIPTRACK Manual", Fermilab TM1200, 2311.00, 1983. 

30 



FLOW DIAGRAM OF ANALYSIS OF A 31 

TYPICAL HIGH ENERGY PHYSICS EXPERIMENT 

DETECTOR «--
DESIGN I 

I 
I 
I 
I 
I 
I 
I 
I 

ALLIGNMENT EXPERIMENTAL - I . , . CALLIBRATION ·-----
APPARATUS I DATA I 

I 
I I 
' - I 

' .----~ ~ 
I 

RAW I 
I 

DATA I 
DETECTOR 

I SIMULATION 
I 
I 

• INTERACTION 
DECODING 

STREAMING ' . MAGNETIC 
I 

I I FIELDS 
f+---.J I 

I 

y I 
I 

TRAJECTORIES I 

BASIC TRACK I 

I_ - - - - - - - - -----~---
FINDING,FIITING DETECTOR 

I 
I 

I RESPONSE 

I 

• READOUT 
ANALOG DATA 

ANALYSIS • 

I ,_ - - - - - - - - - -~----------~ . . 
I 

' 
-----------------. 

DATA MONTE CARLO --, ..------------
DST DST I I 

I 
I I I 

I I 

~ 
I 
I ~ 't' 

PHYSICS DST ANALYSIS 

• Flow of Real Data • ---· Flow of Monte Carlo Data ____ .,. 
Flow of Pure Physics 

• RESULTS PUBLICATION 

Fig. 1 . 

PHYSICS 

MONTE CARLO 

I 

~ 
"TRUTH" 

DST 


