
Fermi lab

CAMAC 488 Module
68000 Based GPIB Interface Module

K. c. Seino

March 1985

TM-1288

TM-1298
0812.000

LIST OF ILLUSTRATIONS

Fig. 1 System Connections
Fig. 2 C-Card Block Diagram
Fig. 3 Timing Waveforms Write Registers to FIFO
Fig. 4 Timing Waveforms FIFO to Read Registers
Fig. 5 Timing Waveforms - CTM OMA
Fig. 6 Timing Waveforms - MTC OMA
Fig. 7 M-Card Block Diagram
Fig. 8 Memory Map
Fig. 9 Byte Manipulation
Fig. 10 Front Panel
Fig. 11 Software System
Fig. 12 GPIB Test Page
Fig. 13 Spectrum Analyzer Page
Fig. 14 Spec tr um Analyzer Display

Table 1 Interrupt Vector Assignment

TM-1298

1. 0
1. 1
2.0
2. 1
2. 1. 1
2. 1.2
2. 1. 3
2. 1. 3. 1
2. 1.3.2
2. 1. 4
2. 1. 4. 1
2. 1. 4. 2
2. 1. 5
2. 1. 6
2.2
2. 2. 1
2.2.2
2.2. 3
2.2. 4
2.2. 5
2.3
2. 4
2. 4. 1
2. 4.2
2. 4.3
2.4.4
2.4. 5
3.0
3. 1
3. 2
3. 3
3.4
3. 4. 1
3. 4.2
3. 4. 3
3. 5
3. 5. 1
3. 5. 2
3. 5. 3
4. 0
5. 0
6.0

APPENDIX A

APPENDIX B

INTRODUCTION
Main Features

HARDWARE
C-Card

Block Diagram
CAMAC Interface
FIFO Control

CTM FIFO Control
MTC FIFO Control

DMA Control
CTM OMA Control
MTC OMA Control

GPIB Interface
TCK Decoder

M-Card
Block Diagram
Memory Map
DMA Controller
Interrupt Controller
Byte Manipulation

Front Panel
Hardware Tests

Tests With Emulator
Tests Under GBUG
CAMAC Command Test
TCK Test
Overall Module Tests

SOFTWARE
GBUG
GAS
PROTO
GAG

System Environment
Int.erior Design
Data Flow

Application Pag€s
GPIB Test Page
Parameter Page
Spectrum Analyzer

CONCLUSION
ACKNOWLEDGMENT
REFERENCES

CAMAC INTERFACE

FPLA DESIGN DETAILS

TM-1298

1
2
2
3
3
3
4
4
5
5
5
5
6
6
7
7
7
8
a
9

10
11
11
11
11
12
12
13
13
13
14
15
15
15
15
lb
16
16
16
17
17
17

TM-1298

1.0 INTRODUCTION

E. Malamud OT Tev I listed approximately twelve GPIB devices on
his 7/22/83 document. Now, how do we integrate such devices into the
ACNET computer system (hardware and software)?

Setting up a device locally may be accomplished by pushing ten
buttons on the front panel. Each button pushed corresponds to a
command, which is equivalent to a ASCII string sent to the device over
the GPIB interface. Therefore. setting up a device remotely is
accomplished by sending the correct sequence of the ten corresponding
ASCII strings. Some commands result in the return of data. The data
returns in different forms. i.e., ASCII strings, binary words, binary
bytes and so forth. The amount of data varies from several bytes to
2K bytes.

What kind of hardware and software should we come up with to
interface GPIB devices with the existing computer system? One idea
which D. Bogert suggested was to use a commercially available
Multibus card, BLC 8488 from National Semiconductor, whose on-board
ZBO would manage the GPIB read/ write functions and handshakes. With
this card, one could make a hardware system which would consist of (1)
CAMAC 080, (2) Multibus crate, (3) M. Shea's M68000, <4> 1'1080, (5)
BLC 8488 and (6) memory board. And the software considered for such a
hardware package was GAS, which had been an established software
package for communication between the ACNET computer system and smart
CAMAC mo du 1 es.

D. Beechy pursued the idea and put a system together for the
bakeout system in a relatively short period of time. However. a few
other people suggested another idea. The idea was to put everything
on a two-wide CAMAC module. They made a comment like ;It is ugly and
wastful to have a two-wide CAMAC module, a Multibus crate and several
cards in it Just to interface to GPIB devices.

The author pursued the second idea and came up with a two-wide
CAMAC module called C488. It was not easy to reduce the space.
Needless to say. it was a completely new design. When the artwork was
generated, we had to allow 8 mil line/ 8 mil space and two lines
between IC pads. The modification on the software <GAS> turned out to
be simple and it was completed in few days.

The author will describe the hardware - block diagrams, circuit
blocks, front panel and hardware tests. He will also refer to the
software - system, modules and applications. The software was done by
L. Chapman, S. Morris and W. Marsh. If the read er wants to know
more about the software, he should read the references listed in this
report and/ or talk to the programmers mentioned above.

TM-1288
CAMAC 488 Module: V 1.0

1. 1 Main Features

*Motorola MC68000, which is clocked at 8 MHz, is the CPU of the
module.

* Hitachi HD68450, which is clocked at 8 MHz, is the DMA controller.
The channel assignments are Ch. 0 for CAMAC to M-bus data transfer,
Ch. 1 for M-bus to CAMAC data transfer and Ch. 2 for M-bus from/ to
GPIB.

* Two FIFOs are on the module, i.e., one for CAMAC to M-bus data
transfer and the other for M-bus to CAMAC data transfer. The
size of the FIFOs is 64 bytes each.

* Memory sizes are 16K bytes of GBUG PROM, SK bytes of GAS PROM,
BK bytes of PROTO PROM and 64K bytes of RAM.

* AMO 9519A is the interrupt controller. The interrupt level
assignments are Lvl.2 for HINT, Lvl.3 for EDP1, Lvl.4 for EOP2,
Lvl. 5 for GPIB and Lvl.6 for 15 Hz.

* TI TMS9914A provides an interface between the M-bus and the GPIB
specified in IEEE-488 1975/ 78 ~tandards and IEEE-488A 1980
supplement. The device is programmable and can function as a
controller. a talker or a listener.

*The module has two RS232 ports, i.e., one for an optional local
terminal and the other for an optional remote RS232 device.

* The module communicates with the ACNET computer system via a
modified 080 to M68000 version of GAS.

* It is a two-wide CAMAC module. The M-Card can be easily
detached from the rest by removing two screws and two ribbon
cables.

* Connections to GPIB devices and a RS232 device are made via
a patch panel.

2.0 HARDWARE

The GPIB module consists of C-Card, M-Card and a front panel.
The front panel forms a module, physically fastening the two cards
together. The electrical connections between the cards are made
through a 50 conductor ribbon cable/ connector assembly.

The overall connections between the m'odule and peripherals are
shown in Fig. 1. By connecting a terminal to a RS232 port which is
located on the front panel. one can do basic diagnoses on the module.
Another RS232 port and a GPIB port are brought out to a patch panel
from the I/O connecters of the cards. The patch panel can be mounted

2

TfVl-1298
CAMAC 488 Module: V 1. O

on either the front or rear of the relay rack. From the patch panel,
one can make connections to devices with GPIB and/ or a device with
RS232 inter-face.

2. 1 C-Card

The C-Card constitutes the right half of
prime function is to interface with CAMAC.
CAMAC.

2. 1. 1 Block Diagram

the module, and its
The name 'C' came from

A block diagram of the C-Card is shown in Fig. 2. The data is
transferred in two directions, i.e., from CAMAC to M-bus <CTM> and
M-bus to CAMAC <MTC>. In case of the CTM direction, a CAMAC command
writes data into a set of registers, and the data is transferred from
the registers to the CTM FIFO whenever the FIFO input is ready. The
data then wait for a OMA operation. A OMA controller is armed by the
software, and it starts an operation when it receives the first
request. The DMA control circuit sends re~uests to the OMA
controller, and the controller returns acknowledges back. When a
predetermined number of data bytes have been transferred from the FIFO
to the memory, the controller terminates the operation. The control
circuit receives a DONE signal from the controller at the end of
operation, and it is reset by the signal.

The DMA operation for the MTC direction is almost same as the CTM
except the fact that data bytes are shifted into the MTC FIFO from the
memory by OTC signals. A OTC signal is generated by the OMA
controller toward the end of the acknowledge period. Whenever a set
of registers are empty and whenever the MTC FIFO has some data, the
jata bytes are transferred from the FIFO to the registers. A CAMAC
command reads them out of the registers.

2. 1. 2 CAMAC Interface -

The CAMAC interface consists of write registers, ~ead buffers and
registers, status buffers, command buffers and d ec od ers, mod u 1 e numb er
buffers; a LAM generator and read/ write managers.

CAMAC commands are listed in APPENDIX A. 1. Module status bits
are listed in APPENDIX A. 2. Conditional G responses are illustrated
in APPENDIX A. 4.

The CAMAC write managing circuit consists of two flip-flops (U3.
Schematic ED35871. SH-1/3), two AND gates <U62> and a one-shot <USO>.
When the first write command clocks the flip-flop on the left

TM-1298

(refering to the schematic), it stays as reset with its D-input being
initialized to be low. Thus at the S1 time. CWRCK becomes true and
latches write data into the write registers. At the same time. the
one-shot is triggered and its output sets the flip-flop on the right
indicating a write is in progress. When the data bytes have been
transferred from the write registers to the FIFO, WRHEN arrives and
resets the flip-flop. The same things repeat for write commands which
follows the first one. However, if another write command arrives
before the data bytes for the previous one are transferred, two things
happen -- <1> CWIP becomes true, and thus the G response is not
generated, and <2> CWRCK becomes false. and thus the new data bytes
are not overwritten into the registers.

The CAMAC read managing circuit consists of two flip-flops <U65),
a NANO gate <U66), a OR gate (U27), a one-shot CU18> and other small
gates. When read data bytes are transferred from the FIFO to the read
registers, the flip-flop on the right is set by RRHCK indicating that
the read data is valid. When a read command arrives and clocks the
flip-flop on the left, the flip-flop is set. In this situation, two
things happen -- <1> CRDVAL becomes true and thus G is generated, and
(2) CRREN becomes true and thus the data in the read registers is
enabled for a read operation. However. if a read command arrives
before the data becomes valid, G is not generated and the read data is
not enabled either.

2. 1. 3 FIFO Control -

2. 1. 3. 1 CTM FIFO Control -

The control circuit provides timing pulses for transfering data
~rom the write registers to the CTM FIFO. The timing pulses are shown
1n Fig. 3. As illustrated in the figure, the low byte of the write
~eg1s~ers is first enabled by WRLEN and shifted into the FIFO by FYSI.
The middle and high bytes are enabled by WRMEN and WRHEN respectively.
and shifted into the FIFO by FYSI, immediately after the low byte.
Basic timing pulses are generated by two one-shots (U57, Schematic ED
'35871. SH-1/3), a shift register {lJ56), a FPLA <U55), and other gates.
A write command normally consists of 3 bytes. and thus 3 shift pulses
are needed for the data transfer. However, when the write command
brings in a header, the WTF period is extended and the fourth pulse
shifts a dummy <assurance> byte into the FIFO. A one-shot <U79> and
its associated gates determine whether it is a three byte transfer or
a four byte transfer and produce a proper timing pulse to clear the
control circuit.

4

TM-1298

2. 1. 3.2 MTC FIFO Control -

The control circuit provides timing pulses for transfering data
from the MTC FIFO to the read registers. The timing pulses are shwon
in Fig. 4. As illustrated in the figure, the first byte is latched
into the low byte of the read registers by RRLCK. The second and
third bytes are latched into the middle and high bytes of the read
registers by RRMCK and RRHCK respectively. The leading edge of a
clock pulse latches the data appearing at the output of the FIFO, and
the lagging edge of the same pulse shifts out new data to the output
of the FIFO.

2. 1.4 DMA Control -

2. 1. 4. 1 CTM DMA Control -

CTM DMA control signals are shown in Fig. 5 for a header
transfer. When a F20AO command is properly received. HDRCK triggers a
one-shot <U37, Schematic ED35871, SH-1/3), and after 1 microsecond
delay. HSQ becomes true at a flip-flop CU67>. When FYOR1, 2 and HSG
become true at U72, a one-shot CU61) is triggered and a flip-flop
<U60> is set. The output of U60 becomes DMREGO when the software sets
a flip-flop <U69> and when DMG001 becomes true. The software needs to
arm the OMA controller chip first and then to allow the request to
reach the chip in order to operate the chip in a cycle-steal mode.
When the control circuit receives a DMACKO, it resets the request and
generates the next request after a delay. It repeats this hand
shaking four times For a header transfer. When the fourth DMACKO and
DMDONE arrive, the DMREGO is reset and remains reset, and the HSG is
reset at the lagging edge of the DMDONE. The DMGOOl is reset by the
software.

A data transfer following the header transfer is similar to the
header transfer. It is started by a CTMCK, and it is terminated when
a predetermined number of bytes (a multiple of three) have been
transferred.

2. 1. 4.2 MTC OMA Control -

MTC DMA control signals are shown in Fig. 6. When a header
transfer has been properly performed for a MTC DMA operation, the
software sets a flip-flop <U73, Schematic ED35871, SH-1/3) with MTCGO
and MTC becomes true. Then a one-shot <U74> is triggered, and it sets
a flip-flop (U73>. When the software arms the OMA controller chip and
makes DMGOOl true, the output of the flip-flop is allowed to reach the
DMA controller chip as a request. When the control circuit receives
an acknowledge, it resets the request and sets the request back after

5

TM-1298

a delay rollowing the lagging edge of the acknowledge_ It is
essential to hold back next request until the current data byte is
shifted into the MTC FIFO at the end of the acknowledge period. The
control circuit exchanges re~uests with acknowledges a predetermined
number of times. At the last exchange, a DMDONE resets the MTC and
DMREG1, and the request remains false. The software resets the
DMG001.

2. 1. 5 GPIB Interface -

The interface circuit consists of a controller chip <U17,
Schematic ED35871. SH-3/3), bus tranceivers CUS, U16> and a OR gate
<U27>. The controller chip is the TMS9914A <Texas Instruments), which
provides an interface between a microprocessor and the GPIB specified
in the IEEE-488 1975/ 78 standards and the IEEE-488A 1980 supplement.
The device is programmable and can function as a controller, a talker
or a listener. For further details, one should refer to Ref. 1.

A device on the GPIB can request a service from the CPU via the
GPIB controller chip. For example, a device has data ready and makes
SRQ true on the GPIB. The controller chip sees it and interrupts the
CPU. In an interrupt service routine. the CPU does a serial poll and
reads the data.

Data can be transferred between the GPIB controller chip and the
M-bus via DMA. When the software arms the Channel 2 of the DMA
controller CU3, Schematic ED358871. SH-2/3) and , makes the DMG02 true.
the GPIB controller chip and the OMA controller start to exchange
DMREQ2 with DMACK2 and start transfering data. When a predetermined
number or bytes have been transferred, the DMA operation is
terminated, and the software resets DMG02.

2. 1. 6 TCK Decoder -

A voltage comparator <UL Schematic ED3587L SH-3/3) converts
incoming signals to TTL signals. A one-shot <U3> and a decoder chip
<U15) work together to extract 8 bit event codes from pulse trains. A
FPLA (U4) detects up to eight event codes and produces a pulse when a
particular code is detected. The GPIB module needs to be updated by a
15 Hz event. For this reason, the FPLA detects $OF <15 Hz event code)
and produces pulses, which are used as an interrupt to the CPU. A
pulse generator CU26> works with a one-shot <U37> and a OR gate <U27>
to provide back-up pulses when the TCK event pulses are not available.
For further details, one should read Ref. 2.

6

TM-1298

2.2 M-Card

The M-Card constitutes the left half of the module, and it is a
Motorola MC68000 based microcomputer. The name 'M' came from
'Motorola'. The card is called 'M-Card', and the bus on the card is
cal 1 ed 'M-bus '.

2.2. 1 Block Diagram

A block diagram of the M-Card is shown in Fig. 7. The CPU is a
Motorola MC68000, which is clocked by a 8 MHz clock. A Hitachi
HD68450 controls OMA operations. The 68000 and 68450 are connected
together hand in hand. All the signals that are needed for the bus
come out from the two chips. and they are first tied together, then
buffered and distributed to the bus. The PROM/ RAM area can
accommodate up to seven pairs of memory chips. which can be either
PROMs or RAMs, and which can be either 24 pinners or 28 pinners.
Addresses are decoded by three FPLAs. which can be programmed for a
particular application that one envisions.

The status/ control circuit consists of registers and a DIP
switch. When the M-Card has a certain condition, its software sets a
bit in a register to indicate the condition to the C-Card and the
CAMAC. Or when the CAMAC wants to do a certain operation, it sets a
bit on the C-Card. The M-Card reads it and knows what to do. Or an
operator can set a bit on the DIP switch to indicate a certain
operation to the M-Card.

A Signetics SCN68681 provides two RS232 ports. The First port is
used with a local terminal for diagnoses. The second port is used for
controling a device with a RS232 interface or for downloading programs
from the host.

2.2. 2 Memory Map -

A typical memory map for the GPIB module is shown in Fig. 8.
There are seven memory blocks, i.e., MEMO thru MEM6, and these memory
blocks are located on seven IC socket pairs.

MEMO thru MEM3 are RAM blocks, each of which has 16K ·bytes.
These RAM blocks are made r~ference to by the CPU in two address
spaces, i.e., supervisor program or supervisor data except the first
half of MEMO, which is accessible only in the supervisor data space.

MEM4 thru MEM6 are PROM blocks. MEM4 has BK bytes, and a loader
called PROTO resides in this block. MEM4 is located between 0 and
lFFF in the SP space and between 80000 and 81FFF in the SP and SD
spaces. MEM5 has BK bytes and accommodates GAS. MEM6 has 16K bytes
and accommodates GBUG. These blocks are accessible in either SP or

7

TM-1298

SD.

The I/O block is accessible only in the SD space and it is
located between FF8000 and FF9FFF. Base addresses For different
d e v i c es are FF8000 < St at u s I C on tr o 1 B i t s > , FFB 1 01 c I n t err up t
Controller), FF8201 CGPIB Contoller), FF8301 <Serial Ports> and FF8400
<OMA Controller>.

For details on the memory mapping Fuseware,
APPENDIX B.

2.2.3 DMA Controller -

one should read

The OMA controller is Hitachi HD68450, which has Four independent
OMA channels. Channel 0 is used for transfering data from CAMAC ,
M-bus, Channel 1 is For M-bus to CAMAC and Channel 2 is For GPIB Fro~/

to M-bus.

The DMA controller <U3, Schematic ED35871, SH-2/3) is First armed
by the software, and returns an acknowledge signal ·when it receives a
request signal. The data is transferred during the acknowledge
period. The controller generates a DONE signal after a predetermined
number of data bytes have been transferred.

When we constructed a prototype module, we experienced
difFicuties in making a HD68450 work properly. We had to put pull-up
resisters on some control signals of the chip.

When Channels 1 and 2 received re~uests simultaneously or very
closely in time, the HD68450 could not properly sort them out and
acknowledge them. IF different priority levels were assigned on them,
the chip should have been able to service two requests with two
dirferent priority levels. According to Hitachi, ones with R-mask had
d deficiency in handling multiple requests. They said that they would
repiace ones with R-mask with ones with S-mask.

For further details on the HD68450, one should read Ref. 3.

2. 2. 4 Interrup~ Controller -

The interrupt controller is AMD 9519A, which has Interrupt
Request Register, Interrupt Service Register, Interrupt Mask Register,
Auto Clear Register, Response Memory and others. Interrupt Register
inputs are captured and latched in the Interrupt Request Register
Any requests not masked by the Interrupt Mask Register will cause a
Group Interrupt output to the CPU. When the CPU is ready to handle
the interrupt. it issues an Interrupt Acknowledge pulse, which causes
(a) the priority of pending interrrupts to be resolved and. a byte
from the response memory (a vector number> associated with the highest

8

TM-1298

priority interrupt to be read.

of the interrupt controller <U41,
connected to the Interrupt Control

The Group Interrupt output
Schematic ED35871, SH-2/3) is
inputs <IPL<0:2>> of the CPU <US).
the Interrupt Level 6 of the
interrupt priority mask. Although
should remember that interrupt
interrupt controller.

These connections allow us to use
CPU, which can be inhibited by the
we use only Level 6 of the CPU, we
priority levels are assigned in the

The CPU retches a vector number from the interrupt controller,
loads the program counter with the content of the interrupt vector and
services the interrupt in an interrupt handling routine. Table 1
shows the interrupt vector assignment of the module.

For monitoring interrupt levels being serviced, the software
turns on corresponding bits in a register <U66) and LEDs on the front
panel.

For further details on the interrupt controller and interrupt
handling, see Ref. 's 4 and 5.

2. 2. 5 Byte Manipulation -

The GAS software package had been written for a ZSO based system,
and hardware byte swapping and software four byte rotation were needed
to make the GAS work on a 68000 based system. These manipulations are
illustrated in Fig. 9.

When data words arrive with CAMAC commands F22 Cor F16), as shown
in Fig. 9b, the low byte is first shifted in the FIFO, and the middle
byte and the high byte follow in order. On the 68000 based system.
the high order byte has an even address that is the same as the word
addres~ ~nd the low order byte has an odd address that is one count
higher than the word address. In order to convert the data
organization From ZBO to 68000, byte swapping is performed_ The first
byte out of the FIFO is normally stored at an even address by the
upper data strobe <UDS>. However, it is stored at odd address by the
lower data strobe <LDS> instead. The second byte is stored at an even
address by the UDS. These operations are accomplished by swapping UDS
and LDS during the CAMAC to M-bus or M-bus to CAMAC DMA operations.
The swapped UDS and LDS are called XUDS and XLDS respectively. Byte
swapping is performed on all the pairs of bytes that follow the first.

When a header arrives with a CAMAC command F20, an assurance byte
is ~dded at the end after low. middle and high bytes have been shifted
into the FIFO. When the header bytes are transferred From the FIFO to
the memory, byte swapping is performed on the pairs of the bytes.
After the header bytes have been stored in the memory. the software
rotates them as illustrated in Fig. 9a. List Set command is shown in
Fig. 9c as an example of byte manipulation.

9

TM-1288

Byte swapping on the M-bus to CAMAC data transfer is exactly the
same as the one on the CTM transfer except the fact that it is
performed in the reverse direction.

2. 3 Front Panel

The front panel control/ monitor functions are shown in Fig. 10.

CAMAC

Status

Control

M-bus

N:
LAM:
SG:
SX:

On when module is addressed.
On when LAM conditions exit.
On when module generates G.
On when module generates X.

XTO: On when data transfer .times out; possible data transfers
are (1) Write Registers to CTM FIFO and <2> MTC FIFO to
Read Registers.

EXH: On when header is expected.
HSG: On when four bytes of header are being transferred.
C TM: On when CAMAC to M-bus data transfer is in progress.
MTC: On when M-bus to CAMAC data transfer is in progress.
FYIR: On when input of CTM FIFO is ready.
FZIR: On when input of MTC FIFO is ready.
FZOR: On when output of MTC FIFO is ready.

ON: On when ON bit is true.
ENBL: On when ENBL bit is true.

MPU HALT: i]n when 68000 is reset or stopped.
DMA<0:3~: On when DMA operations are in progress. numbers

are associated with channel numbers.
INTR LEVEL<0:7>: On when interrrupts are being serviced,

numbers are associated with levels.
RESET: When this switch is pushed, it resets module

hardware and reboots software.

GAS Managed Status
HB: Off when heart beat of module stops.
ICTI: On when I <GAS> can't take data in a set or list set

RUM:
HUM:
INI:

Power Supplies

command.
Off when module has unsolicited message for RLI.
Off when module has unsolidited message for host.
Off when module Just booted and waits for host to
initialize it.

10

TM-1298

+12V. +SV, -SV and -12V are monitored.

Misllaneous
LCL/ REM: By selecting LCL, operator can indicate to host

that he wants to locally control GPIB devices.
TCK: On when TCK is detected.
TERMINAL: This is connector for RS232 terminal.

2.4 Hardware Tests

When the modules arrive from an assembly house, we first inspect
them visually, and then measure resistivities between the ground and
the power supplies. If all the above checks are good, we proceed to
do the following tests.

2. 4. 1 Tests With Emu lat or -

If the GBUG does not work on the module, we can do
trouble-shooting with an emulator. First, we try to write to the
memory and read from the memory. Then. we try to read a ~ew important
locations of the PROTO and GBUG PROMs. Thirdly, we try to write to a
register of the DUART (U49, Schematic ED35871, SH-2/3) and read from
it. Lastly, we attempt to run the GBUG and break here and there along
the r.uay.

2.4.2 Tests Under GBUG -

With th~ GBUG working on the module. we can test aut different
parts. First, we write to a register and read from it on the UIC
(U41, Schematic ED3587L SH-213> and the DMAC CU3>. Secondly, we test
control. status and interrupt level bits by writing to or reading from
th em. Th i r d l y , we t e st ad d r es s i n g to a 11 th e RAM and PR OM p a i r s .
Fourthly. we write to a register and read from it on the GBC CU17,
Schematic ED35871, SH-3/3).

2.4. 3 CAMAC Command Test -

Our CAMAC test facility consists or a CAMAC crate, Kinetic
Systems' 5110 Multibus Adapter and 3908 Crate Controller and System

27 <ZBO based, with Multibus. COOS 1. 7 running). At this stage of
the game, we test CAMAC commands F6AO, F9AO, F17AO, F26AO, F24AO.
F30AO, F28AO and F1AO. Then, to test SQ, we try FOAO, and to test SX,
we try F10AO.

11

TM-1298
CAMAC 488 Module: V 1.0

2.4. 4 TCK Test

We observe pulses at Pin 11 of Ull <Schematic ED35871, SH-3/3) to
see if they are of 15 Hz. And by removihg the TCK input to the
module, we observe if the back-up clock circuit takes over. Lastly,
we carefully look at the output waveform at pin 10 of U3 <one-shot).

2.4. 5 Overall Module Tests -

We developed module test programs on the EXORMACS development
system. The programs are assembled, linked. built, downloaded to the
module over the phone line and executed under the GBUG.

GBINT1 program was written to test out the interrupt handling.
The 15 Hz clock pulses come in as interrupt re~uests, are acknowledged
and turn on INTR LEVEL 6 LED in a service routine.

GBDMA4 program was written to test out CAMAC to M-bus and M-bus
to CAMAC DMA operations. We first start running GBDMA4 under GBUG on
the module, and we send or receive data from the CAMAC by running a
CAMAC program. Two CAMAC programs. i. e. , GBCTS1 and GBCTS2 were
written in FORTRAN. With GBCTS1, we can test either the CTM data
transfer or the MTC data transfer. We normally send a definite data
pattern from the CAMAC to the M-bus and examine if the data pattern
has been transferred without any error. We then transfer the same
data pattern back from the M-bus to the CAMAC and examine it again.
GBCTS2 does a CTM transfer first and does a MTC transfer without
interruption of the program execution. It compares sent data with
received dadta and counts the number of errors.

GB488D program was written to test the GPIB interface. The
program initializes the bus, sends measurement parameters to
Racal-Dana 6000 digital multimeter, sends a GET <Group Execute
,rigger> and waits for a SRG <Service Request>. When the 6000 DMM has
data ready, it sends a SRG. The SRG goes through the GPIB controller
(U17, Schematic ED35871, SH-3/3) and the interrupt controller <U41,
Schematic ED35871, SH-2/3), and come through as Interrupt Level 6 of
U41. The service routine for the interrupt does a serial poll and
sets up a OMA operation for transfering the data from the DMM to the
M-bus. When the DMA is done, another interrupt <Interrupt Level 4>
occurs. The service routine for this interrupt displays the DMM data
on the terminal. After the service routine, the main program sends
another GET to the DMM for the next cycle. This process repeats
itself until the program execution is stopped.

12

TM-1298

3.0 SOFTWARE

The software system for the GPIB module roughly looks as shown in
Fig. 11. GBUG, GAS and PROTO are PROM-resident programs, and reserve
16K bytes. SK bytes and BK bytes respectively for their use. GAG and
its support modules Ci. e., OPERA and drivers> are downloaded from the
ACNET to the RAM on the module.

3. 1 GBUG

GBUG is a PROM resident monitor program derived from Motorola's
VMEBUG. If the system is rebooted with SWSO off <down position, high
true TTL level), it will run GBUG. Under GBUG, one can examine all
the components of the microcomputer, run programs and do
trouble-shooting on them.

3.2 GAS

GAS <GHASP Advanced Software> is a PROM resident software package
derived from GHASP. GHASP <General Host And Subsystem Protocol) is a
language for communication between smart modules and the ACNET
computer system.

The simplest way for a master to collect data from a module is to
send the module an address <STANC), wait for the module to generate
the answer and then read the answer. These features are supported in
GAS by Set commands and Read commands.

Most
to send a
to update
supports
List Read

data collection is repetitive, and therefore it is efficient
set of addresses once along with information about how often
the answer and then read the answer repetitively. GAS
th r e e t y p e s o f 1 i s t c o mma n d s , i . e . , t h e L i s t Se t u p < LS) , t h 12

<LR> and the List Delete CLD>.

All GAS commands are transmitted as one or more CAMAC commands
Each GAS commands starts with a F20. The remaining bytes of the
header (for Read, Set and List Set commands> are sent by two F22s
For Read and List Read, a number of FO or F4 CAMAC commands are then
sent. For Set and List Set. a number of F16 CAMAC commands are sent
after the header.

When hardwre or software problems exist in smart module, it may
be impossible to successfully execute any of the five kinds of GAS
commands explained above. For a simpler form of testing, GAS may be
put in Regurgitation Mode. In this mode, the master sends three bytes
to the module with a F20 command, GAS does the CTM and MTC DMA
operations and simply returns the same three bytes. The master then
read the three bytes with a FO command.

13

TM-1298

In addition to supporting GAS commands, the GAS software controls
some status bits. The master reads them with a F1 command. The
status bits are as follows.

HB: 0 when heart beat of module stops.
ICTI: 1 when I CGAS> can't ta~e data in set or list set

command.
RUM:
HUM:
IN!:

0 when module has unsolicited message for RLI.
0 when module has unsolicited message for host.
0 when module Just booted and waits for host to
initialize it.

GAS reports errors to the master by placing an error message in
an unsolicited message queue. Whenever the host's queue is not empty,
the module raises a LAM by clearing the HUM bit, requesting the host
to read the queue. Whenever the RLI's queue is not empty, GAS clears
the RUM bit but this does not cause a LAM. GAS reports system events
as well as error messages to the masters via the unsolicited message
queues. Each GAS error and system event may be bypassed. If
bypassed, no message is generated even if the error or event occurs.

For fur th er d e ta i l s on GAS, one s h o u l d r ea d Ref. 6.

3.3 PROTO

PROTO is a PROM resident program which knows how to download GAG.
When the power is applied to the GPIB module, the CPU fetches the
initial supervisor stack pointer and the initial program counter at
Address Locations 0 and 4 of PROTO, it starts executing PROTO from the
location pointed to by the initial program counter. When PORTO is
ready for GAG to be downloaded, it flashes INTR LEVEL 7 LED. In order
to download GAG, one must use a "Download Microp" application page.
In the future, the ACNET will automatically detect the reboot of PROTO
3n~ will automatically download GAG.

If one wishes to run GBUG, he turns SWSO off <down
before applying the power to the module. One of the things
does when it is JUSt starting is to read the status on SWSO.

position>
that PROTO

If the
switch is off, PROTO makes a JUmp from itself to GBUG. From this
point 0n. everything is cotrolled and monitored by GBUG unless the
system is restarted.

PROTO is assembled and linked assuming that the beginning of the
program is located Address 80000 <HEX>. However, since the memory
mapping circuit allows it to be accessed at either Location 0 or
Location 80000. the CPU can fetch initial stack pointer and program
counter from Locations 0 and 4 without any problem at the time of
system start.

i4

TM-1298

3.4 GAG

3. 4. 1 System Environment -

GAG is a software system which provides communications between
ACNET and GPIB devices. GAG also provides translation between the
ACNET language called GAS and whatever language the GPIB devices
speak.

GAG allows three masters to exist, i.e., ACNET, a resident local
master and an optional local terminal. The local master software task
resides in the same microcomputer as GAG and can use GAG to
communicate with the GPIB devices. This ability, together with the
task's own intelligence, lets it do local control such as closed
loops. The local terminal is intended ~or debugging and not a part of
the final system.

In addition to GPIB devices. GAG has a port for connection to an
optional RS232 device. When a software driver for this port is
written and added to GAG, the RS232 appears to be Just another GPIB
device to the three masters.

3. 4. 2 Interior Design -

GAG runs under a simple multi-task operating system called OPERA,
which is non-preemptive and of a round-robin.

GAS has two communication modes: transparent and opaq_ue. In the
transparent mode, GPIB ASCII strings are sent between ACNET and GAG as
data in GAS commands. In the opaq_ue mode. the ASCII strings are
stored in the GAG's translator which converts them to/ rrom
traditional data-base orientated GAS commands and data formats.

3. 4. 3 Data Flow -

Each external device CRS232 or GPIB) has a FIFO q_ueue associated
with it. The three master tasks ask GAG to enter commands into the
queues. The two external device driver tasks empty the queues,
sending commands to a correct external device and retur·ning status and
data to the master who initiated the re~uest.

The local resident master task can maintain a data pool
own which is accessible to GAS.

of its

The translation tables are downloaded to the microcomputer from
ACNET via GAS and are used by GAG in the opaque mode.

15

TM-1298

For -Fur th er details on GAG, one sh ou 1 d read Re.P. 7.

3. 5 Application Pages

At the time of this writing. two application pages have been
written. I am sure that there will be more developments in the
future , i . e. , c hang e s and i mp r o v em en t s w i I l b e mad e to th e e x i s t i n g
ones and new one will be added. The author will talk about three
examples, which would give the reader some ideas how to communicate
with remote GPIB devices from the console.

3. 5. 1 GPIB Test Page

A GPIB Test Page has been written as shown in Fig. 12. The
operator first specifies a device name Cthe device has to be in the
data base> and enters an ASCII string that he wants to send to the
device. The device returns data (if any), which is displayed in HEX,
ASCII or Integer.

In this crude way, the operator has to know the details of the
device, i.e., how to operate the device and what specific ASCII string
to per.Parm a particular function.

3. 5.2 Parameter Page

Some simple GPIB devices can be put on parameter pages. For
example, the dipole magnet current measured by a DMM can be monitored
on a parameter page. When the device name is entered and when the
interrupt switch is pushed under the name, the software sends
necessar4 commands to the device, brings data back and displays it or1
the page. It will be updated in a 1 Hz or 15 Hz rate. If the
operator wants to control/ monitor a few Functions on the device, he
can use the digital control/ status facility. For example, if the
operator wants to take a filter in and out of the DMM, he interrupt$
under FILTER IN OUT on the page. The information is carried on a bit
or the GAS data, GAG translates it to a ASCII string, and the string
is sent out to the DMM. The filter is thus manipulated on the DMM.

3. 5. 3 Spectrum Analyzer -

A Spectrum Analyzer Remote Control and Display page was under
development at the time of this writing. If one calls up the page, h~

sees a page like the one shown in Fig. 13. If one enters a data base
name and terminates with an interrupt under INITIALIZE SPECTRUM
ANALYZER MODULE=<:), the program is initiated and it draws .,,

16

TM-1298
~HnH~ ~~~ noou1e: v l.U

analyzer display on the Lexidata like the one shown in Fig. 14. All
the control/ monitor functions including the CRT display of the
spectrum analyzer are shown. When one interrupts under Update
Spectrum Analyzer, the program is allowed to update the conditions of
the analyzer and to enable the Lexidata cursor. By moving the cursor
and interrupting under different functions, one can manipulate the
spectrum analyzer from a console.

Furthermore, one can plot, accumulate and save
and he can plot the saved trace data.

the trace data,

4.0 CONCLUSION

It was a big effort to squeeze the space from the one occupied by
a two-wide CAMAC module and an Intel Multibus chassis to the one
occupied only by a two-wide CAMAC module. Needless to say, it was a
completely new design. When the artwork was generated, we had to
allow 8 mil line/ 8 mil space and two lines between IC pads in order
to have all the connections neatly organized and made short. The pc
boards were nicely fabricated and assembled well with JUSt a few
shorts.

I had to use new chips to do an efficient and space saving
design. The software staff was objectionable to this because they had
to become familiar with new chips and to modify the hardware dependent
module of the GAS. However, it turned out to be a relatively simple
Job. They simply copied parts of my hardware test pT'ograms.

The cost of the Multibus based system seems to be
which can be compared with $1,500 for the new design.
the new design saves real estate as a whole.

over $3, OOQ,
Furthermore.

5.0 ACKNOWLEDGMENT

I am grateful to Richard Klecka for his efforts on the GPI8
module project. He constructed the protot~pe unit and did mechanical
design for the production. He was involved in correcting mistakes or1
the artwork, inspecting p c boards and supervising p c board assembly

6.0 REFERENCES

1. TMS9914A General Purpose Interface Bus <GPIB> Controller Data Manual.
Texas Instruments 1q82.
Accelerator Controls Tevatron Time Clock System Clock Decoder,
Beechy, June 1982.

3. HD68450 DMAC <Direct Memory Access Controller), Hitachi #U102.
4. Am9519A Application Note. AMD AMPUB-071.

17

D. G.

TM-1288

5. 16~Bit Microprocessor User's Manual Third Edition, Motorola 1982.
6. Speaking GAS, ACNET Design Note No. 23.3, Lee J. Chapman, September 21

1983.
7. GAG SoTtware <GAS to GPIB translator), ACNET Design Note No. 48. 1,

Lee J. Chapman, 15 August 1984.
8. Accelerator Controls CAMAC 488 - GPIB Controller, Drawing No. 0812-

ED-35871, May 1984.

18

TM-1288

APPENDIX A

CAMAC INTERFACE

A. 1 CAMAC Commands

All commands return X.
commands.

Return of G is conditional for some

FOAO

F1AO
F4AO

F6AO

F9AO
F16AO
F17AO
F20AO
F22AO

F24AO
F26AO
F28AO
F30AO

. A. 2 Status

Read Read Registers, non-block transfer, G is
conditional.
Read module status, always Q.

Read Read Registers. block transfer reads, G is
conditional.
Read module number, 0001E8 <HEX), 488 <Decimal),
always G.
Clear module. always G.
Write data into Write Registers. G is conditional.
Clear module and reboot, always G.
Write header into Write Registers, G is conditional.
Write additional header information to Write
Registers. G is conditional.
Reset ENBL bit, always Q.

Set ENBL bit, always G.
Reset ON bit. always Q.

Set ON bit, always G .

FlAO reads the following status bits.

R24:

R23:

R22:
R21:

XTO (Transaction Time Out)
This bit is true (=1> if the following transaction
times out; {1) Write Registers to CTM FIFO transfer
and {2) MTC FIFO to Read Registers transfer.
EXH <Expecting Header)
This bit is set true by F9AO, F17AO or power-up.
It is reset by proper receipt of F20AO.
HSG <Header Sequence>
CTM <CAMAC to M-bus Sequence)

A-1

t;AMAI.,; J.N I t:.~t-ACI::.

R20:
R19:

R18:

R17:

MTC <M-bus to CAMAC Se,uence>
FYIR <FIFO-Y Input Ready>

TM-1288

This bit true indicates that FIFO-Y is ready to
accept data for CAMAC to M-bus transfer.
FZIR <FIFO-Z Input Ready)
This bit true indicates that FIFO-Z is ready to
accept data for M-bus to CAMAC transfer.

FZOR <FIFO-Z Output Ready>
This bit true indicates that FIFO-Z has data ready
CAMAC read.

Rt6. R15 and R14 are not used.
R13: HB <Heart Beat>

R12:

Rll:

R10:

R9:

RB:
R7:

R6:

This bit true indicates that MPU is alive and
updating status on M-bus.
!CTI CI Can't Take It>
This bit true indicates that GAS can't take data
in set or list set command.
RUM <RLI Unsolicted Message>
This bit false indicates that this module has
unsolicited message for RLI.
HUM <Host Unsolicited Message>
This bit false indicates that this module has
unsolicited message for host.
INI <Initialize>
This bit false indicates that this module JUSt
rebooted and that it needs to be initialized.
Not used.
ON
This bit true indicates ON mode.
ENBL <Enable)
This bit true indicates ENABLE mode.

RS, R4, R3, R2 and Rl are not used.

A. 3 LAM Generation

LAM is generatea by some of the status bits, i.e., HB,
HUM and INI.

A. 4 Conditional G Responses

G is generated by ANDing the following conditions for a
given command.

: FO : F4 : F16: F20! F22l
--------+----+----+----+----+----+
CRDVAL 1 1 CAMAC Read Data Valid L

CWIP 0 0 0 CAMAC Write In Progress
EXH 1
FTR 0 0 FIFO-Z to RR transfer
FZOR 0 0 0
HSG 0 0 0

A-2

FPLAOl

FPLA02

FPLA03

/WRHEN
f WRMEN
/WRLEN
FYSI

RHSG

RRHCK
RRMCK
RRLCK
FZSO

APPENDIX B

FPLA DESIGN DETAILS

= l<TA3*/TA4*/TA5*WTF>
= /CTA2*/TA3*/TA4*/TA5*WTF>
= /CTA1*/TA2*/TA3*/TA4*/TA5*WTF>
= DLYA2*WTF*[CTA1*/TA2*/TA3*/TA4*/TA5>

+ <TA2*/TA3*/TA4*/TA5>
+ CTA3*/TA4*/TA5)
+ CTA4*/TA5*HSG>l

= /RCTM*HSG

= TB3*/TB4*FTR*DLYB2
= TB2*/TB3*/TB4*FTR*DLYB2
= TB1*/TB2*/TB3*/TB4*FTR*DLYB2
= DLYB2*FTR*[CTB3*/TB4*>

+ <TB2*/TB3*/TB4>
+ <TB1*/TB2*/TB3*/TB4>J

TM-1298

/HDRCK = /C/Fl*/F2*F4*/FB*Fl6*SN*/FZDR*S1*/HSG•/CWIP*EXH)
/CTMCK = /{[C/F1*/F2*/F4*/FB*F16)+(/Fl*F2*F4*/FB*F16)l

SN/FZDR*Sl*/CWIP}
MTCCK = [(/F1*/F2*/F4*/F8*/F16)+(/F1*/F2*F4*/FB*/F16)l

*SN*Sl*/FTR*/HSG*/CRDVAL
/SPCQ = /{/F1*/F2*F4*/FB*F16*SN*/FZOR*S1*/HSG*/CWIP*EXH

+[(/F1*/F2*/F4*/FB*Fl6)+(/Fl*F2*F4*/FB*F16)J*SN*/FZOR*/CWIP
+[(/Fl*/F2*/F4*/F8*/F16>+<1F1*/F2*F4*/FB*/F16)J*/FTR*/HSG*CRD

FPLA04

/F30AOS1 = /(/Fl*F2*F4*FB*F16*SN*Sl)
F28AOS1 = /F1*/F2*F4*F8*F16*SN*S1

B-1

TM-1298
r~LA u~~l~N U~IAlL~

FPLAOS

FPLA06

FPLA12

FPLA13

/F26AOS1 = /(/F1*F2*/F4*FB*F16*SN*S1>
F24AOS1 = /Fl*/F2*/F4*F8*F16*SN*Sl

/ZS2 = l<Z*S2>
FC16,20,22> =

[(/Fl*/F2*/F4*/F8*F16>+</Fl*/F2*F4*/F8*Fl6>
+C/Fl*F2*F4•/F8*F16>J*SN

/CAMRE = /{[C/F1*/F2*/F4*/FB*/Fl6>+<F1*/F2*/F4*/F8*/F16>
+C/F1*/F2*F4*/F8*/F16>J*SN}

/BX

/PRTG

/F9AOS1
F17AOS1

/F6AO
/Fl AO
FCQ,4)
NS1

/CKEVl

tMEM6

/MEM5

/MEM4

/!NTACK

/HEM3

/MEM2

= /{[C/Fl*F2*F4*F8*F16)+(/F1*/F2*F4*FB*F16>
+(/F1*F2*/F4*FB*Fl6)+(/Fl*/F2*/F4*FB*F16>
+(/Fl*F2*F4*/F8*F16)+C/Fl*/F2*F4*/F8*Fl6>
+C/Fl*/F2*/F4*/F8*Fl6>+<Fl*/F2*/F4*FB*/F16>
+CF1*/F2*/F4*/FB*F16)+(/Fl*F2*F4*/F8*/Fl6)
+C/Fl*/F2•F4•/F8*/Fl6)+CF1*/F2*/F4*/FB*/Fl6)
+C/Fl*/F2*/F4*/FB*/F16>J*SN}

= /{[C/Fl*F2*F4*FB*F16>+C/Fl*/F2*F4*FB*Fl6)
+C/Fl•F2*/F4*FB*F16)+C/Fl*/F2*/F4*/FB*/F16>
+CF1*/F2*/F4*F8*/Fl6>+<Fl*/~2*/F4*/FB*F16)
+C/Fl*F2*F4*/F8*/F16)+CF1*/F2*/F4*/FB*/F16>J*SN}

= /CF1*/F2*/F4*FB*/F16*5N*Sl>
= Fl*/F2*/F4•/FB*F16*SN*Sl
= /C/Fl*F2*F4*/F8*/F16*SN>
= /CF1*/F2*/F4*/FB*/F16*SN>
= /{[C/Fl*/F2*F4*/F8*/F16>+C/Fl*/F2*/F4*/F8*/F16>J*SN>
= SN*Sl

= /CBO*B1*B2+B3+/B4*/B5*/B6*/B7*DVAL)

= /{[(/Al2*A13*/A14*A15*A16*Al7*Al8+A19)
+CA12•A13•/Al4*Al5*Al6*A17*A18*Al9)
+(/A12*/A13*A14•A15*A16*A17*Al8+A19)
+<A12•/A13*A14•A15+A16*A17*A18•A19)J
•E(/FCO*FC1*FC2>+<FCO*/FC1*FC2>J*AS}

= /{[A13*A14*A15*A16*A17•A18*A19J
*[C/FCO*FCl*FC2)+CFCO*/FCl*FC2>J*AS}

= /{[C/A13*/A14*/A15*/A16*/A17•/A18*/A19>
*<IFCO*FC1*FC2>
+C/A13*/A14*/A15*/A16*/A17*/A1B*A19)
*<IFCO*FC1*FC2+FCO•/FCl*FC2>J*AS}

= /(FCO*FC1•FC2+AS>

= /[(A14•A15*/Al6*/A17*/A18*/A19>
•<IFCO•FC1•FC2+FCO*/FC1•FC2>*ASJ

= /[(/A14•A15*/A16*/A17•/A18•/A19l

B-2

TM-1298

*C/FCO*FCl*FC2+FCO*/FC1*/FC2>*ASl
/MEM1 = /[CA14*/A15*/A16*/A17*/A18*/A19>

*<IFCO*FC1*FC2+FCO*/FC1*FC2>*ASl
/MEMO = /{[C/A14*/A15*/A16*/A17*/A18*/A19>

<FCO/FC1*FC2>
+CA12*A13*/A14*/A15*/A16*/A17*/A18*/A19

+/A12*A13*/A14*/A15*/A16*/A17*/A18*/A19>
*C/FCO*FC1*FC2>l*AS}

FPLA14

/SLDMAC = /C/AB*/A9*Al0*/A12*/A13*/A14*/FC1*F8000>
/SLSPRT = /CAB*A9*/A10*/A12*/A13*/A14*/FC1*F8000)
/EXOP = /[C/A8*/A9*A10*/A12*/A13*/A14

+AB*A9*/A10*/A12*/A13*/A14)*/FC1*F8000l
/SLBGC = /C/A8*A9*/A10*/A12*/A13*/A14*/FC1*FBOOO>
/SLUIC /CA8*/A9*/A10*/A12*/A13*/A14*/FC1*F9000>
/WMBSC = /C/Al*/A8*/A9*/A10*/A12*/A13*/Al4*/FCl*FBOOO*/ROW>
/RMB SC = /C/Al*/A8*/A9*/A10*/Al2*/A13*/A14*/FC1*F8000*ROW>
/MBI = l<A1*/A8*/A9*/Al0*/A12*/Al3*/A14*/FC1*F8000>

B-3

Fig.1 GPIB Module - System connections

C - CARD

M - CARD

DEVICE

W/RS232

GPIB
MODULE

PATCH
PANEL

TM-1298

DIAGNOSTIC
TERMINAL

DEVICE

W/GPIB

TM-1298

Fig.2 GPIB Module - C•Card block diagram

W<1:24>

R<1:24>

F<1:16> CAM AC

A<1:8> INTERFACE

S1,S2,N,Z

L,Q,X

TCK --)•I DE~~~ER

CTM
FIFO

MTC
FIFO

FIFO
CONTROL

GPIB
CONT

BUFFER M-BUS
MBD<0:7>

r----~ DMREQ,
DMACKfi

OMA
CONTROL

DMD TC

----.. DMREQ1
----- DMACK 1

TM-1298

Flg.3 Timing waveforms - Write registers to FIFO

WTF

WRHEN

WRMEN

NRLEN

FYSI

_J

FOR HEADER
TRANSFER ONLY

_fL.fLJ1Jj)----· __ I

Fig.4 Timing waveforms - FIFO to read registers

FTR _J

RRHCK

RRMCK ~~~~n~~~~~~---

RRLCK
n.., ___ _

FZSO

TM-1298

Fig.5 Timing waveform - CTM OMA

y,..._
1

----Jn ___ n..._ __ n.__ __ 1
DMONE LJ

HSQ

Fig.6 Timing waveform - MTC OMA

DMG()f)1 r
DMACK1 LJ LJ LJ
DMREQ1 Y1 n n . I
OM DONE LJ

MTC _I'

Fig. 7 GPIB Module - M-Card block diagram

CLOCK

-w "'
s ~

"'

XR/
XUD
XLD s ~

CPU
88000

PROM/RAM

ADDRESS
DECODE

MISC

. \ ' '
U> 0 .,, i:
0 0
> >
(') (')
~ ~

I ' I

DMAC
88450

I

BUFFER

BUFFER

STATUS
/CONTROL

DU ART
68881

INTERRUPT
CONTROL

9519A

-
"
'~ ,

-,

-.,
-
~

TM-1298

... ,

... ,.

... ,.

... ,
-,,

... ,.

... ,.

... ,.

DMREQi
OMA CK;

DMREQ1
DMACK1
DMREQ2
DMACK2

DMDONE
DMD TC

MBD<0:7>

RS232
(2 PORTS:

Flg.8 GPB Module - Memory map

so SP

FF8000
VO 4Kla::

FFAOOO

MEiie 18Kb
PROMa G8UG

FFEOOO MEMS 8Kb

00000
PROM2 GAS

MEM4 8Kb
02000

PAOM1 LD
MEMO 18Kb
AAM1

04000

MEM1 18Kb
AAM2

08000

MEM2 18Kb
AAM3

ocooo
MEM3 18Kb
AAM4

10000

:: :: ::~

80000 MEM4 8Kb
PAOM1 LD

I

TM-1298

FFIOOO M8SC

FF8101 aU£

FF8201 SLGBC

FF8301 SLSPRT

FF8400 SLDMAC

SP•SUPEAYISOR PROGRAM
SD•SUPEAVISOA DATA

LD•LOADER <PROTO)

TM-1288

Fig. 9 GPIB Module - B~te Manipulation

Ca> Header

:03:04:01: F20 Data Word

: 01 : 04: 03 :.c.s : Shifted in FIFO

l04101lASl031 Transferred from FIFO to memory

: 01 : AS : 03: 04 l Rotated in memory

Cb) Data

:2u10:11: F22 <or F16) Data Word 1

:30:31120: " Data Word 2

: 51 :40141: II Data Word 3

:60161150: II Data Word 4

:11:10:21:20l31l30:41140l51l50l61l60: In FIFO

:10:11:20:21:30:31:40:41:so:s1:60:61: In MemoT'y

(c) LS (List Set>

:LBCHlLBCL: TC I Header '
I NS I ANFI LID: Data Word 1 I I

~FTDHIFTDLI xx • Data Word 2 I

T BCH! BCU Data l<lord 3
NH NL I A Data Word 4 t

xx SCH: CL I Data Word 5 I

In Memory

TC AS lLBCHlLBCL: ANF: LID: XX
A : T : NH

NS lFTDHIFTDLl BCH: BCL:
NL l SCH: CL I XX :

TM-1298

_J L
CAMAC 488

GPIB CONTROLLER

• •
llPU • • HALT

• • LAii

• SQ

DllA • u
• a

• XTO • a
• EXH • 1
• llSQ

• 0
• CTll

• LCL • llTC
REii

• FYM ...
• FZmt

• ICTI
• FZOR

• RUii

• HUii • 011 • ENBL

INTR LEVEL Fig. 10 GPIB Module

! • 1 • - Front Panel

• • • = - • s • u =- 4 - • • ... - • a •
• a •
• 1 •
• 0 •

•
TClt

•
T RESET
E • II
II
I

• • +12Y
A
L • +5Y

• -SY

• _,2Y

• GND

• •
ED-35871

A • V' , r
IEDUCE Tl U• ... ~

TM-1298

Fig.11 GPIB Module - Software system

AC NET

CAMAC

........•.....•..............................•.. ···························-··························

GBUG

PROTO

RS232
DRIVER

GAS

GAG

GPIB
DRIVER

OPERA

.................•.. ··•·················•·····················

RS232
DEVICE

GPIB
DEVICES

P30
IEEE

IEYICE:I

OUTPUT STRIHGI

RETURH IRTA ... •HEX
A I c D •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• •

Fi.g.

488 <~Pl•><HPll> TEST

•ASCII •J"TEGER
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

12 GPIB Test Page

PAGE

•REPEAT
• •
• •
• •
• •
• •
• •

•
• . .
• •
•
• •
•
• •
•

•
•
•
•
•
•
•

•
•
•
•
•
•

N
UJ
co

Z6

MED 13-F'El-85 151 02

SPECTRU" AHALVZER RE"DTE CD"TRDL' AHD DISPLAY

•l"ITIALJZE SPECTRUN AnALYZER NODULE• <ZllTSAT >
TYTDSS •••

r•••··-·~•

I •UPcUtt SP•ctru• Ana1uztr· Ii I
I •En1•1• LM cursor • I
I • • I
I •CRT "•4• •DH , •arf •H•lP -< t>+ •E44t HtlP P•••• I

1--~
1---· I •Accu•ulat• Tract Data •Plot tract 4ata •r111 "•'• I
I ; I

·-----------~--------------------------------,,..-·--------------------------·-·· SAYE.fRESTDRE

,-------------------------------------·-------·--------------------------------. I •Flit 11rtctorv •Plot Tract ri1t < > •savt Tract •r111 "o't I
I I

·--~ AnALYZER CD""UHICATIDHS / ERRDRS

,--· 11 .AFE •• FALSE. I
12 ...L.EMCUR •• FALSE. I
13 ..LttDI •• FALSE I
14 S1P1'• .FALSE I
IS -EPLDT• • FALSE I
16 .. JU SF IL• • F'ALSE I

·--·
Fig. 13 Spectrum Analyzer Page

-I
s
I

N
C!J
CD

ti 411~

FILE •

ENTRY

F G H I J ~
fiU1~1.,~llE101 ~~I H

1---o-..........~~~----. ,

•••o
MIKER

RODE

" 8
0 p

jDEmll ZOO• I ~ 111 THIE c.:.:J llZE ~
llllTRURENT ITATE

Bl:_ll~lt&:z'll~I if::-m'·
IEllOTE PREIET

INITRUllEHT CHECK I 11
ISMA IPECTIU" AHA

TT-PACKAR

•
PRE- llGHL
Jl~IC TRACK

lllPLAY LINE

I 11~17~8S 184e
Ill llHZ CALllRATIOH SIG""L·•••

IATA FUNCTION DATA

~NOi CH~

v
CEMTR
FREQ

f.rutliToPI
~~

T h Z

l•owNI~ IL:~~ ,,,,

IZJ~~
~~~ 
[Ilg)~~ 
li1lJD~ 

Fig. 14 Spectrum Analyzer Display 
---l 
~ 
I 

N 
(D 
(D 



TM-1298 

Table 1 GPIB Module - Interrupt Vector Assignment 

IVectorlAddresslSpace: INTR :Assignment! 
I Number I <HEX> I I Levell 
+------+-------+-----+------+----------+ 

64 100 SD : 0 : 
+------+-------+-----+------+----------+ 

65 104 SD I 1 I 
+------+-------+-----+------+----------+ 

66 108 SD l 2 : HINT 
+------+-------+-----+------+----------+ 

67 10C SD I 3 I EOP1 
+------+-------+-----+------+----------+ 

68 110 SD I 4 I EOP2 
+------+-------+-----+------+----------+ 

69 114 SD I 5 l GPIB 
+------+-------+-----+------+----------+ 

70 118 SD I 6 l 15 Hz 
+------+-------+-----+------+----------+ 

71 11C SD : 7 : 

Note: Interrupt levels are assigned in the interrupt controller 
chip <Am9519A) with Level 0 being the highest. 


