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The purpose of this note is to formulate the beam-cavity coupling 

impedance in terms of the normal modes of the cavity. While the analysis 

will be carried out only for the longitudinal beam-cavity coupling im-

pedance, it should be easily adapted to the transverse impedance. The 

hope is that such a formulation may illuminate the behavior~f the 

coupling impedance in various frequency limits. 

II. Review of Normal Mode Analjsis1) 

We shall obtain the .normal modes for an ideal cavity with perfect 

walls, whose boundary is divided into the surface S, with the boundary 

condition 
+ ;:t ++ + ;:t 
n x ti = n·Hi = n x rm= O {S) {2 .1) 

and the surface S', with the boundary condition 

+ ;:t + + + * n·t = n x H = n x r = O i i m (SI) (2.2) 

~ ..... 
Here n is the (outward) normal at the boundary, Fm represents the irrotational 

..... ..... 
modes needed for the expansion of fields in the presence of charge, and E

1
, H

1 

represent the solenoidal modes which are closest to the normal excitation 

modes of the cavity. 

Specifically, we write the eigenvalue equation 

l) This treatment follows that given in Slater, Microwave Analysis, 
Van Nostrand Press (1950) 
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'il2qi + k 2
qi = 0 } m m m 

qim(S) = qim(S') = 0 (2.3) 

F = - 'il<P ' v x F = o (2.4) m m m 

for the irrotational field and the eigenvalue equations 

'i7 x ('il x ER) = k/EJl 
(2.5) 

v x (V x ft ) = k 2H" 
Jl Jl i 

v x Et = k.11,H.11, , 
-+ 

kt Et (2.6) V x Ht = 

-+ £ -+-+ n x Jl(S) = n·H.11,(S) = 0 (2. 7) 
-+ -+ -+E( n x H (S') = n· S') = 0 JI, JI, 

V·E -+ = 0 (2.8) = 'i7. H 
Jl JI, 

_., 
for the solenoidal fields. We shall accept Slater's assertion that Et' 
_., ..... 
Fm form a complete set for the expansion of the electric field, and H~ 

forms a complete set for the expansion of the magnetic field. It is a 

simple matter to confirm the orthogonality relations (and to set the 

normalizations) 

J Ei· E.11, 1 dv = J Ht ·Ht' dv = oJl,t' 

f Fm·Fm' dv = k~ f qim qim' dv = omm' 

1 "E ·F dv = o 
JI, m 

(2.9) 

(2.10) 

(2.11) 
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The general approach to using the normal modes in a particular 

application is to start with Maxwell's equations 

-+ 
'il·H = 0 

-+ 
'il·E = p/£ 

aft v x f = -µar 
v x ft = f_af + J 

at 

( 2. 12) 

(2.13) 

(2.14) 

(2.15) 

where E, µ are taken to be constant, and where all fields are assumed to 
.... 

depend on x and t. 

"""" """" Let us then expand E and H as 

E(t,t) = E U (t)Fm(x) + E Vt(t)Et(;) 
m m t 

where 

u = 1 E·F dv m m 
v = 1 E·E dv R, - R, 

-+ -+ I = f H·H dv R, R, 

Equation (2.12} is satisfied automatically because of Eq. (2.8). If we 

multiply Eq. (2.13) by ~m and integrate over the cavity volume, we find 

( 2r. 16) 

(2.17) 

(2 .18) 

- f ~ v. E dv = U = - l J p ~ dv m m £ m (2.19) 

where we have used Eq. (2.3b) to eliminate the boundary terms in the 

integration by parts. Similarly we can (scalar) multiply Eq. (2.14) by 
~ """" 
Hi, and Eq. (2.15) by Ei and integrate over the cavity volume to obtain 
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(2.20) 

t2. 21) 

In proceeding further we shall assume that all fields, charge 

and current have the time dependence e-iwt, and obtain 

(2.22) 

(2.23) 

U = l J p~ dv = - _i_ J j.f dv m £ m w£ m (2.24) 

where the last form of Eq. (2.24) is obtained using· the equation of 

continuity for current and charge. 

Tne surface integral in Eq. {2.22) is non-vanishin~ only because 

of wall losses. Assuming dominance of a particular mode, one can write 

approximately 

J dS ~-ExH ~ wµo (l-i) 
s t 2 J dS H·HR, 

s 
where the skin depth 6 is given by 

2 
0 = 2 

wµa 

(2.25) 

(2.26) 

and where we have assumed an outward penetration into the metal skin. 

If we define the quality factor of mode 1 by 
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( 2. 27) 

-
the surface integral can be written as 

-+ E -+ ::: (1-i )wµ -1 
J dS n · xH.R. Ii Qi 
s 

(2.28) 

Thus Eq. (2.22) becomes 

k.R. vi ::: iwµ Ii (1 + 1 + i ) 
QR, 

(2.29) 

or 
-iki 

) v R, (1 -
l+i ) IR. ::: ( wµ Q.R. 

(2.30) 

where we assume that Qi>>l. Using Eq. (2.30), we now find for Eq. (2.23) 

2 { w µ£ 
2 . 

- k (1 - ~1 ) } v = 
i Q.R. R, 

( 2. 31} 

where we have absorbed the small real frequency shift due to wall losses 

into the definition of k
1

. 

In using Eq. (2.31) we recognize it as a resonant high Q oscillator 
.... 

being driven by a current in the cavity {J) as well as by any power source 

coupled through the surface S'. Note that in the absence of drive power, 

or current, the cavity resonates at the frequency 

Clearly the time dependence 

implies a damped oscillation with the usual definition of Qt. 

III. Coupling Impedance 

A commonly employed definition of the coupling impedance2) 

2>see, for example A.W. Chao, 1982 Summer School Lectures, SLAC 

(2.32) 

{2.33) 



for a ring of circumference 2nR is 

where the driving current is 

(
+ ) _ I -iwt + iwz/v 

Jz x,t - 0 e 

and the resulting voltage is 

-iwt 
V e 

0 
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( 3. l ) 

(3.2) 

(3.3) 

We here assume that the current element is at a fixed location x
0

, y
0 

in 

the x, y plane. Equation (2.24) gives 

iI · t 2nR iwz/v 
um= - WEO e-lW J Fmz e dz 

0 

(3.4) 

and Eq. (2.31) gives 
2nR 

J E eiwz/v dz 
o Jlz (3.5) 

where we have replaced w//Qt by w.l!.w/Qt to yield the usual circuit form for 

cavity impedance. Since Equation (3.3) corresponds to 

-iwt J2nR F e-iwz/vdz + V e = L U o m mz m o 

V 12nR E e-iwz/v dz i Jl o Jlz 
(3.6} 

we find for the longitudinal coupling impedance 

zl (w) = ( iw/d 
(3. 7) 

A similar expression can be obtained for the transverse impedance. 
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IV. Special Limits 

a) Resonance Behavior 

If the coupling impedance is dominated by a single cavity 

resonance, one can write, in the vicinity of the resonance 

If E e-iwz/v dzj 2 
~ (c/w ) __ ...:...i=z ______ _ 

i 1 + iQi (wi/w - w /wi) 
( 4. 1) 

where Z
0 

= {µ/£) 112 is the impedance of free space. This form for resonant 

coupling impedance agrees with the usual definition of shunt impedance as 

{voltage)2/(power) and of Qt as {stored energy) (frequency)/{power). 

b) Beam Pipe 

The modes in a beam pipe of cross sectional radius b and 

circumferential length 2nR are easily obtained neglecting the ring curvature. 

Assuming azimuthal symmetry, the TM modes have electric fields proportional to 

Ezi = Eo eiksz Jo(ptr/b) 

Eri = -(iksb/pt) Eo eiksz Jl(ptr/b) 

where s is an integer and 

k = s/R s 

(4.2) 

(4.3) 

to ensure a single value for the fields after one trajectory around the 

circumference, and where Pt is the tth zero of the Bessel function J
0

. 

The eigenfrequency is given by 

The normalization 

E 2 = 
0 

condition in Eq. {2.9) requires 

2 2 
Pt c 

( 4 .4) 

(4.5) 

A beam pipe of constant cross sectio~ is anamolous, in the sense 
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~ ~ 

that the eigenmodes F have the same eigenfrequencies as the eigenmodes E . m i 

Specifically we find 

F = F eiksz J (ptr/b) 
mz o o (4.6) 

Fmr = (ipt/ksb) Fo eiksz Jl(ptr/b) 

(4.7) 

and with 

2 2 )2 (wm/c) = (s/R) + (pt/b (4.8)' 

If we evaluate the longitudinal coupling imped~nce for the 

rotation harmonic n, we have 

w = n w = nv/R 
0 

Th'e form factor in Eq. (3. 7) then becomes proportional to 

12rrR ei(s-n)z/R dz= 2rrR 6 o sn 

(4.9) 

(4.10) 

.Thus, only the modes with s = n nodes in the longitudinal direction survive, 

and the sum over modes in Eq. (3.7) reduces to the single sum over t. 

Speci fi cal ly, 
2 2 

W - WJI, 

2 c 

Z (n) oo 

_.!:____z = (4n2i/8) L 
n o t=l 

(4.11) 

(4.12) 

where the two terms in the bracket { } come respectively from the sum over 
-1 m and t. We have here neglected Qi compared to 1 because of the non-

resonant behavior of the cavity modes with respect to w. Using Eq. (4.5) 

for E 2 one finds 
0 ' 
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(4.13) 

Since the primary contributions to the sum over t come from 

large t, we can write 

(4.14) 

and obtain 

t (4.15) 
t 2 + (nb/'Tl"Y R) 2 

which diverges, especially as y+oo. Convergence can however be recovered 

if we choose a uniform beam of radius a and recognize that the fields E and z 
F; have a radial dependence J

0
(ptr/b). Thus Eq. (4.13) needs to be replaced 

by 
00 

l: 
t=l 

where we have neglected the term in y- 2 inside the sum. 

(4.16) 

An explicit form for the sum in Eq. (4.16) can be obtained by 

expressing various functions of r as expansions in the complete set of 

functions J
0

(ptr/b) in the region O~r~b. Specifically, one can easily 

show that 

where x> 

leads to 

- in (x) = 

00 

2 • l: 
t=l 

00 

2 l: 
t=l 

(4.17) 

(4.18) 
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Thus the longitudinal coupling impedance of a wave guide of 

cross sectional radius b due to a beam of radius a is 

Z (n) 
__1__z = (i/Sy2} { ~n(b/a) + 1/4 } 
n o 

in agreement with the well known result3). 

V. Eigenmodes for a Cavity and Beam Pipe 

(4.19) 

The evaluation of Eq. (3.7) for the coupling impedance for 

arbitrary w appears to require knowledge of the entire eigenmode spectrum 

for the cavity. Since this will in general not be practical, we will 

discuss some simple cases for a single cavity connec.ted to a beam pipe, 

as shown in the figure4>. 

A I 

('\ 

r nR ¥ 
A 

rrR 

IA 

I 

t 
~ 

A 

A) Below the cutoff of the beam pipe for TM modes the unly eignemodes 

of the cavity-beam pipe system are essentially those of the isolated cavity. 

The coupling to the beam pipe will lead to a frequency shift proportional 

to the cube of the beam pipe radius, and to a change in the voltage integral 

which is proportional to the first power of the beam pipe radius. 

B) Above the cutoff of the lowest TM mode in the beam pipe the field 

will exist primarily in the beam pipe, with the cavity acting to reflect 

3)Nielsen, Sessler and Symon, Proc. of the ·rnt 1 l. Conf. on High Energy 
Accelerators, Geneva, 1959, p. 239. 

4)The case where the cavity is cylindrical, with radius larger than the beam 
pipe has been treated by Keil and lotter, Particle Accelerators 3, 11 (1972). 
and by Warnock, Bart and Fenster, Particle Accelerators .!£, 179 Tl982) 
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and transmit the propagating mode. The eigenfrequencies of the cavity-

beam pipe system are those for which the reflected and transmitted waves 

coincide with the incident waves after one traversal of the circumference. 

For a long circumference there will be many closely spaced eigenmodes whose 

frequencies will be determined by the reflection and transmission coefficients 

which can be expected to vary slowly with frequency. 

The most general equivalent circuit for a symmetric obstacle (cavity) 

in a guide with a single propagating mode is shown in the figure: 

iX 1-------1iX 

w~ere Zc is the characteristic impedance of the propagating mode in the guide. 

Simple circuit analysis leads to the reflection and transmission coefficients 

R -(1/2) 
zc - i(X1+2X2) 

- (1/2) 
zc-ix1 ( 5. l) = i(X1+2X 2) zc+ix1 z + c 

+ + 
T = -(1/2){ } + (1/2){ } (5.2) 

If we consider the propagating waves as shown in the figure 



we can write 

v
1 

= R v
0 

+ T v
2 

V3 = R v2 + T Vo 
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(5.3) 

Continuity of the fields after one traversal of the circumference requires 

where 

V2 = Vl eikt 2nR 

V = V eikt 2rrR 
0 3 

(5.4) 

and where p = 2.405 is the first zero of J
0

(x). Combining Eqs. (5.3) and 

(5.4) leads to the eigenfrequency conditions 

T + R, symmetric modes 
(5.6) 

= 
T - R, antisymmetric modes 

Using Eqs. (5.1) and (5.2), we can write 

X +2X 
ktR = t + ~ + 2 tan-

1
( 1zc 2 ), symmetric modes (5 ,7) 

antisymmetric modes (5,8) 

where t runs over all integers. Equations (5.7), (5.8), and (5.1) there-

fore determine the eigenfrequencies of the cavity-beam pipe system. 

In the above discussion, we have assumed that cavity resonances are 

well spaced and do not coincide with those obtained from Eqs. (5.7) and (5.8). 

If this is not the case, x1 and x2 will exhibit singular behavior corresponding 

to fields being much larger in the cavity than in the beam pipe. 
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..... 
A similar analysis must be performed for the Fm type modes of 

Eqs. (2.3) and (2.4). In addition it is necessary to have expressions 

for the fields in order to evaluate the integrals in Eq. (3.7). Only then 

can one try to evaluate the coupling impedance, and particularly the changes 

brought about by the presence of the cavity. 

C) Let us suppose that we have solved the electromagnetic field 

problem for a single symmetric propagating mode, whose frequency is given 

by Eq." (5.7). The electric field components can be written, following 

Eq. ( 4. 2), as 

Ez! = E
0 

{cos(k1 ·(z-nR) ) J
0

(pr/b) + oEz } 
(5.9) 

Erl = E
0 

{(k
1
b/p) si~(k1 ·(z-nR) ) J 1(pr/b) + oEr} 

where E
0

oEz, E
0

oEr are the components of the difference between the fields 

of the propagating mode and the actual fields. Clearly oEz, oEr are most 

prominent in the cavity and decay exponentially as one enters the beam pipe. 

The normalization is determined by JE
2
2dv = 1. This leads to 

+ 4n ff rdrdz <(oE )2 + (oE )2
> } = 1 

half cavity z r 
(5.10) 

where the integrals extend over the half cavity and that portion of the beam 

pipe in which oEz and oEr are significant. For R>>b, Eq. (5.10) is of the 

form 
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E 2 ( aR + B ) = 1 
0 

(5.11) 

Similarly, the voltage integral averaged over the beam 

l!~TTRdz E£z e-iwz/vl = 2E
0 

l(2/a2 )J~rdrf~·Rdu {cos(wvu)cos(k.Q,u)J
0

(Pf)}+ 

+ (2/a2) J~rdr !~dz oEz(z,r) cos~(z~ R)I (5.12) 

can be written, for w = nv/R, as 

where 5Ez is the average of oEz over the uniform beam of radius a. For 

R>>b, Eq. (5.13) is of the form 

(5.14) 

Similar expressions will be valid for the Fm type fields as well. 

One can now use Eqs. (5.11) and (5.14) to see the structure of the 

coupling impedance. Specifically, one finds 

2 2 {yR+£} 2 2 2 2 
E {yR + E) = ~ {y /et)R + ( ~£ -~2 ) o a.R+B ~ 

Cl 

(5.15) 

enabling us to conclude that the correction to ZL(n)/nZ
0 

in Eq. (4.19) 

will be of order R-l. This is in agreement with the result of Keil and 

Zotter4) for a short cylindrical cavity. 
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It should be pointed out that we have evaluated Eq. (3.7) for 

the coupling impedance only for the eigenmodesfo.rwhich a single mode can 

propagate in the beam pipe. In this case we have expressed the eigen­

frequencies in Eqs. (5.5), (5.7), (5.8) in terms of two impedance parameters. 

It should also be possible to express oE and oE in terms of the modes of z r 
the isolated cavity. However the result in Eq. (4.19) suggests that we 

will need to sum over many modes, including ones in which more than one 

mode can propagate in the beam pipe. Although we have performed this sum 

for the beam pipe alone, it is not clear whether the higher modes will be 

important in evaluating the effect due to the presence of the cavity. 

VI. Surrunary and Conclusions 

We have formally identified the eigenmodes of the cavity-beam pipe 

configuration and have obtained a general expression (Eq. (3.7)) for the 

lo'rlgitudinal coupling impedance. This reduces to the usual resonant result 

for an isolated cavity. The infinite sum over modes can also be evaluated 

for a beam pipe alone, giving the usual result3). 

The eigenmodes of the cavity-beam pipe system have been explored 

when only one mode can propagate in the beam pipe. The structure of the 

result suggests that it may be possible to obtain the contribution of the 

cavity to the coupling impedance by evaluating a limited number of eigenmodes 

of the cavity-beam pipe system. Analytic techniques using variational 

principles can be developed for this evaluation, but the use of computer 

programs like SUPERFISH may be simpler. 
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