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In this paper we discuss the more novel and important design 

considerations and features of high energy hadron colliders (pp or pp). 

The paper does not attempt to be sufficient for making a complete 

design, but will contain enough references to other papers necessary 

for doing so. Formulas are generally given without derivation, and 

notations are not consistent from section to section. For most formulas 

the derivation is transparent although the mathematics may be lengthy. 

Whenever obscure, an explanation of the procedure for derivation will 

be given in physical terms. Detailed mathematical derivations are to be 

found in the references. 

I. Beam Dynamics 

A. Linear Lattice (Transverse) 

The magnet lattice is so designed that the beam of charged 

particles (p or p in this case) is stably confined by the magnetic forces. 

In this section the confinement considerations are discussed in the lowest 

and dominant order (linear). This will be extended to higher orders later. 

In addition to stability, the linear forces of the magnets control the size 

and the dispersion properties of the beam which in a collider must satisfy 

certain requirements. The linear lattice is designed to fulfill these 

requirements. 

l. Arcs 

The magnet lattice is designed to contain a number of crossing 

straight-sections in which the two counter rotating beams collide to pro

duce high energy events to be studied. In between two crossing straights 

the beams are conducted in beam transport lines which are called 11 arcs 11 
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and are designed to be as simple and economical as possible. The 

simplest beam transport is made up of FODO cells shown below. 
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At high energies the magnets can be approximated as evenly spaced 

a-function elements (shown on the bottom part of the figure).with "strengths 11 

given by 

where 

Dipole 
BR-B 
l3P = s = bend angle 

Quadrupole 
I BI I R,Q - l -
--~ - f - k = focal strength 

Bp 

Bp = magnetic rigidity of particle 

B, i 8 = field and length of dipole 

81
, R.Q = gradient and length of quadrupole 

(B 1 <0.focusing, F; 81 > O defocusing, D) 

The orbital functions of such a FODO cell with 11 thin 11 elements can easily 

be calculated using transfer matrices and are expressed in terms of s, k and 
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i = half cell length. These are 

i sinµ == it, ;'-!-== half-cell phase advance 

/+Siri}A,; 

1-:sinµ 

r~(lr =(s,~,,µ, ± t)e 
.D 

~ F,I> = s;~~ / 1'/ F,)) 

Aj, / 1 = 1 {sf;;-~ - f) ff = f) 1a =:::. orbit length dispersion 

A,M-11 = - -fa,,µ_ = phase advance dispersion 

where 

a, S = Courant-Snyder amplitude functions 

n, n1 = closed orbit dispersion functions 

and the subscripts F~ D, and e denote values at midpoints of QF, QD, 

and B. The exact orbital functions can be obtained by using computer 

programs such as SYNC~ or AG~. Generally the following values of µ 

are used. 
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High, µ = 45° ( 4 cells per 360° phase advance) 

Medium, µ = 36° (5 cells per 360° phase advance) 

Low, µ = 30° (6 cells per 360° phase advance) 

The gaps between dipoles and quadrupoles are needed to accommodate beam 

monitors; correction magnets; power, cryogenic and vacuum connections; etc. 

It is frequently advantageous to push the dipole to one end leaving a long 

gap at the other end for the functions mentioned. 

2. Insertions 

In long straight sections one frequently desires special orbital 

characteristics. So as not to perturb those in the arcs the sequence of 

dipoles and quadrupoles inserted between arcs are designed to yield the 

desired orbital characteristics in the middle and to yield orbit functions 

at the two ends matched to those of the arcs. The condition for matching 

is that the transfer matrix of the insertion must equal 

and 

a. h e 
c. d f 
{) 0 J.. 

with ( e}· ( Y/1.;) (~ h)( 1,) 
f :::. 1~ - c d. ~; 
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where subscripts l and 2 denote arc-values at the two ends to be 

matched and where ~ is the phase advance across the insertion and can 

be taken as a free parameter if there is no special requirement on its 

value. This matching must be accomplished in both the horizontal and 

the vertical planes. In general, this is very difficult and can only 

be done with computer programs such as TRANSPORT1or MAGIC. Experiences 

and proper intuitions help a great deal in the design of insertions. 

Even then, one is not always successful. Here we can only discuss some 

special simplified cases. 
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Most useful is an insertion that is straight, namely composed 

only of quadrupoles. For such an insertion e = f = 0 and the dispersion 
I 

matching is automatically (although not necessarily) satisfied by n1 = n1 = O, 
I 

n 2 = n2 = 0. Thus for a straight insertion usually one first brings the 

arc dispersion functions at the ends to zero then matches amplitude 

functions using 2x2 matrices. The dispersion function can be brought to 

zero in one cell by adjusting the strengths of the two quadrupoles. If 

the beam goes from F to D, the strengths should be kF and k0 given by 

The dispersion will be zero after the dipole following k0. If the beam 

goes from D to F the strengths are given by 
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and the dispersion will be zero after the dipole following kF. Other 

arrangements involve adjusting the dipoles. Specifically forµ= 45°, 

the following arrangement brings arc dispersion to zero: 
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N~MAL ?'j, ~, I I ~=1"-~ 
----H---fr---~----· ~---Jl---------t-----fr----H-------te~------fI 

ie e -~ e * -'- e * *ft * 
-Jt. 

and for µ = 30° the arrangement is as follows: 

No~ /.1.4L rt 1 '1: 
---Jt--It--~--it- ,_ 

i fJ _, ,t. 

I 
~ -It---t-~ 
a 7t e -i{ 

These dipole arrangements work also with all quadrupole polarities reversed. 

There are many more arrangements involving adjusting both the dipoles and 

the quadrupoles. One can invent one's own arrangement fairly easily after 

a little practice. 

Matching the amplitude functions, namely matching both the 

horizontal and the vertical 2x2 transport matrices is much harder. If 

there is no requirement on phase advance matching,one needs 4 conditions: 

matching a and s in both planes or equivalently, matching 2 out of the 3 

parameters specifying the transfer matrix in each plane (the 3rd parameter 

is the phase advance). To these one must add conditions specifying the 

desired orbit characteristics inside the insertion. All these conditions 

are transcendental equations involving trigonometric and hyperbolic 

functions. The solutions of these equations have very peculiar behaviors. 
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Symmetry helps. With a symmetric insertion, one which 

is unchanged when reflected about the mid-point (Of course, the end 

orbit functions to be matched must also be symmetric, namely s2 = s1, 
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a2 = -a1.),a = 0 at the mid-point and the end orbit function scales with 

the mid-point s. Thus we are left with only one matching condition (value 

of a 1/s1) in each plane. With an antisymmetric insertion, one which when 

reflected about the mid-point is unchanged except for a sign reversal 

(F ++ D), the matching in one plane automatically guarantees that of the 

other plane. We are also left with only 2 matching conditions. 

The desired orbit characteristics inside the insertion appear 

in many different forms, but the most frequently occuring is the low-s 

insertion in which the mid-point s* should be low. The simplest and most 

commonly used antisymmetric low-s* insertion has the following form 

/l1 tf) -P()Jt/T (LIJW fa"*) 
k, k,z k3 k4 .~ 

( N 1 CELL LONq) l 
I< >/. = ~ '= 0 --···-----1 

The insertion is -2 cell (4~) long. The two beams collide at the mid-point 

where s* has low values in both planes. This gives high luminosity. 

Also for high luminosity the beams should collide head-on and 

be separated on either side away from the collision point. For pp the 

beams can be separated by a dipole magnet which acts on opposite currents 

in opposite directions. This separating dipole can be put inboard of the 

quadrupole triplet k2k3k4. 
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In this case there could be two sets of triplets, one set for each of the 

two separated beams. Or, one can use one set of triplet commonly for both 

beams and separate the beams outboard of the triplet. For high energy 

colliders the very high strength required of the beam separating dipoles 

to impart sufficiently large separations within a short distance is 

always a problem. 

For pp the beams can be separated only by an electric field. 

The beam separation that can be obtained is, thus, much smaller. Generally 

the two beams are not really separated, they are still contained in the 

same ring but only deflected by the electrostatic separator to go on obrits 

with opposite betatron oscillations. The beams are separated only if they 

are bunched and the bunches pass by each other near the crests of the 

betatron oscillations. 

3. Dispersions and compensations 

Because all beams have momentum spreads the dispersions of 

some of the linear lattice parameters are interesting. The following 3 

are the most important. 

a. Orbit length dispersion 

This is important because it determines the transition 

energy and the longitudinal (phase) oscillation frequency. In a straight 

section the orbit length dispersion is zero. If the lattice is composed 

of only normal cells and straight sections the total orbit length dispersion 

is then 

where 

'-z= at 
~1~ -~ ( I - L) (f~ 

J.. P - ;8'ffR s;n~ 4 

Lc = to ta 1 1 ength of norma 1 ce 11 s and 

Yt = transition energy in units of rest energy. 
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b. Tune dispersion (Chromaticity) 

The tune dispersion is given by 

where the summation is over all quadrupoles. For a normal cell this gives 

If the ring is composed totally of N normal cells the chromaticity is 

(Beware that the chromaticity is sometimes defined as~= ~v;~.) 
v p 

The density of quadrupoles in a straight section is generally much higher 

than that in the normal cell. Hence straight sections contribute a great 

deal to chromaticity. This is especially true for the low-a insertion 

because the quadrupoles on either side of the low-a point must be very 

strong and the a values there must be very large. The contribution from 

the low-a insertions is frequently larger than that from the normal cells. 

Because of the unavoidable momentum spread in the beam, 

chromaticity must be controlled. To compensate or adjust the chromaticity, 

one places sextupoles in high dispersion (n) locations. The tune dispersion 

so introduced is given by 

AV/~ - _!_ ~ Bn fJ/,/Js /) h f 1 ;-.p _ 41fL I l l3 f <--5 = 1 engt o sextupo e 

where the summation is over all sextupoles. In general, two sets of 

sextupoles, one at high ax locations and one at high ay locations, 
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are needed to compensate for both the x and y chromaticities. 

c. s dispersion 

The value of s* is designed to be small to enhance lumi

nosity. Large s* dispersion may make s* large for off momentum particles 

in the beam, thereby degrading the luminosity. The dispersion for the cell 

s values is 

(either /F or l.D) 

The dispersion of S* depends on the specific design of the insertion and 

is generally larger than that of the cell s. The exact value has to be 

computed using a computer. As a rule, the stronger are the insertion 

quadrupoles and the smaller is the S* value the greater is its dispersion. 

4. Example - 20 TeV collider (Superconducting Super Collider) 

For the 20 TeV collider we assumeµ= 30° FODO cells and 

eight symmetrically located beam-crossing matched straight-sections. The 

long straight-sections are matched for zero dispersion using the scheme 

of spacing out the dipoles and for low s* using triplets as described 

above. Some cutting and fitting is necessary. One set of consistent 

parameters is as follows: 

Energy E 

Rigidity Bp 

Length of dipole i 8 
Number of dipole n8 
Total bending length 2Tip = n8i 8 
Bending radius p 

Dipole field B 

Dipole bend angle e 

20 TeV (y = 21316.6) 

66716 Tm 

138 m 

608 

83904 m 

13354 m 

4.996 T 

10.334 mrad 
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Half cell length t 

Phase advance per half-cell µ 

Cell quadrupole focal length Bp/B'tq = f. 

Cell quadrupole strength B'tq 

Cell quadrupole length tq 

Cell quadrupole gradient B1 

&.F 

TM-1259 

150 m 

30° 

150 m 

445 T 

3.0 m 

148 T/m 

8 

,_____ __ ~ [ 

Number of cell quadrupoles nQ 

Number of low-s quadrupoles nq* 

Octant cell number 

Regular cells 

Zero n cells (straight) 

Low s cells (straight) 

Octant length 

Circumference 2~R 

Ring radius R 

38 

2 

2 

632 

64 

42 

12600 m 

100800 m 

16043 m 
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Amplitude functions 

SF 520 m 

so 173 m 

f3* 2 m 

13max <2000 m 

Dispersion functions 

nF 7.75 m 

no 4.65 m 

n* o 

Tune v 58.67 

Transition Yt 52.5 

Chromaticity t; -59 +"insertion" --130 

Transverse emittance 

Normalized En 10'Tf mm-mrad 

Unnormalized e: 0.00047'Tf mm-mrad 

Beam width 

Max. in cell 1.0 mm 

Max. in insertion (f3 = 2000 m) 1.9 mm 

At crossing (s* = 2 m) 0.06 mm 
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B. RF (Longitudinal) 

If bunched beams are desired the longitudinal confinement must 

be supplied by an rf system. The mathematical formulation of the phase 

motion is well known. We will only present here an unusual formulation 

which is patterned after that of the transverse motion and hence is easy 

to commit to memory. The proper coordinates are the deviation of the 

longitudinal position oz and the deviation of the longitudinal momentum 

op from the central (reference) values. Instead of these we will use the 

dimensionless variables 

. _ R _ ring radius 
where me is the rest momentum of the proton and -X - h - harmonic number 

is the rf wave length. Then the dimensions of the beam bunch, assumed to 

be much smaller than the rf bucket, are 

b Ai = Z / ..8.-i f tf; ., == bunch 1 ength 
r ti; ..,. ·7( 

[;?'} "":<./! ei - bunch width 
l /<P '7)" 

ytf> = hA _!_ ::=. longitudinal oscillation wave number 
~ (3t? 

where e~ = longitudinal emittance = area in (o~on) = m~R [area in (ozopil 

·and the longitudinal amplitude function s~ is given by 

with 
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with V = peak rf voltage and qi = synchronous phase. For the bucket we have s 

bucket width 

bucket area 

where qi 1 (qis)' ¢2(¢s), a(qis), s(qis) are all listed in CERN/MPS-SI/Int. 

DL/70/4. For stationary bucket ¢s = 0 and ¢2(0) = -¢1(0) = n, 

a(O) = s(O) = l. 

Several design considerations unique to the rf system of a high 

energy hadron collider should be mentioned. 

l. Since, generally, high Q, high shunt impedance, fixed frequency 

cavities are used, one must be very careful in eliminating those parasitic 

modes which may excite longitudinal coherent instabilities. 

2. Noise in the rf system blows up the longitudinal emittance of the 

beam bunches. This reduces the luminosity of the colliding beams and will 

eventually cause beam loss out of the rf bucket. Therefore, rf noise should 

be eliminated or, at least, reduced to a minimum. 

3. The cavities should be located in straight sections where orbit 

dispersion is zero. This eliminates the first order coupling between the 

longitudinal and the transverse motion, and hence, synchro-betatron 

resonances such as 

with "qi t 0 and (nx or ny) t 0. 

For the example of the 20 TeV collider SSC given above in A·4 with 



Energy E 

Circumference 2~R 

Longitudinal emittance s~ 

[area in (ozop) 
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we have, during storage at 20 TeV (~s = 0) 

Revolution frequency f rev 

Harmonic number h 

R.F. frequency f rf 

R.F. wave length { = R/h 

R.F. peak voltage V 

R.F. amplitude function s~ 

Bunch length cS~ 

Bunch width cSn 

Bucket area A 

20 TeV (y = 21316.6) 

100.8 km 

~3 eV sec] 

2974.13 Hz 

16800 

49.9654 MHz 

0.955 m 

1 MV 

1.30 

1.29 
R 

(0£ = h cS~ = 1.23 m) 

0.99 

(~ = o 46xl o-4) p . 

12.3 

TM-1259 

For acceleration from 1 TeV (at injection) to 20 TeV in 10 minutes we need 

Average energy gain per turn<(~~)> 10.6 MeV 

R.F. peak voltage V 

Synchronous phase ~s 

E . t t.E V • nergy gain per urn t.n = e sin ~s 

Bucket area A 

R.F. amplitude function S~ 

Bunch length o~ 

Bunch width on 

13 MV 

45° - 65° 

9 • 2 - 11 • 8 Me V 

1.62 - 1.67 

1.91 - 0.554 

1. 56 - 0. 84 

(0£ = 1.49 - 0.80 m) 

0.82 - 1.52 

(~ = 7.65 - 0.7lxl0-4) p 
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C. Short Term Stability (Single Beam) 

1. Low order resonances 

Construction errors are unavoidable. Error magnetic fields 

contain both non-linear components and deviations from ideal design 

linear components. Thus the lattice must be so designed as to avoid all 
2 

low order resonances. The formulation of single resonances is well known. 

All transverse resonances are of the form (assuming no coupling to the 

longitudinal) 

where nx, ny' mare all intergers and nx, ny > 0. The order of the resonance 

is defined by 

These resonances fall into two major classes. 

Normal resonances (ny = even) 

The nth order normal resonances are excited by the mth harmonic of 

the normal field coefficient 

Assuming that individual magnets are short (length 1) the driving amplitude 

of the above resonance can be written as 

where ny = even, Bp = magnetic rigidity of the particle, and sx' 

and µ are the amplitudes and phases of the linear oscillations. y 

out all nth order normal resonance one needs n sets of normal 2n-po1e 
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correction magnets installed in the ring and so adjusted as to make 

all n values of Bnxny zero. 

Skew resonances (ny = odd) 

TM-1259 

The nth order skew resonances are excited by the driving amplitudes 

where 

a = ; 
i1-I (n-1)/ 

' 

d(n-t) Bx 

a:><~-1) 

to trim out all nth order skew resonances one needs n sets of skew 2n-pole 

correction magnets so adjusted as to make the n values of Anxny zero. A list 

of all resonances and driving amplitudes up to the 4th order (n=4) is 

given below: 

Normal Resonances Skew Resonances 

driving field driving field 
Order formula amplitude coefficient formula amplitude coefficient 

n=l v =m x B10 bo v =m y AOl ao 
(Integer) 

n=2 2v =m x 820 bl v ±v =m x y All a, 
( Half 2v =m 602 Integer) y 

n=3 3v =m 630 2v ±v =m A21 x 
b2 

x y 
( Third v ±2v =m 612 , 3v =m A03 a2 
Integer) x y y 

n=4 4v =m 840 b3 
3v ±v =m A31 a3 x x y 

(Quarter 2v ±2v =m 822 'V ±3v =m Al3 
Integer) x y x z 

4v =m y 604 

These resonances have the following properties: 
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a. The normal linear field coefficients are to be interpreted as 

b
0 

= ~BY = field error 
aB 

b1 = ~ ~· = gradient error 

b. b
0

(or s10 ) leads to a horizontal closed orbit distortion, and 

a
0

(or A01 ) leads to a vertical closed orbit distortion. On the integer 

resonance (n=l) the closed orbit distortion goes to infinity unless the 

driving amplitude s10 or A01 is zero, 

c. Only single-dimensional resonances and sum resonances may produce 

instabilities. Difference resonances lead only to coupling between x 

and y motions. 

d. A half-integer resonance (n=2) has a stop band. Within the stop 

band all motions, however small, are unstable. This is because it is 

a linear resonance. Therefore it affects all motions, large or small, 

alike. The bandwidth depends on the driving amplitude and goes to zero 

when the driving amplitude goes to zero. 

e. As one approaches a third-integer resonance (n=3) large amplitude 

oscillations become unstable first. Oscillations with infinitesimal 

amplitudes become unstable only when exactly on resonance. Thus, it does 

not have a stop band. The width is defined only in reference to the 

largest oscillation in the beam. Outside the resonance width all particles 

in the specific beam are stable. 

f. For n>4 even when exactly on resonance there is still a region of 

stability around the closed orbit for oscillations with sufficiently small 

amplitudes, but generally this region is smaller than the area occupied 

by the phase points of the beam particles. Hence, generally a part of the 

beam will be unstable and be lost when exactly on these resonances. 

g. For one single beam, resonances are excited only by field errors 

which are relatively weak. With two beams colliding the non-linear 
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electromagnetic forces due to one beam acting on particles in the other 

beam are much stronger and drive the resonances very hard. In storing 

a single beam it is generally sufficient to avoid resonances up to the 

5th order, but for colliding beams one must avoid all resonances up 

to the gth order or higher. 

2. Self-field effects (coherent instabilities) 

When the high current beam required for a collider travels down 

the conducting beam pipe it induces a voltage through an 11 impedance 11 of 

the beam pipe. This voltage can act back on the beam as positive feedback 

and make it unstable. Low frequency components of these coherent insta

bilities can be damped by negative electronic feedback systems, but high 

frequency components can only be checked by Landau damping derived from a 

spread in the natural frequencies of individual particles in the beam 

which causes the instability to lose coherence. The larger is the fre-

quency spread and the smaller is the 11 impedance 11 the more stable is the 

beam. 

The "impedance" depends and, therefore, imposes demands on the 

material, the structure, the shape and the size of the beam pipe. The 

tune spread 6v is limited by non-linear resonances. The excitations of 

high order resonances by magnetic field errors are small and negligible 

beyond the octupole. But in colliders the excitation by beam-beam forces 

is large and resonances up to the gth order must be avoided. This imposes 

a severe limitation on the allowable tune spread. This excitation is, 

however, independent of the orbit functions and hence makes no demand on 

the focusing strength. The dynamics of coherent instabilities of beams 

is a complex, multidimensional problem. To make our discussion understandable 

we will resort to using simplified semi-quantitative descriptions. 

The condition for longitudinal stability (microwave modes) is at 

high energies3 
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where we have used the approximation 

and where 

Yt = transition energy in units of rest energy 

Ft= beam distribution form-factor of order unity 

zi = longitudinal impedance 

n =mode number= number of instability waves around the ring 

< > denotes va 1 ue weighed by the mode spectrum 

E = energy of beam 

I = peak current of beam 

~ = FWHM of momentum spread. 

The condition for transverse stability (high head-tail modes) is4 

where 

Ft= beam distribution form-factor of order unity 

zt = transverse impedance 

R = radius of ring 

~v = tune spread in beam. 

TM-1259 

There are two main types of contribution to the impedance. The 

beam contribution depends on the energy and the dimensions of the beam and 

is non-zero even when the beam pipe is removed. This is generally small 
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for the range of parameters in consideration. The wall contribution is 

that due to the charge and current induced by the beam on the pipe wall 

and depends, therefore, on the material and the geometry of the beam 

pipe. The wall contributions of the longitudinal and the transverse 

impedances are related through the geometry of the pipe. For a circular 

beam pipe of radius b it is 

There are two types of terms in the wall contribution to Z~/n. The 

"smooth" term, usually known as the resistive wall term, is that of a 

perfectly uniform and smooth pipe and depends on the size and the skin 

depth of the pipe. It is rich in low frequencies and is generally small. 

The most important is the "interruptions" term arising from discontinuities 

in the pipe and from various beam sensing and manipulating devices inserted 

in the pipe. This term in Zi/n is not sensibly dependent on the pipe size. For 

further discussion we shall consider the above equation as the approximate relation 

between the total contributions to the impedances. 

Substituting this relation in the condition for Zr we can rewrite 

the condition for transverse stability as 

Solving the two conditions on <JZtl/n> for v we see that the choice of v is 

hemmed in by longitudinal and transverse stability requirements as 

_J... 

B(J¥) < '.ll < A(l~I/ 
with 
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_ 2 I (Rf I I (R).z 
B ~ 1T E/e b AV UJ E b 

where, consistent with the approximation, we have put Ft= Ft= 1. The 

available range for v shrinks to zero when 

At this point the single allowable value of v is 

This is a good value to choose for v in any case because it allows the 

largest value of the impedance <IZil/n>. 

For the 20 TeV collider we have: 

Ring radius R 

Aperture radius b 

Tune v 

Number of p per bunch n 

Tune spread in beam b.v (limited by resonances) 

16043 m 

0.025 m 

58.67 

2xl010 

0.01 

and at various stag~s of acceleration and storage we have 
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Acceleration Storage 

E l TeV 20 TeV 20 TeV 

ot 1.49 m 0.80 m 1.23 m 

I 0.64 A 1.20 A 0.78 A 

op/p 7.65xlo-4 0.7lxl0-4 0.46xlo-4 

A 
.1 

953 n2 291 n1 I 235 nt I 
B I 16.9 n-1 I 1.57 n-1 1.026 n-1 

we should use the smallest A and the largest B (boxed values) and obtain 

the conditions 

The optimal tune is, then, v = 97.7 and the condition on impedance is 

<JZtJ/n><5.8 n which is relatively easy to satisfy. Although the tune of 

the ring given in A·4 is not optimal, with 

v = 58.67 and Yt = 52.5 

the original stability conditions become 

<SJ_)«{ 20 n 
n 3.5 n 

longitudinal at storage 
transverse at injection. 

We see that the condition for transverse stability at injection is most 

limiting. But even that is not bad. 

Generally we would like to increase A and/or to decrease B. 

To do this we should: 

a. Increase E/I. This extends the acceptable v-range at both 

ends. This also shows that the tightest constraint occurs at injection 

when E is lowest. Reducing I helps, but the luminosity suffers. 
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b. Increase ~p/p. This raises the upper limit of the v-range, 

but requires either blowing up the longitudinal emittance or a huge increase 

in rf voltage (as the 4th power of ~p/p). Neither alternative is 

attractive. 

c. Increase b/R. Because of the squared dependence this is very 

effective in lowering the lower limit of the v-range. Since the stored 

energy in the magnet ring is proportional to b2R, to minimize the increase 

in stored energy it is more desirable to reduce R than to increase b. 

3. Gas scattering and vacuum instability 

The residual gas in the vacuum chamber causes two undesirable effects. 

a. It is ionized by the beam and the positive ions are driven 

onto the chamber wall by the positive proton beam (say). These primary 

ions will knoek out from the wall adsorbed gas molecules which will be 

further ionized by the beam and cause an avalanche. 5 The vacuum will go 

bad and the beam will be destroyed. This instability can be cured either 

by reducing the wall desorption or by improving the vacuum, namely 

reducing the residual gas. 

b. The residual gas degrades the beam either by nuclear scattering 

or by multiple Coulomb scattering. The former kills the beam particles and 

the latter enlarges the beam, either will reduce the luminosity of the 

colliding beams. Again a high vacuum is required. Generally a vacuum of 

<10-lO Torr is adequate. 

4. Intrabeam scattering 6 

In the rest frame of a beam bunch the particles are confined in a 

3-dimensional potential well. In addition, the particles interact via 

Coulomb scattering. This intrabeam scattering can be expected to cause 

growth in the 6-dimensional emittance. The growth rate is given by 

I 
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where 

c = speed of light 

e2 . 
= - 2 = classical proton radius 

me 
N = number of protons in bunch 

1 og = Caul omb 1 ogarithm = 20 . 

The quantity r = (2~sr) 3 EhEvEt is the 6-dimensional normalized phase volume 

where 

and 

for 

q,p = coordinate and momentum variables in the q degree-of-freedom 

a denotes the rms spread 

mcsy = central momentum of beam. 

The factor <H(A.1,A.2,A.3)> is a dimensionless and homogeneous 11momentum 

shape factor 11
• -

1 -1 , -1 measure the principal axes of the momentum 
/fl 52 /\3 

ellipsoid of the beam bunch. H = 0 if "-l = A. 2 = A. 3, namely when the 

momentum spread is isotropic.< > denotes averaging around the ring. In 

an alternating gradient lattice the A. 1 s cannot be equal everywhere. Hence 

the emittance will always grow. 

In the general case, H can be expressed in terms of elliptic 

i ntegra 1 s, but in the speci a 1 cases when "-l > A.2 = A. 3 , namely when the 

momentum distribution is an oblate circular ellipsoid with axis along 

the 1 direction, one can write 

H = ~(~\, +2A~) 
I ).2; (A,-~) 

s,n ·1/.1.,-).e - 6 
A., 

1 Formulas, slightly more complicated, exist also for-, (q=h,v,t), 
'q 
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namely growth rates for the individual horizontal, vertical and 

longitudinal emittances. For these the reader is referred to the 

reference. 

For the type of lattices discussed above, it is usually slightly 

damping in the vertical plane (~1 <0) and at high energies one can 
•v 

generally reduce the horizontal growth rate to less than 0.1 hr-l and the 

longitudinal growth rate to an order-of-magnitude less than that. 
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0. Long Term Stability (Beam-Beam) 

In section C·l we discussed the effects of the non-linear error 

field on the particle motion. The error field has the following characteristics: 

1. It arises from construction errors and is therefore weak. 

2. Its non-linear components fall off steeply with increasing multipoleorde~ 

Therefore only the low-order resonances are excited by error fields and only 

weakly. Low-order resonances are relatively widely spaced. With weak 

excitation, hence narrow widths, these resonances can be considered separated 

and can be treated individually by the single resonance formalism. This 

formalism concludes that as long as the motion stays outside the widths of 

individual low-order resonances it is stable. 

This situation is totally different when the motion is acted 

on by the beam-beam forces. For colliding beams the electromagnetic forces 

exerted by one beam on a particle in the other beam is extremely non-linear 

in the transverse coordinates x and y and is like a a-function in the 

longitudinal coordinate s, hence is extremely rich in harmonics. The 

non-linear resonances are strongly excited and the excitation remains 

strong and does not fall off with increasing resonance order. The high

order resonances are closely spaced and the motion necessarily straddles 

a near contimuum of high-order resonances. The gross behaviors of such an 

intrinsically non-linear motion are well known.7 Such motions are compli

cated by the occurrence of two distinct regimes - the regular regime 

(
11 laminar 11 in phase space) and the stochastic regime ( 11 turbulent 11 in phase 

space). Over the past 100 years or so a great deal of effort of many 

prominent mathematicians has been devoted to the study of the existence 

and the characteristics of these regimes of motion and the transition 

between them, and specifically to the determination of the stability of 

the stochastic regime. But, so far, we still do not have definitive 
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resolutions to these probems. These questions are clearly of crucial 

relevance to the long term stability of colliding beams. For designing 

colliders at the present we can only depend on semi-empirical models 

and scaling laws as guides. We give here a demonstration that 11 similarity 

parameters 11 can be established for such motions which can be used to specify 

the transition between the regimes. This is similar to the use of the 

Reynold's Number to specify the onset of turbulence in the motion of 

viscous fluids. 

If the transverse force potential exerted by one beam bunch on 

a particle in the other beam is written as V(x2,y2)a(s) [generally even 

in x and y] the Hamiltonian for the motion of the particle is 

The usual canonical transformation to angle/action variables (~x,Jx,~y,Jy) 

X -=/~/x.Jx Cost 

'fox =---/r; (sineflx- ~ Costfx) 
(similar for y) 

where sx(s), sy(s) are the Courant-Snyder amplitude functions, and trans

formation to azimuthal inedpendent variable e = s/R with 2TIR = circumference 

of ring,give for the transformed Hamiltonian 

and the corresponding canonical equations 
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(similar for y) 

If we assume, say, a bi-Gaussian beam distribution 

we get 

where '[ ==. d..c (J., ) r =. ~ J /~ ~ /1x_ Jx " ) ~ =- &-Ji J 
· y. y ax (!-,, crxcG><+oy) CY cytax-t"o;) · 

r
0 

= classical proton radius, and the subscript r on F indicates that F 

depends parametrically on and only on r. Now we can rewrite the 

canonical equations as 

(similar for y) 
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Thus we see that the motion is uniquely specified by the 5 parameters 

1.lx ) 

and 

It is easy to show that to the lowest order in x and y (quadratic in H) 

~x and ~Y are just the tune shifts. 

If one is interested only in the onset of the stochastic regime 

vx, vy and r are all irrelevant. Transition from the regular to the 

stochastic regimes will occur when either one of the tune shifts ~x and ~Y 

reaches the critical value, hence r is irrelevant. The tunes vx and vy 

enter only to relate the phases of the kicks given by V(x2,y2)o(s). In the 

stochastic regime the kicks are random and vx and vy become also irrelevant. 

This argument also indicates that the tune shifts of multiple widely separated 

colliding points around the ring should not be straight-summed. They should 

at most be added stochastically (in quadrature). 

It is generally believed that the beam-beam limit, namely 

the critical value of the tune shift beyond which the life time of the 

stored beam becomes too short to be useful, does not have to be the point 

at which the motion is stochastic over the entire phase space. Even far 

below this point the motion is already stochastic within thin layers along 

the separatrices of resonances. For motions in two degrees-of-freedom 

these stochastic layers in the shape of tori in the 4-dimensional phase 

space intersect one another and extend out to infinity. There are, therefore, 

continuous stochastic channels extending to infinity. Random, diffusion-

1 ike motions can follow these channels outward and become unstable. This is 
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known as Arnol 1 d diffusion. At the beam-beam limit the intersecting 

stochastic layers have gotten so thick that the Arnol 1 d diffusion rate, 

perhaps aided by real diffusion processes due to physical noises, have 

gotten so high that the beam life time becomes too short to be useful. 

Thus, for proper colliding beams operation s must stay below the beam-beam 

limit. Because of synchrotron radiation damping for electron beams, it is 

expected that the beam-beam limit would be higher for electron (positron) 

colliding beams than for proton (antiproton) colliding beams. No theory 

exists at the present to predict these limiting values. Experiences on 

existing colliders seem to show that the beam-beam limit is s ; 0.05 for 

electrons and s = 0.003 for protons. 
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II. Superconducting Magnets 

For high energy hadron coll iders consideration of .electric power 

consumption compels one to use superconducting magnets. Of course, one 

could simply use conventional iron yokes operating at some 1.8 T but 

energized with superconducting coils. Indeed, these "superferric magnets" 

have been proposed for some high energy hadron colliders. In addition to 

saving power, the higher current density that can be carried in super

conductors enables one to obtain higher field intensities with super

conducting coils. For these magnets the iron yokes function mainly as 

magnetic shields to keep the field from spreading all over and/or structure 

members to confine the coils against the exploding magnetic forces. We 

shall discuss here only these high field superconducting magnets. Combined 

with the well known design considerations of conventional magnets the 

discussion given here will also be adequate for the design of the super-

ferric magnets. 

A. Superconductors and Cables 

The characteristics of a Type II superconductor are usually represented 

by the triple diagram shown on the top part of .next page where 

Jc = critical current density 

Tc = critical temperature 

Bc2 = upper critical field 

For a Type II superconductor at some fixed low values of J and T starting 

at high externally applied field B, the conductor is normal. As B 

decreases the resistivity starts to deviate from (fall below) the normal 

value at Bc2 and goes to zero at the lower critical field Bc. For Type I 

superconductors such as pure Pb, Bc = Bc2 and the resistivity vanishes 

suddenly at Bc. Tc and Bc2 are properties of the material. Simple theories 8 
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relate Tc and Bc2 through normal-state property values and show that the 

B vs T curve at J = 0 is a parabola. ~he following table gives Tc and sc
2 

for most of the known high-field superconductors. 

Su~erconductors 

bee Alloy 

\l(40 atomic %) 

Nb(56 atomic %) 

Nb(25 atomic %) 

A-15 compound 

Vfa 

V3Si 

Nb3Sn 

Nb3At 

Nb3Ga 

Nb3Ge 

Nb3(Ato.7Ge0.3) 

Ternary Sulfide 

PbMo5. l s6 

Ti 

Ti 

Zr 

7.0 

9.0 

10.8 

14.8 

16.9 

18.0 

18.7 

20.2 

22.5 

20.7 

14.4 

11 

14. l 

9.2 

25 

24 

28 

33 

34 

38 

43.5 

60 

Nbfe has the highest Tc of ~23 K and PbMo5•1s6 has the highest Bc2 of 

~60 T. Jc and the J vs B curve depend on the geometry of the conductor 

and on the lattice defects in the material. Lattice defects such as 

dislocations, impurities or precipitates of a second phase act to 11 pin 11 the 

flux lines and prevent them from moving under the Lorentz force J x B. 

Hence JB is roughly constant in the middle part of the J vs B curve at 

fixed T. The value of JB depends crucially on the cold working and 
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annealing of the material. Recent efforts in Japan and in China have 

produced NbTi conductors with extremely high JB values, but in magnet 

design 6xlo9 TA/m2 is generally considered a practical and safe value for 

NbTi at 4.2 K. 

In practical application multi-filament conductors with NbTi 

filaments set in Cu matrix are used. The filaments are twisted to reduce 

the effects of flux jump. The cold Cu provides a low resistivity parallel 

current path so that if the superconductor locally goes normal the current 

is shunted across in the Cu, thereby prevented from damaging the super

conductor. If the Cu to superconductor ratio is high, say >10 to l the 

heating of the Cu by the shunted current is small and can be carried away 

by the coolant (liquid He). The temperature of the cable will remain low 

and the superconductor can recover. Such a cable is called fully stabilized. 

The average current density in a coil wound with fully stabilized conductor 

is necessarily low and can only be -1/30 of that in the superconductor. 

The minimum Cu to superconductor ratio needed to prevent damage is -1 to 1. 

For such a cable the shunted current heats up the Cu so much that the heat cannot 

be carried away sufficiently fast by the coolant. The heating and the normal 

region will propagate and the whole magnet will quench. Nevertheless no 

damage will come to the coil. After the power is turned off the coil can be 

cooled down again and re-energized in a matter of minutes. The average 

current density in such a substabilized (sub-fully stabilized) coil could 

be as high as 1/3 of that in the superconductor. 

For d.c. application the fiJamentscould be quite thick, up to 

50 µm, and a wire carrying a maximum current of 150-200 A is appropriate. 

For pulsed application the filament diameter should be smaller than -10 µm 

and many strands of the 200 A wire, say 20 to 30, must be made into a cable 
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in which the strands are transposed, say every 5 cm, along the length to 

reduce the eddy current effects. A magnet wound with such a high current 

(-5000 A) cable will have reasonably small number of turns and hence, 

reasonably low inductance appropriate for pulsing. 

The JB values for A-15 compounds are generally higher, being 

-6xlo10 TA/m2 for Nb3Sn at 4.2 K. Unfortunately all A-15 compounds are 

very brittle. Chemically sprayed Nb3Sn on Cu tape or wire with a very 

large number (-5xl04) of very fine (<5 µm diameter) Nb3Sn filaments set 

in a Cu matrix are available for winding coils provided the bending curvature 

is not excessive. 

B. Magnet Configuration and Structure 

In an infinitely long solenoid one can get arbitrarily large field 

with any available current density by simply piling layers after layers of 

coil windings on the outside. This is not true for multipole magnets. The 

maximum field or its spatial derivatives are limited by the attainable 

current density. For coils with uniform current density over their cross-

sections to produce dipole and quadrupole fields the proper cross-sectional 

shapes are given by intersections of ellipses as shown in the bottom figures 

on p. 33 where r = % is the ratio of the semi-major to semi-minor axes and 

where the aperture is adjusted to be roughly circular with radius ~ b. 

This figure shows that for a dipole r - i is reasonable and that for a 

quadrupole r can be -2. In practice, the crescent shaped areas are approximated 

by some arrangement of turns of the conductor that is easy to wind. In the 

Fermiab Tevatron dipole the crescent area is approximated by two circular 

shells of windings. 

For the intersecting-ellipses coils with uniform current density J 

the dipole field B and the quadrupole field gradient G are given by 



-37-

- a r=1)· 

TM-1259 

The highest fields on the coils are Bcoil -B for dipole and Bcoil -Gb 

for quadrupole. Therefore, if the limiting parameter is the Lorentz 

force JB we can rewrite the above equqtions as 

a~ -r() (Ja)( ~~~ )zb 

~~= jUo (JB)(;:~ )-/;-

For a fully stabilized NbTi coil at 4.2 K with (JB)max = (1/30) x 

6xlo9 TA/m2, b = O.l m and µ
0 

= 4~x10- 7 Vsec/Am we get 

Brna.'J- -= 3.~ T 

qrnax = 2C/ r/rtt-

(r= i) 
(r= ~) 

Going to substabilized NbTi conductor we can gain a factor 10 in (JB)max 

and hence a factor 3 in Bmax and Gmax· These ideal values should, of 

course, be interpreted as the upper limits of what are attainable in 

practice. As mentioned before these high fields are available only with 

high current densities. At the same current density even if we go to 

r =~(namely a=~) we get only an increase of a factorv'& in Band a 

factor /3 in G from those given above. 

At these high fields the magnetic forces on the coil are very 

large, generally many tons per cm of length of magnet. These forces must 

be confined by some mechanical structure. Also, since one generally 

does not like the magnetic field to extend far away from the magnet all 



-38-

coils should be magnetically shielded by an iron yoke. There are, then, 

two ways of providing the mechanical confinement. 

1. Cold-iron structure 

One could use the iron yoke to confine the forces on the 

coil. The yoke must then be in contact with the coil and be at the coil 

temperature. The cryostat must then enclose the entire coil and yoke. 

The mass to be cooled is very large. The cooldown time will be long. 

Tl\1-1259 

The iron next to the coil will be driven into magnetic saturation by the 

very strong field thereby distorting the field shape. The advantage, on 

the other hand, is that the iron yoke does provide a very simple and strong 

confinement structure. 

2. Warm-iron structure 

One could use a non-magnetic (say, stainless steel) collar to 

confine the forces on the coil, enclose only the coil and the collar in a 

smaller cryostat, and place the cryostat inside a room-temperature iron 

yoke or shield. The advantage is that the cooldown time is greatly reduced 

and that if the iron is far enough removed from the coil it will not be 

magnetically saturated and will not distort the field shape. The disadvantages 

are (a) the collar generally does not provide as strong a confinement 

structure as the heavy iron yoke, (b) the smaller cryostat generally results 

in greater heat leak, and (c) supporting the cryostat from the warm iron 

yoke is mechanically and thermally tricky. The Tevatron magnets use 

the warm-iron design. 

Any movement of the coil conductor will create friction heating, 

thereby causing the conductor to go normal. Nearly all design difficulties 

are related to the requirements of strength and rigidity of the confinement 

structure and of thermal insulation of the cryostat. There is no problem 

with the superconducting behaviors of the conductors. Design concerns related 
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to the coil conductor are generally simple, mundane considerations such 

as avoiding large eddy current loops, avoiding breakage of the delicate 

superconducting filaments, providing good contact between conductor and 

coolant etc. As long as these fairly obvious requirements are satisfied 

the magnet will work reliably to the short sample limit. The mechanical 

and thermal requirements, although obvious, are, however, extremely 

Tl\1-1259 

demanding. It is likely that the ultimate performance of superconducting 

magnets will be limited by strength of material and mechanical engineering 

rather than superconducting properties of material. 

C. Beam Quenching and Quench Protection 

A substabilized superconducting magnet can quench (go normal) 

for a variety of reasons. The control system may malfunction, a current glitch 

may arise from the power supply, the coil conductor may move, the particle 

beam may strike the coil etc. The last mentioned is the most difficult to 

avoid. At liquid He temperature the heat capacity of the conductor is 

very small, less than i mJ/g/K, and during the sub-millisecond time when 

it is struck by the beam, cooling by the coolant is totally ineffective. 

Depending on how close to the quench limit it is operating the magnet may 

quench when struck by very little beam. For example, -i mJ/g (-2xlo7 GeV/cm3) 

will give a temperature rise of -~Kand may cause a quench. The shower 

developed by one high energy proton will deposit some Sxlo-3 GeV/cm3. 

Therefore it takes a stray beam of only 4xlo9 protons striking the super

conductor within 1 cm2 and in a time <l m sec to cause the magnet to quench. 

It is therefore essential that the superconducting magnets downstream of 

beam scatterers such as scrapers, setpa, etc. be well shielded, and good 

and reliable quench protection systems are incorporated in the design. 

When the spot on the coil that is struck by beam quenches it heats 

up causing neighboring areas to quench in succession and the quench 
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propagates. If all the stored energy in the magnet is dumped at one 

spot the coil will surely be damaged. Thus we like the quench to 

propagate rapidly to the whole coil. To do this a heating strip is 

imbedded in the coil during construction. When the start of a quench 

Tl\1-1259 

is detected a current is sent through the heating strip to cause the whole 

coil to quench at once. In addition,an external circuit is triggered to 

(1) shunt the ring current around the quenched magnet, and (2) short the 

quenched magnet across a resistor. A large fraction of the stored energy 

is then absorbed by the resistor and the remaining small fraction is 

distributed over the whole coil thereby causing no damage. Experience 

shows that such a quench protection system can indeed be made effective 

and reliable. 
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III. Beam Cooling and Antiproton Accumulation 

-If only one ring is available one must collide p and p. For this one 

needs a source of high phase-space density p. 
Antiprotons produced by a high energy proton beam striking a target 

have a very low phase-space density. There are two methods presently 

available to increase the phase-space density or, equivalently, to reduce 

the phase-space volume occupied by the beam - a process similar to cooling 

a volume of gas molecules. 

A. Electron Cooling9 

Because of the much lower mass, electron beams col~er (lower random 

kinetic energy) than the p beam can be produced relatively easily. A cold 

electron beam with the same velocity is made to travel along and mix with the 

stored p beam in a straight section of the storage ring. In the rest frame 

this is just a 2-component plasma. Equipartition of energy between the 

2 components through Coulomb interaction will cool the antiprotons and heat 

the electrons. 

We give here a sketch of the derivation for the cooling rate in 

a simplified case. The velocity dependent 11 friction 11 force on a test 

charge (in this case the p) moving in a spatially uniform electron 

distribution f(V) is given by 

with the 11 potential 11 
<I> given by the Poisson-like equation in the velocity 

space 
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e, me = charge, mass of electron 

* "e = spatial density of electron distribution (*denotes value 

in rest frame) 

£nA = £n(l27f ne* 1..03) =Coulomb logarithm 

1.. 0 = ( 4,1r Se~ )l/

2 

= Debye screening length 
e ne 

2 
re = ~ = classical electron radius 

mec 

Se = rms value of the random part off in the rest frame of the 

electron distribution (related to the 11 temperature 11
). 

A swarm of jj•s will be cooled {11 attracted 11 to the "velocity center" 

of the €lectron distribution) at the rate 

~* = ~ Vv·F =-;/i{47relf ;:AA)(-r;-,,2¢) 
¢ 

=- (47r)~ 'hi.~~ ~ 4..d. f(~) 

where m and~ are the mass and the velocity of .the jj. Assuming Maxwellian 

electron distribution and V<<Ve (Because of the much larger jj mass this is 

generally valid even though the jj beam is hotter - higher random energy.), 

and transforming to the lab-frame we get 

where 
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2 
rp = ~ = classical p radius 

me 

Sy2 = relativistic kinematic factor of the p beam (identical 

for the e beam) 

je/e = number current density of the electron beam 

TM-1259 

the 3 degrees-of-freedom indicated by the subscripts. 

n = duty factor = fractional part of the p orbit overlapping with 

electron beam for cooling. 

This shows that the cooling rate is higher for: 

1. higher electron current density je 

2. colder electron beam (smaller Se) 

3. lower p beam energy (smaller sy2). 

The realistically attainable cooling rate is unfortunately rather low for 

this application. Even for 200 MeV p's cooled over n = 5% of the circumference 

by a rather heroic electron beam of 1 A/cm2 and as cold as sex= Sey= sez = 10-3 

(rms energy in each dimension = t eV) we get 

Thus, for p accumulation electron cooling is too slow at GeV energies. 

B. Stochastic Cooling10 

Because the p beam is not a continuum but an ensemble of a finite 

number of individual particles a broad-band electronic feedback system could 

be used to cool the beam (Liouville theorem applies only to the mathematical 

phase-space volume, i.e. a continuum.). A pickup electrode senses the 

statistical fluctuation of the off-center displacement of the centroid of 
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a small sample of p's. The signal is amplified and applied to reduce 

the displacement by a kicker located downstream of the sensor. It is 

important that the sample remains more-or-less identifiable (not totally 

mixed with other p's) between the sensor and the kicker. It is also 

important that before returning to the sensor the sample should be mixed 

(at least partially) with other p's in the beam so that with each revolution 

new statistical fluctuations are presented to and reduced by the feedback 

electronics. The cooling rate is limited by the bandwidth, the noise, and 

the output power of the electronics. This scheme is particularly advantageous 

for longitudinal (momentum) cooling because in this degree-of-freedom the 

pickup signal is a frequency which can be easily cleaned up by a filter. 

We give here without derivation the formula for the cooling rate 

and discuss its features and implications. The formula is 

where 

W = bandwidth of the feedback system 

N = number of particles in beam 

g = 11 gain 11 = fractional correction in one pass (tix = -gx) 

= noise power 
n signal power 

f 0 = revolution frequency 

n = ~W = number of Schottky bands 
0 

wk = width of kth Schottky band. 

We observe the following. 

1. The factor* is obvious. If W =None should be able to sample 

all the particles individually in l second. 
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2. For given* the cooling rate has a maximum of 

at 

3. For perfect mixing each Schottky band has a width equal to the 

revolution frequency, namely wk = f 0 and 

Thus, with zero noise (n = 0) and perfect mixing one should make g = l and 

obtain an optimum 

4. Noise and poor mixing limit the useable gain. Generally for 

longitudinal cooling we have 

_L z l:.. + 'Y/. ~ io3 
71.t k wk 

(order of magnitude) 

Hence the optimal 11 gain 11 is only g = 10-3 and with a bandwidth of 2 GHz 

for a beam of 107 particles we get 

a -I 
~107 sec -3 __;_ ____ x Io -
~x10 1 

I 
1osee 

Again the cooling is slow, but fortunately at such a low 11 gain 11 

the ampliflier power required is attainable even at p energies of several GeV. 
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The electronic cooling scheme is particularly advantageous for longitudinal 

cooling because in this dimension the pickup signal is a frequency which 

can be easily cleaned up by a filter to give a much smaller n 

C. Antiproton Accumulation 

The spreads in the momentum variables px, Py (transverse) and 

Pz (longitudinal) of the p's produced in the target are given by the 

production mechanism and hence are not under our control. The spreads 

in the coordinate variables x, y, and z are however, equal to those of 

the proton beam bunch incident on the target. To increase the p density 

in the 6-dimensional phase space (x, Px' y, Py' z, Pz) one should, 

therefore, reduce as much as possible the physical dimensions of the 

incident proton beam bunches. Thus, transversely the proton beam is 

focused to the smallest possible spot on the target and longitudinally 

-the beam bunches are made as short as possible by rf manipulations. The p 

beam produced at some relatively low energy (a few GeV, for faster cooling) 

'is collected by a large aperture (small f number) field-lens and stored in 

a large aperture ring so that a large bite of phase space volume is collected 

by taking large spreads in px, Py and Pz· The phase space density is then 

increased sometime more than 10 decades, by one or both of the cooling 

mechanisms. Frequently the spread in Pz is first reduced by debunching 

the beam (stretching out the spread in z) since the cooling processes 

proceed faster for beams with smaller momentum spreads. The cooling may 

take a few seconds and every few seconds a batch of some 108 - 109 p's 

is produced, collected, cooled and stacked. The stacking rate could be 

as high as 1011 - 1012 p/hour. The final stack of high phase density p 

beam is then accelerated to high energy and injected into the collider to 

collide with the counter-rotating p beam. 
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IV. Crossing Geometry, Luminosity and Tune-shift 

For this section we shall assume bunched beams. With only minor 

modifications the discussions can be translated to apply to coasting 

(continuous) beams. 

To minimize the beam-beam interaction the bunches of the two 
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oppositely travelling beams should be kept separated except at the intended 

colliding points. Thus at the collision points the beams should cross at 

a small but finite angle e. The condition that the beam bunches be 

separated far away from the collision point is 

.. 
where E =emittance and s* = low sat the collision point. On the other 

hand the condition that the beam bunches not be totally separated at the 

ends while crossing can be written as 

where 22 = bunch length. If one takes e = 2/2 ~ to just satisfy 

the lower limit condition one gets the condition t<S*. This gives either 

a lower limit of the low-s value or, for given s*, an upper limit of the 

bunch length. This condition is also desirable from the consideration 

that when t>s* the luminosity is reduced because the beam bunches get too 

wide· at the ends; but this is a much softer condition. 

This beam separation is very small. For pp the two beams must be 

further separated by a common dipole far enough apart to travel in 

separate magnet rings. The common dipole can be placed on either side 

of the low-s matching quadrupoles. In either case, since the matching 
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quadrupoles must be located fairly close to the collision point, hence 

close to the common dipole, to keep the maximum s values in the quadrupoles 

not excessively large, it is likely that both beams must also be contained 

in common matching quadrupoles. One must therefore take into account the 

deflections of the orbits by these quadrupoles and the implication of common 

quadrupoles on the relative focusing orders (F or D) of the corresponding 

quadrupoles in the two rings. A common quadrupole has the same focusing 

actions on pp but opposite focusing actions on pp. The simplest arrangement 

is, thus, to keep these relative focusing orders all the way around the 

ring, viz. even for the parts of the rings which are totally separated. 

For pp the two beams can only be separated by an electrostatic field 

and hence the separation can not be very large. Generally both beams must 

be contained in the aperture of the same ring and the electrostatic 

separators serve only to induce opposite betatron oscillations on the two beams. 

To ensure that the beam bunches are separated at all unwanted crossings 

the spacing between bunches in each beam must not be much smaller than 

the betatron wave length. This strongly limits the number of bunches 

in each beam and hence the attainable luminosity. Or one can make the 

crossing angle every large and the beam bunch length t very small. 

If 

M ::>>1 

one must have t<s*/M. If one cannot make beam bunches so short one 

again takes a beating on luminosity. 

In all these cases one can, of course, have the beam bunches collide 

head-on and depend on either the common dipoles (for pp) or the electrostatic 

separators (for pp) to separate the beams. However, since the bunch 
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spacing must be greater than twice the distance between the collision 

point and the location where the beams are separated, it must then be 

rather large, generally much larger than that when the beams are separated 

by a crossing angle. With the minimal crossing angle (M = /2) and the 

short bunches (t<s*) discussed above the luminosity per collision of two 

beam bunches is reduced only slightly from head-on collision. The total 

number of bunches per beam can, however, be made much larger, giving a 

big gain in the total luminosity. 

For the example of the SSC we have 

and 

~ 
ff > .Z'l'/*W = o.oa mrad 

Hence a crossing angle of e = 0.05 mrad is adequate. Since £ is much 

smaller than s* the luminosity is essentially that of head-on collision 

and we have for the luminosity per collision of two p beam bunches of 

n = 2xlo10 protons each 

If the total pp cross-section at this energy is a~ 200 mbarn = 2xlo-25 cm2, 

the average number of events per collision of two bunches is, then, 

crl = 4 which may be too high for present detectors to handle. Hopefully 

new and improved detectors will be able to handle more simultaneous events. 

Assuming a bunch spacing of s = 40 m we get a total luminosity of 
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The total number of protons per ring is 

and the beam-beam tune shift per crossing is 

tf = 1 r, ~ = &, fJO/S-

which is believed to be alright. 
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