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In an undulator with N cells each having a length t (total length 

L : Nt) and a sinusoidal transverse field 

where s is the distance along the straight unperturbed orbit. ·The undulated 

orbit is given by 

1 
X1 = 'J'T(O Cos {tR?t'..§_) = K C~s {,;;7T.§..) 

~ Jo t ~ ~ 

X =4 -::J';, Sln{.:nr:f)= ~~f.Sln(.nrj) 

where p = (BBp) with (Bp) = ~ = rigidity of beam and where, so defined, o 
0 

e 
K = -2 t /1 = (Beam angle)/(Radiation angle) is a measure of the degree 

1TPo 'Y 

of overlap of the synchrotron radiation from successive cells and characterizes 

therefore the nature of the device 

K >> .f 

K~t 

Wiggler 

Undulator 
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(2) 

(3) 
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The transition from one to the other is obviously not sharp and the formulas 

below apply to either device. 

A. Wave Length and Beam Size 

(The material in sections A and B can be found in published 

work such as S. Krinsky, IEEE Trans. on Nucl. Sci., Vol. NS-30, No. 4, 

p. 3078 (1983) and is reproduced here only for easy reference.) 

The fundamental {k = 1) wave length of the radiation emitted 

at zero angle is just the excess distance travelled by the radiation when 

the beam has traversed one cell. This is 

A, <=f (-~c~x') - ) = i [ f{1-ifi(eos 11{R11'f>)] -/} 

~1[(1+~)(1+#~)-j == ~ (1 +~) 

This also is just the Doppler shifter radiation from the moving electrons. 

If, indeed, it were possible for the electrons to travel faster than light 

so that when they traversed one cell the radiation has travelled exactly a 

distance .ll. we would have J. = 0 and the optical equivalent of the "sonic 

boom 11 which happens when the jet plane is travelling at the speed of sound 

at MACH 1. The harmonic wave lengths are 

) = _1_ - L ( Ki<) 
/l~ - ~ - :<.~/'~ I+:?:° 

Only odd harmonics (odd k) are reinforced. 

{4) 

{5) 
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For the radiation emitted at an angle e the fundamental wave 

length is simply 

. . [l/,k l 
For an N cell undulator the diffraction resolution of _Ak is~= kN. 

From Eq. (6) this is equivalent to an rms diffraction angle or> defined by 

or 

I 
=iN 

This result is physically quite transparent. 

If the rms beam size and divergence at the midpoint of the 

undulator are a and o> respectively, the apparent source size and divergence 

of the synchrotron radiation are clearly 

(6) 

(7) 

(8) 
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(~'f )~ 
i 

focal depth 
size 

+ ( Gf f );). 
~ 

diffr~ction ~ size __ 
-~ 

')!~= a1R + o.'~ 
r 

t 
beam 

divergence 

This is shown in Figure l. 

t 
diffraction ~ 
divergence ::: ~ 

J.. 

( 9) 
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Figure 1 Apparent source size and divergence 

B. Spectral Flux, Brightness, and Brilliance 

These are defined as follows 



Flux 

Brightness 
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independent of geometrical 
characteristics of beam 

h (w) :a r;,_w) ' ...D... =.. ,,217( x;z; (/n mrad~ (lO) 

Brilliance 
B(w) s 

h (f.AJ) 
s ) 

= rms source so 1 id angle 

=::::. rms source area 

So defined the flux f is independent of the geometrical characteristics of 

the electron beam. The dependence of the brilliance B on the geometrical 

properties of the beam is only through the denominator 

An approximate formula for f was derived by D.F. Alferov, 

Yu. Bashmakov, and E.G. Bessonov (Eng. Transl. Sov. Phys. Tech. Phys. 

Vol. 18, p. 1336, 1974). They gave also the exact formula, but it is rather 

( 11) 
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unwieldly to use. They derive first an intrinsic forward radiation intensity 

(assuming all electrons are on the same orbit) 

[-
d n. (cu1<)] I = CXN~l':legQ/5(K) 

d.0. 8=0 . (,() ~ 

where 

,..1 = -1..- = fine-structure contant 
1.,1\ 137 . 

and 

with J being the Bessel function. To get the total flux f we should 

integrate dn/d~ over all solid angle. This is equivalent to multiplying 

the forward intensity [~g]e=o by the diffraction solid angle 2nor~2, namely 

where 

(12) 

( 13) 
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with 

C. Maximizing the Brilliance B(w) 

For this we want first to maximize the flux f. This is 

independently desirable for many types of use of the radiation. This has 

to do only with the design of the undulator. Then, we want to minimize the 

source phase-space volume SQ. For this one has to tune for the desired 

electron beam size in the undulator. 

l. Maximizing f 

We note first that K is related to the peak field B
0 

by 

Since generally the total length L is limited we need to express N in terms 

of L by 

and get for f 

Thus, we see that for given values of B
0

, L, and I we want to maximize 

Qk/K. The values of Qk/K are plotted as functions of K for various values 

of kin Figure 1. From these graphs we see that aside from k = 1 and 3 the 

maxima are all rather flat. 

(14) 

( 15) 

(16) 
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As an example, take the case of k = 1 (the fundamental 

hannonic). The maximum value of Q1/K = 0.55 occurs at K = 1. Equation (4) 

then gives 

for 1 GeV electrons. If one is interested in the VUV light of, say, 

~, = 10-8 m, one gets 1 = 5 cm. Equation (14) then gives B
0 

= 2 kG. With 

a 100-cell (L = 5 m) undulator and an electron beam current of 500 mA one 

gets from Eq. (16) a total flux of f ~ 3.7xlo15 sec-l. 

2. Minimizing SQ = 4v2 E E ~E t -x x y y 

For each x or y plane we have 

L.2.L/~ = ( cra-r 01P--j/ + a;R~« )( O''~-+ a:~) 
This can be simplified by noting that in most cases the beam has a waist 

at the mid-point of the undulator and that we can, therefore, write 

This gives 

Defining 

we can then write the source phase-space volume as 

( 17) 

(18) 

( 19) 

(20) 

(21) 
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The emittances £x and £Y are determined by the design of the storage 

ring. One is therefore left only with the tuning of 8 and 8 to minimize x y 

Gx and GY. In Figure 2 we plot G as a function of 8/L for various values of 

the parameter A/£. We now give an itemized discussion of these graphs. 

a. The parameter A/£ has the following meaning. The 

contributions to the source size and the source divergence due to diffraction 

may be considered as or' ~ and or' respectively. Hence we can define 

ar'2 ~ = ~ as the diffraction contribution to the source phase-space volume 

(emittance). The parameter A/£ can therefore be interpreted as the ratio 

between the diffraction 11 emittance 11 and the beam emittance. When A/£<2 

the beam dominates in determining the total source phase-space volume S~, 

and when A/£>2 the diffraction dominates. 

b. For the beam dominated case (~+O) Eq. (21) gives 
£ 

In Figure 2 this is approached by the curve for A/£= 0.01. The beam dominated 

limiting curve, furthermore, approaches the asymptotic value of G = 1 as 8/L 

goes to infinity. For the diffraction dominated case (~+ 00 ) we have 
£ 

(22) 

(23) 

(24) 
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i.e. the curve is approximately a straight line starting at~ ~ at r = 0 

and increasing with s/L at a unit slope. This gives 

where the second term is very small. 

c. A simplified reasoning arising out of the second 

factor {the divergence) on the right-hand-side of Eq. (18) would conclude 

that the beam divergence should not be larger than the diffraction divergence, 

namely 

or or ~>f 

This is certainly true if one is considering the brightness b which has only 

the solid angle~ in the denominator. But for the brilliance with the 

denominator S~ the situation is not so clear. A reduction in the beam 

divergence a~ (by an increase of s) is accompanied by an increase in the 

beam size a. The graphs show that as s/L decreases beyond a limit, G does 

indeed rise sharply but the limit is rather insensitive to A/£. Over the 

4-decade range of~ from 0.01 to 100, the simple condition 
£ 

(25) 

(26) 

A > .L (27) 
~ I(, 

does fairly wel 1 in ensuring that S~ is no more than -40% higher than the 

minimum. 

Because £x and £Y are very different in magnitude, 

the two planes are unusually dominated by different factors and it is difficult 
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to draw further general conclusions beyond the obvious statement that smaller 

beam emittances are better. For an example, we take Ex = 2.6xlo-8 m and 

EY = 2.6xlO-lO mas in the TLS. If we are interested in A= lo-8 (VUV) we 

have~ -0.4 and~ -40. In the y-plane the ~ = 40 curve gives a near minimum 
EX £y £ 

GY = 22 at sy/L = 0. 3 or By = 1. 5 m for L = 5 m. The tuning curve of TLS 

gives for this Sy value a sx = 9.5 m. The~= 0.4 curve gives Gx = 1.4 

(minimum is 1. 35) at S/l = 1. 9. Thus al together we have 

Sfl. '=' 4qril(tl.·bXIO-km)(P1.•6XIO-IOm)X /.4 Xo2~ 

= B· ~ X 10-i.s-m:G -.:::::: 8·~ x /0~ n>m.i mrad.tl; 

Together with the maximized flux f = 3.7xlo15 sec-l this gives a maximized 

brilliance of 

B= .B·ix 10 1s
e.~ x 10-- 3 

The undulator parameters are 

1 =Scm) 

and the tuning parameters are 

Figures 1 and 2 are computed and plotted by Y. Cho of Argonne. 

His able assistance is gratefully acknowledged. 
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Figure l Qk/K plotted as functions of K fork= l,3,5,7,9,ll,l3,l5 
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Figure 2a,b,c,d. 
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G plotted as functions of B/L for the 
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