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I. Introduction 

* The analysis of various geometrical configurations of REC material 

designed to produce pure multipole field configurations (such as quadrupole, 

dipole, sextupole, etc.) is greatly simplified by the assumption that the 

permeabilityµ is unity. In this case the fields generated by one block of 

REC penetrate the other blocks of REC as if they are not there, and the 

total field configuration can be evaluated as a superposition of the fields 

due to each segment. 

When µ t 1, the calculation of the fields produced by several REC 

segments becomes a complex boundary value problem, since the superposition 

principle no longer applies. Only very simple geometries can be carried 

through analytically. 

In an earlier paper1, Gluckstern and Holsinger estimated the effect 

of B, H non-linearity on the multipole structure and quadrupole field strength 

for a 2-D REC quadrupole ring with continuous rotation of the easy axis. The 

analysis was carried out to lowest order in µ11 -1 and µ.L-µlt where µ11 and µJ. 

are the permeability of the REC material along and perpendicular to the easy axis. 

* The designation REC stands for rare earth-cobalt, but it is intended to include 
the larger class of permanent magnet materials such as ceramic ferrites, samarium­
cobalt, neodymium-iron, etc. which have permeability close to unity and high 
remanent field. 

tPermanent address: Physics Department, University of Maryland, College Park, MD. 
1R.L. Gluckstern and R.F. Holsinger, Proceedings of the 1981 Linac Conference, 
Santa Fe, NM, p. 214. 
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The purpose of the present note is to provide a general formulation 

for the analysis for µ t 1 which can be adapted for numerical work if so 

desired. 

I I. Genera 1 Analysis 
..... .... 

Let us assume that the relation between B and H is given by 

;t + -+ 7:-+ 
I) = H + M + r(H) ( 2. 1 ) 

..... 
where Mis a known magnetization distribution supplied by blocks of REC 

..a. 
material located in specified positions. Maxwell's equation for His 

-+ V x H = 0 (2.2) 

in the absence of current, thus permitting the use of a scalar potential 

defined by 

(2.3) 

..... 
The Maxwell equation for B then becomes 

(2.4) 

~ ....& 

Clearly M = 0, f = 0 outside the REC. (We assume no other permeable material 

is present.) 

Since Eq. (2.4) has the form of Poisson's equation, we can write the 

solution as 

l)J(x) 
-+ -+ -+ -+ 7:(-+ 

f 
dx 1 V·M(x') dx' V·r x') = (l/4n) - + (l/4n) JI-+ -+,I 

1-x - x' 1 x - x 
(2.5) 

where the integrals are carried out over all space. Clearly, there is no 

contribution to the integrals outside the REC. There may, however, be a 
..... ~ 

discontinuity in Mand/or f at the surface of the segments. Recognizing that 

the discontinuity introduces a surface integral of the normal component of 

the discontinuous vector function, we can write 
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-+ -+(-+') 
-(l/4n) JdS' n·M x 

1x- - x' 1 

n-·f(x') - (l/4n) JdS' + 
1x- - x-· 1 

+ (l/4rr) J 
REC 

dx' v ·M(x') 
1x- - X-· 1 

dx' v·f(x') + (1/4rr) J ___ ,___ 
1x- - x-· 1 

(2.6) 

where the volume integrals run only over the interior of the REC segments, 
... 

and where n is the outward normal on the surface of each REC segment. 
~~ 

Equation (2.6) is clearly an integral equation, since f(x 1
) is assumed 

.... .... '""" 
to be a function of H, or ~· But if f is small compared to M, it can be used 

effectively in a perturbative approach. The first approximation to ~ is ob-
-l 

tained by setting f = 0 on the right side of Eq. (2.6). The value obtained 
.... -" 

for~, and thereby for H, is then used in a second approximation for f, leading 

to a second approximation for~ in Eq. (2.6). This process can be repeated, 
~"""' 

and will converge at a rate determined by the ratio jfj/jMj. Thus the method 

is not expected to converge in the case of materi a 1 s with µ > 2. 

III. Permeability Not Equal to Unity 

If one has REC which satisfies 

s = M + µH 

where µ is a scalar, one can use the previous formulation by setting 

1 ( H) = ( µ - 1 ) H" 

Equation (3.2) then implies 

v · 1 = ( µ - 1 ) v · H = - ~__:_l_ v . M" 
µ 

within the REC, thus leading to 

( 3 .1) 

(3.2a) 

(3.2b) 
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ij; ( x) 
-+ '"*(-+') 

-(l/4n) JdS'-Jl:~ µ - 1 
-+ -+ - 4TI Ix - x' I 

-+ -+ -+ 
JdS' n·H(x') + 

Ix - x' 1 

+ ( 1 I 4nµ) 1 dx' 17 · 1" ( x ' ) 
REC 1t - I' I 

(3.3) 

The validity of Eq. (3.3) has been checked by solving the boundary 

value problem for an REC spherical shell with easy axis defined by 

M = M cos(e) r 

M = M sin(e) e 

which produces a uniform field inside the shell of strength 

4 ( ) 2(µ-1) ( 3 3) Hz_ 2jJ+f in b/a + 3(µ+l)( 2µ+l) 1- a /b 
M-

l - 2(µ-1) 2 3 
(µ+2)(2µ+l)(a/b) 

(3.4) 

(3.5) 

Here a, bare the inner, outer radii of the shell, and r, e, ~are the usual 

spherical coordinate variables. Since the angular dependence of tJ! will be 

proportional to case, we can write 

iJ;(r,8,¢) = iJ;(r) cos(e) 

Hr = iJ;'(r) cos(e) 

where we take advantage of the fact that only Hr is needed in Eq. (3.3). 

Evaluation of Eq. (3.3) leads to 

where F1(r), ···F4(r) are known continuous functions with discontinuous 

derivatives at r =a, b, and where$' (a+), $' (b-) are the values of w' (r) 

(3.6) 



TM-1267 
-5-

just within the REC shell. Differentiating Eq. (3.7) enables us to obtain 

two linear equations for ~·(a+), w'(b-) which can be readily solved, and 

which lead to exactly the same result as in Eq. (3.5). 

If one has a permeability which is different along the easy axis 

(µ 11 ) than perpendicular to it (µ.L), one can write 

a,, (H·M) fi1 + = fllJ M2 
+ M 

ot·M)M 
(3.8) 

i3 - i3,, + = µ { H -
M2 

} 
.L 

leading to 

(3.9) 

In this case Eq. (2.6) applies with 

(H·M)M f = ( µJ. - 1 )H + (µ
0 

- µ.,L. )---'---=----
M2 

(3.10) 

The second of the two terms in Eq. (3.10) has been evaluated1 for a 2-D 

quadrupole shell with continuous easy axis rotation, where it is shown 

that a small non-vanishing value of µ 11 -µ.1.. leads to a 26 multipole term, and 

for a 2-0 dipole which leads to a 23 multipole term (octupole). Clearly an 

iterative approach using Eq. (2.6) would enable us to obtain the fields to 

higher order in µ 11 -µ.L, including effects of segmentation. 

IV. Numerical Approach for REC Blocks 

Some simplification occurs if the REC configuration consists of 
_t. ~ 

blocks in each of which M is uniform. Specifically v.M = 0 within each block. 
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For constant µ, Eq. (3.3) then reduces to two surface integrals, which 

correspond to calculation of a magnetic scalar potential from two surface 

distributions of magnetic charge. If one divides the surface into N small 

segments, each of which is planar or can be assumed so, then one can 
-J. 

rewrite Eq. (3.3) as follows: The field H is obtained by differentiation, 

leading to 

H(x) - l Jds ~·M(x-x') 
- 4n I+ +, 13 x - x 

µ -1 
+ 4n 

+++ +-+) 
JdS' n·H(x')tx-x' 

Ix - x· 13 
( 4. l) 
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Replacing each surface integral by the sum over surface segments, and evaluating 

the normal field 

h. = ~.·H(x.) 
1 1 1 

(4.2) 

at each segment, one can write 

+ -± -+ + + + 
t.-.S. n.·M.(n.·x. - n. · x.) 

(l/4n) l: J J J 1 1 1 J + h. = 
- x.13 + 1 j Ix. 

1 J 

+ + + + 

cl 
!1$. h. (n. · x. - n.-x.) 

(4.3) l: J J 1 1 1 J 
+ 4TI -+ - ;: · 13 j jx. 

1 J 

Some care is needed when i = j, but it is well known that a surface charge 

density o produces a field ± o/2 on each side of the surface. Thus the 

contribution to the sums in Eq. (4.2) at i = j on the interior side of the 

surface segment is 



-+ -+ 
n. ·M. 

l l 

2 
)J -

2 
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h. 
l 

We therefore can write 

)J + 
2 

- 1 h,. - 4n 2: 

-+ -± -+ -+ f'iS.(n.·M.)(n.·x. 
_J J J l l 

-+ -+ 
- n. ·x.) 

l J 

jfi 

-+ -+ 
n. ·M. JJ -l 

l l + ~-
2 4n 

-+ -+ 3 
jx. - x ·I 

l J 

-+ -+ -+ -+ 
L'iS . h . ( n . · x . - n . • x . ) 

J J l l l J 
-+ -+ 3 Ix. - x ·I 

l J 
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(4.4) 

+ 

(4.5) 

Equation (4.5) is therefore a set of N equations for the N unknowns hi. Once 

these are found numerically, Eq. (4.1) can be used in the sum form to obtain 
.... -1 

the field at any location xi. Note that the discontinuity in n·H at an REC 

surface is taken care of by the discontinuity of the normal field as one 

crosses a charged surface . 
......... 

If µ 11 t µ.L., or if f(H) represents a non-linear relationship, we must 

return to Eq. (2.6) which now includes a volume integral. This requires 
.... 

dividing the segments into sub-blocks, and evaluating V·f approximately in each 

sub-block. One then can once again obtain a soluble system of linear equations 

for the field in each sub-unit (surface or volume) into which the region of in-

tegration has been divided. 

V. Summary 

We have obtained an integral equation for the magnetic field produced 
~ ~ 

by a configuration of REC segments in which the relationship between B and H 

is either non-linear or corresponds to a permeability different from unity. 

A computational procedure is then outlined in which successive iterations will 
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be rapidly convergent if the permeability is close to unity, or if the 
..J. ~ 

non-linear part of the relationship between Band H is small. In those 

cases in which the REC segments have uniform magnetization and a boundary 

made up of planar surfaces, it is possible to write a set of self-consistent 

linear equations for the field at a finite number of points on the surface 

of, and within the REC segments, which can be readily solved. 
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