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I. Introduction 

The solution for the electromagnetic fields in a cavity - beam pipe 

combination driven by a periodic current source is complex, even for the 

simplest geometries. Keil and Zotter1 have obtained the result for the 

longitudinal coupling impedance for a beam pipe of circuT~~ cross section 

and large circumference connected to a cylindrical cavity. They match field 

solutions within the beam, between the beam and the beam pipe walls, and in 

the cavity outside the beam pipe radius, and obtain the result for the 

coupling impedance as a slowly convergent infinite series. 

In this paper we explore the possibility of matching field solutions 

in two d~fferent axial regions: The beam pipe {of circular cross section) and 

a cavity of general (azimuthally symmetric) shape, in the hopes that the 

result can be expressed as a sum over just a few cavity modes. In this way 

it may be possible to evaluate the coupling impedance of an obstacle of 

general shape by using existing numerical programs such as SUPERFISH2. 

* Permanent address: Physics Department, University of Maryland, College Park, MD 

1E. Keil and B. lotter, Particle Accelerators 3, 11 (1972); see also Warnock, 
Bart and Fenster, Particle Accelerators 1.f., 179 (1982). 

2K. Halbach and R.F. Holsinger, Particle Accelerators ]_, 213 (1976). 
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II. Analysis of the Fields 

We consider a beam pipe of cross sectional radius b and circumferential 

length 2nR in which an azimuthally symmetric cavity-like obstacle with dimen­

sions small compared to R is located, as shown in Figure 1. 
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The longitudinal coupling impedance is defined as 3 

where the driving current is 

J (r,z,t) z 

iwz/v - iwt 
e ' 

and the resulting 11 voltage 11 is defined by 

r<a 

r>a 

z=rrR 

(2. l ) 

(2.2) 

3see, for example, A.W. Chao, 1982 Summer School Lectures, SLAC, p. 396. 
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2nR 
V -iwt _ , dz E (z) e-iwz/v 
o e J z 

0 

Here E (z) is the z component of the electric field generated by the z 

driving current, averaged over the beam. 
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(2.3) 

The solution for the fields for a lossless beam pipe without an 

obstacle is well known4,and readily obtained. Specifically, suppressing 

the factor e-iwt, 

where 
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(2.6) 

(2. 7) 

(2.8) 

(2.9) 

(2.10) 

4see, for example, Nielsen, Sessler and Symon, Proc. of the Int'l. Conf. 
on High Energy Accelerators, Geneva, 1959, p. 239. 
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and where the upper and lower entries in { } correspond to r<a and r>a. 

It is also convenient to expand Eqs. (2.4) - (2.6) in the complete 

set of radial functions J
0

(p
1 

r/b) where p
1 

is the £th zero of J
0

(x). The 

result is 

I 
eiwz/v 

00 pR-r Ep = _o __ l_ 
L: aR- Jo(-b-) (2.11) 

z Tia2 iw£ R,=l 

I eiwz/v 
00 p R, pR-r 

Ep = _Q_ _l_ (~) i L: ab atJl (b) (2.12) r 2 iw£ ov t=l TI a 

I 00 pi ptr Hp 0 l iwz/v (2.13) = 2a e L: ab ai Jl (-b-) 
<P TI a R-=l 

where 

Pia 
JR,(b) a2 a 2 

ai = 
a2b2 + p2 pia 2 £ 

~ Jl (pt) 

(2.14) 

We shall now write the fields in the actual configuration of Figure 1 

as 

(2.15) 

where the superscripts P and C stand for beam pipe and cavity respectively . 
...i. -" 

Since EP, Hp also correspond to our particular solution, including the 
- .... .. 

driving current, EC and He will satisfy the usual Maxwell equations without 
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current and charge, namely 

'V x [<= = i wµ fi , 7 X ~ = -iWE r= 

We now separate our problem into two regions, in which the following 

boundary conditions apply: .. ..... 
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(2.16) 

Region (1) Since EP and HP satisfy the boundary conditions on the 
-"' ~ 

beam pipe wall, so must Ecand He. Thus 

~an. = O, JlC norm. = 0 [Region (1) boundary] (2.17) 

Region (2) The boundary of Region (2) can extend beyond r=b, and in 
-"' -

general EP and HP will not satisfy the correct boundary cdnaition on the 

cavity walls. Thus we must require 

t,: = -_[P ~ = _Jf [Region (2) boundary} (2.18) 
tan. tan. ' norm. norm. 

If we are in a frequency region where only one mode can propagate 

in the beam pipe (p1/b<w/c<p2/b) and if we choose L to be at least several 

beam pipe diameters, then the cavity fields will coincide with the propa­

gating mode field at z = L, 2~R-L. 

We shall evaluate the impedance in Eq. (2.1) separately for even 

and odd driving currents. Considering the symmetric modes, with a symmetric 

cavity first, we can replace the z dependent factors in Eqs. (2.4) - (2.6), 

(2.11) - (2.12) as follows: 

eiwz/v -+ cos ~ {nR - z) l v 

. iwz/v sin~ (nR - z) 
J 

1 e -+ v 

(2.19) 

-"' ..... 
We can now write for EC and He in Region (1) 



where 

A 
iwE 

6 

and where A is to be determined. If we choose L to satisfy 

a1 (nR - L) = mn 
~ ~ 

then EC and He in (2.20) - (2.22) will satisfy the usual metal wall - ~ 
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(2.20) 

( 2. 21 ) 

(2.22) 

(2.23) 

(2.24) 

boundary condition· (Etan= Hnorm = 0) on the interface between Regions (1) 

and (2) at z = L, 2nR - L. In this way the complete cavity problem 
~ ..... 

(Region (2)) is specified by (a) the equations for EC and He (Eq. (2.16)), 

(b) the boundary condition, Eq. (2.18), which holds on the outer cavity 

boundary, and by (c) the boundary condition, Eq. (2.17}, which holds at 

z = ± L (or at z = 0, z = L for a "half cavity"). These represent the 

standard ingredients for a SUPERFISH2 calculation without the frequency 

search/fictitious driving current feature usually needed for finding the 

cavity eigenmodes. 
~ .. 

The output of the SUPERFISH calculation will be the fields EC and He 

in Region (2). Because only one mode can propagate in the pipe region, the 

coefficient A will be determined by matching the cavity fields E; and H; to 

the values A/iwE and A/a respectively as given in Eqs. (2.20) - (2.22) at 

z = L. 

The formulation for the odd driving current is quite similar. In 

this case Eq. (2.19) is replaced by 
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eiwz/v 
-+ -i sin ~ (nR - z) 1 v 

eiwz/v J (2.25) 
-+ cos ~ (nR - z) v 

_. ... 
We then obtain for EC and He in Region (1) 

E; = w~ sin a1(nR - z) J
0

(p1r/b) (2.26) 

C B al 
Er= WE (J cos a1(nR - z) J 1(p1r/b) ( 2. 27) 

(2.28) 

If we again cho?se L to obey Eq. (2.24), then E~ and H; will now vanish at -z = L, 2'11"R-L, thus satisfying a "magnetic" wall boundary condition (E = norm 
~ 

Htan = 0) on the interface between Regions (1) and (2). Our cavity problem 
... -4 

(Region (2)) then is specified by (a) the equations for Ee and He (Eq. (2.16)), 

(b) the boundary condition, Eq. (2.18), which holds on the euter cavity 

boundary, and by (c) the "magnetic" boundary condition 

f -o ~ =O norm. - ' tan. (2.29) 

at z = O (because the mode is odd in z) and at z = L. Once again, these are 

the standard ingredients for a SUPERFISH calculation without the frequency 

search. The coefficient B in Eqs. (2.26) - (2.28) will be determined by 

matching the cavity field E~ to the value Ba1/w£cr in Eq. (2.27) at z = L. 

III. Longitudinal Coupling Impedance 

Once the SUPERFISH calculations are completed, the longitudinal 

coupling impedance can be readily calculated. That portion due to the 
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beam pipe fields is obtained from Eqs. (2.1) - (2.4) by averaging over the 

beam, and is 

z p - 4iR a 
L -~ f rdr { l - aaF1(oa)I (ar) } = 

we:a 0 0 

- 2iR { l - 2.aF1(aa)I 1{aa) } --2 ( 3. 1 ) we:a 

For ob<<l one can use the series expansions for Kn(x) and In(x) for small 

argument to obtain 

zlP - iZo b 
- ( ~ + tn -a ) ( 3 . 2) 
n - Sy2 

I 

where Z
0 

=,,jµ[f.= 377 ohms is the impedance of free space, in agreement with the 

well known result for a beam pipe4. 

The contribution of the cavity is obtained by calculating the voltage 

due to the additional cavity terms: 

L EC L 
VC = 2i f dz <-!:- > cos(wz/v) - 2i J dz <EC> sin(wz1'v) + o o l even z odd 

0 

rrR 
+~A <J

0
(p1r/b)> f dz cos a1(rrR-z) cos(wz/v) + 

1W£ L 

TIR 
+ f8 < J

0
(p1r/b) > f dz sin a1(rrR-z) sin(wz/v) 

1W£ L (3.3) 

where < > stands for the average over the beam. Our solution for E~ in 

Eq. (2.4) makes it clear that E~ is imaginary for the current perturbation 

even in z, and real for the current perturbation odd in z. The same is 

therefore true for EC and leads to the conclusion that A and B are real, z' 
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implying an overall imaginary result for V~ and ZL. 

and 

The last two terms in Eq. (3.3) are readily evaluated, since 

pla 
Jl (-b-) 

=---

TIR 
f dz cos a1 (TIR-z) cos(wz/v) 
L 

TIR 
f dz sin a 1(TIR-z) sin(wz/v) = 

L 

pla 
(21)) 

~ sin(wl/v) 
v 2 2 cos(mTI} 
(w/v) - a

1 

a
1 

sin(wl/v) 
2 2 cos(mTI) 

(w/v) - a 1 
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(3.4) 

(3.5) 

(3.6) 

where we have used Eqs. (2.10) and (2.24) to eliminate all remaining 

dependence on R. Thus the effect of the cavity with lossless walls is to 

add an imaginary contribution Z~ = -V~/I0 to zr in Eq. (3.1) or (3.2) which 

does not depend on R. (The cavity contribution Z~/n will therefore be 

proportional to l/R.) 

IV. Two Propagating Pipe Modes 

The formulation in Sections II and III will lead to a well defined 

SUPERFISH problem for the cavity when only a single mode can propagate in the 

beam pipe. It can also readily be adapted to a frequency below the cut-off 
~ ~ 

frequency of the beam pipe by setting EC and He to zero in Region (1). 

However, when two or more modes can propagate in the pipe, the situation is 

much more complicated. 

The following method can be used when two modes can propagate. In 

this case Eqs. (2.20) and (2.22) are replaced by 
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EC ( . ) - l 
{ z } = { lwt: } [ A1J 

0 
(p1 r/b)cos a.1 (1TR-z)+A2J 

0 
(p2r/b)cos a

2
(1TR-z) J 

HC o-1 {1} {1} 
¢ (4.1) 

It is now not possible to find a value, z = L, for which either aHC/az = o 
$ 

(metallic boundary) or H; = O ( 11magnetic 11 boundary). But if we choose L 

such that 

z=L (4.2) 

for each of the two terms in Eq. (4.1), and therefore for any linear 

combination of the two terms, then we can redefine the buundary conditions 

for H; in Region (2) at z = L as 

aHC 
[ J. + J.HC J = 0 

an ct> z=L (4.3) 

Thus we have a linear combination of the Dirichlet and Neumann boundary 

condition at z = L, and this is sufficient to define the SUPERFISH problem 

for the cavity. Clearly L and A must first be obtained by solving Eq. (4.2) 

numerically before performing the SUPERFISH calculation with the boundary 

condition in Eq. (4.3). 

Once the SUPERFISH solution is obtained, A1 and A2 can be found by 

matching the r dependence at z = L. One then performs an analogous cal­

culation for the field solution odd in z and eventually obtains two additional 

terms in Eq. (3.3) involving A2 and s2. The coupling impedance due to the 

cavity, Z~ = -V~/10 , is obtained as before. 

V. Surm1ary 

The calculation of the longitudinal coupling impedance for a cavity 

of general (azimuthally symmetric shape) attached to a long beam.pipe of 

circular cross section has been formulated as a boundary value problem in two 

separate longitudinal regions. Specifically, we write the well known solution 
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for the fields of a sinusoidally varying driving current in a uniform beam 

pipe and express the actual field as the sum of the known beam pipe field 

and a supplementary field caused by the cavity. The equations for this 

supplementary field are then written in two regions, one involving just the 

beam pipe, and the other involving the cavity and just enough of the beam 

pipe for the evanescent modes to decay. By careful selection of the location 

of the interface between the two regions, the equations for the supplementary 

field in the cavity region become Maxwell's equations without current or charge 

sources. and with well specified (inhomogeneous) boundary conditions on the 

walls of the cavity. As a result, numerical programs such as SUPERFISH can 

be directly used to obtain the supplementary field and the corresponding 

contribution of the cavity to the coupling impedance. 
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