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Summary 

A method is given for reducing the most trouble­
some sextupole harmonics in a ring by measuring the 
sextupole field in groups of magnets, and ordering 
them according to a predetermined prescription. The 
predicted resu·l t is a decrease in se:gtupole related 
distortions by a factor (2/(J + 1)] 112 where J 
magnets, covering one or more betatron periods, are 
measured at one time. Simulations performed for 
typical SSC lattices confirm the expected improve­
ment s. 

Introduction 

The presence of unavoidable normal and skew ser­
tupole errors in the dipoles of a superconducting ring 
are known to cause nonlinear oscillations in the beam 
size, and a resultant decrease in the dynamic aperture 
of the ring. Although the growth is not completely 
described by one or two "resonances", the harmonic 
description of the effect is useful in pointing out 
which regions of the harmonic spectrum are most 
troublesome. Such an analysis in first order in the 
sextupole amplitudes leads to the conclusion that beam 
size oscillation due to the n!!!. harmonic of the sextu­
pole error, £n, are proportional to £ and inversely 
Droportional to the resonance denomin~tors Iv - nl and 
l3v - nl, where the x and y tunes, vx and vy are taken 
to be equal to v. 

If all sextupole errors are known, it is conceiv­
able that the order of the magnets could be chosen so 
that all harmonics in broad bands around n • v and n • 
3v could be made sufficiently small, thus reducing the 
beam size oscillations. Such "shuffling" is imprac­
tical, however, since it requires measurements on all 
magnets before any can be positioned. For this 
reason, we propose an alternate scheme for measuring 
and positioning J magnets at a time, which is capable 
of reducing the expected value of all harmonics in the 
troublesome band, and therefore/the-beam size oscilla­
tions, by a factor of order J-l 2. 

Description of Shuffling Scheme 

For our analysis, we will consider a regular lat­
tice consisting of MJ magnets, where M is an integer 
near the tune v, and where J magnets cover an integral 
number of magnet focussing periods. After measuring 
the first group of J magnets, we will place them in an 
order to be specified later, correlated with the size 
of the sextupole error. The next group of J magnets 
are then measured and placed in an order which is 
anti-correlated with that in the first group, i.e., 
the magnet with the ¢ lowest (most negative) eeztu­
pole error in the second group is placed in the 
position corresponding to that of the ¢highest 
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(most positive) sextupole error in the first group. 
The process is then continued until all magnets have 
been measured and positioned. Aside from statistical 
fluctuations in the size of the ~ highest sextupole 
error, we then have a sextupole error which repeats 
with a sign change every J magnets. (Note that the 
parameters ax and ay repeat every J magnets.) Thus, 
we have now created systematic sextupole harmonics of 
order M/2, 3M/2, 5M/2, etc. All other harmonics have 
been reduced in ~ize because the width of the distri­
bution of the ~ highest sextupole error is reduced 
from that

1
of the total distribution by a factor of 

order J- 1 2 • 

Analysis of Shuffling Scheme 

The standard action-angle treatment of the third 
integer resonances1 leads to five driving terms in the 
Hamiltonian, each of which can be represented as a sum 
of harmonics2 • The form of the five coefficients is 

illustrated by a typical nth harmonic coefficient 
written in phase amplitude form as 

ia M J 
Bne n •(i/l6'1t) I I 

m-1 j•l 
s ca >312 
mj x 

(1) 

Here Smj is the integrated strength of the ~ sextu­

pole in the m!!!. group of magnets and the amplitude 
functions ax and ay depend only on j because of the 
periodicity of the lattice. The phase Qj reflects the 
difference between the phase v0 and the phase f ds/a 
within a cell and is therefore also independent of m. 
The independent variable 0 increases by 2'1t in one 
revolution, and 0mj is given by 

(m - 1) 0mj • ej + -M- 2'1t 

because of our measurement and placement scheme. 

If we now perform the sum over m first in Eq. 
(1), we have 

S e21Einm/M 
mj (2) 

In order to proceed further, we now evaluate <Fj> and 

<FjFj,>, statistical averages over the distribution of 

eextupole errors. If we as1R111e a distribution of eer­

tupole errors, p(s), symmetric around s • O, the dis­

tribution of the j!!!. highest [(J + l - j}!!!. lowest) 
sextupole error is given by 



J! 
(J - j) ! (j - 1) ! 

[Js dx p(x)]J-j[J~ dx p(x)]j-l p(s) ds 
-~ s 

with 

One then finds, assuming M is even, 

S 2'11inm/M 
mje 

(3) 

(4) 

(5) 

M 
• <s(j)> [ ), 

M-1 
e21tinm/M _ ), e21tinm/M] , (6 ) 

where 

m•2 
even 

m•l 
odd 

It is now clear that the bracket in Eq. (6) vanishes 
for all n except n • rM/2 where r is an odd integer. 
We then obtain 

<F >. {M<s(j)>. n • rM/2, r odd} 
j 0 , all other n 

In a similar way, we find 

where 

For the uniform distribution of sextupole errors 

one finds 

p(s) • {l/(2l\) 
0 

. ,s, <ti} 
• s )ti. 

4j< (J + 1 - j>) ti
2 

8jj' - 2 
(J + 1) (J + 2) 

where j<,j>• are the analler, larger of j,j'. 

One now can write Eq. (1) in the fora 

ill 
<Bne ~ • 

(8) 

(9) 

(10) 

J 
(1M/l61t) l iQ j+in9 j 

e , n • rM/2, r odd 
{ j•l 

0 , all other n 

and, for all n, 

2 ii! 
<Bn> • l<Bne ~12 + 

J 
+-M- l 

256i j•l 
j'•l 

312 i(Qj- Qj,) in(9j -
(flxjexj') e e 

(11) 
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2 We can only evaluate the sum over j in <Bn> explicitly 

for a given lattice and ordering arrangement. How­
ever, we can estimate the aim by assuming constant Sxj 
and Qj, and by neglecting the j * j' correlation terms 
in the expectation of BOme cancellation due to the 
phase variation of n(ej - ej,). In this way we find, 
for n * rM/2, 

(13) 

The first factor on the right comes from Ohnuma's nor­
malization of Bn, the second comes from the rms value 
of the sextupole error, and the third is the reduction 
factor coming from our shuffling scheme, and correctly 
becomes unity for no shuffling (J • 1 magnet in each 
"group"). 

Although we have considered here only one of the 
five distortion parameters, our shuffling scheme will 
simultaneously reduce all five by approximately the 
same factor, since the basic reduction comes from the 
reduced rms width of the distribution Pj(s). 

It should also be pointed out here that the 
specific result in Eq. (13) is valid only for a uni­
form distribution of sextupole errors. A closed form 
can also be obtained for a parabolic distribution, bu~ 
the algebra required is much lengthier. 

Shuffling Within a Group 
ii! 

The remaining calculation of <B e n> in Eqs. 
(11) and (12) depends in .detail on tRe choice of the 
ordering scheme within a group, which is reflected in 
the values of ej" Although the e dependent factor in 

3 Eq. (12) and in one other driving term is fix ,the 

other three driving terms contain the factor e2 s . y x 
The approximate constancy of ex + By implies that the 

sensitivity to variations of Bx and By is most acute 
3 for the driving terms with ex. This suggests that 

magnets with the highest and lowest sextupole error 
should be placed where Bx is anallest, that is, near 
the quadrupole which is defocussing in the x direc­
tion. Al.so, it is desirable to alternate the signs of 
the sextupole errors in adjacent magnets so that 

ill 
<Bne ~ in Eq. (11) will be significant only for 
large r. One possible arrangement between focussing 
aagnets mght be 

defocussing quad 

j - 1 dipole, highest S 

j - 2 dipole, ~ lowest s 
j - 3 dipole, ~highest s -----------

focu asing quad 

------
j • J - 2 dipole, 3!! lowest S 

j • J - 1 dipole, ~highest S 

j • J dipole, lowest S 

defocussing quad 

This scheme concentrates the harmonic content into the 



immediate vicinity of r • J. 

Similar schemes are possible if J is an integral 
multiple of the number of magnets in a betatron 
oscillation period. 

Approximate Sum Rule 

In the approximation of constant B!. it is easy 
to show from Eq. (1) that 

MJ 
l 

n•l 
s2 
mj 

(14) 

Thus, the Ellm of the squares of the harmonic ampli­
tudes cannot be changed by shuffling. It is therefore 
apparent that any shuffling arrangement merely moves 
the sextupole harmonic content from one region of the 
spectrum to another. In our scheme we have depleted 
the harmonic content in all harmonics with n ~ rM/2 at 
the expense of enhancing the ones with n • rM/2, which 
cause much less sextupole distortion. In particular, 
the shuffling scheme 111ggested within a group concen­
trates the harmonic content into the ones close to n • 
MJ/2 which cause little 111.1ltipole distortion. 

Two Parameter Shuffling 

There are circumstances where one wants to reduce 
'two i11dependent error families at the same time. One 
5~ch example occurs in magnets with uncorrelated but 
c~;ip,.~arable normal and skew sextupole errors. Another 
would occur in any 2-in-l magnet assembly. A third 
example might be uncorrelated quadrupole and sextupole 
errors of comparable magnitude in a single dipole 
magnet. 

We expect that the shuffling process outlined 
earlier would still work, but now one must order the 
errors into two parameter "bins'". As a reailt the im­
provement factor is expected to be significantly re­
duced from that for one parameter shuffling. 

Numerical Reailts 

Simulations have been performed for several SSC 
lattices, including insertions. In those cases where 
the number of magnets in a aiperperiod is not an inte­
gral multiple of twice the number of magnets in a 
betatron period, a few of the "best" magnets are set 
aside for the unbalanced group, and the remaining ones 
distributed according to the original prescription. 
Pour* of the five driving terms have been evalu.ated 
with ten independent sets of random sextupoles, first 
with a truly random placement, and then with our aig­
gested ordering. As a final figure of merit, ve 
obtain 

k • l Bordered/). Brandom 
1 nl · nl (15) 

n n 

for each of the four {1 • 1 - 4) driving terms, where 
the aim over harmonics n is taken over the 100 
harmonics centered at M or 3M as appropriate. Puther­
more, the numerator and denominator in Eq. (15) are 
averages over the ten independent random sets of 
errors. 

The following table indicates the reailts for 

*The fifth differs only slightly from the fourth in 
the phase term Qj. 
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uniform (U) or gaussian (G) error distributions for 
six (A - F) sample lattices. 

Figure of Merit 

Lattice Al 

.15 .23 .13 

.11 .21 .19 

.08 ,09 .33 

.09 .14 .30 

.12 .13 .37 

.12 .19 .32 

.24 .25 .30 

.19 .33 .25 

.13 .16 .43 

.14 .22 .37 

.08 .30 .09 

.08 .15 .08 

.23 

.28 

.28 

.32 

.36 

.37 

.31 

.36 

.40 

.44 

.27 

.10 

Predicted 

(_2 _11/2 
·J + 1 

.22 

.22 

.18 

.18 

.28 

.28 

.34 

.34 

.28 

.28 

.20 

.20 

The prescribed ordering appears to yield improve­
ments which are in most cases as good as predicted, 
for either uniform or gaussian distributions. 
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