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Two approximations are made, one essential and the 
other not so essential but convenient to keep the ana­
lytical treatment manageable: 

1. Only one nonlinear resonance is considered at a 
time so that the treatment is best suited when the tune 
is close to one resonance only. To improve this approx­
imation, one must go to the next order which involves a 
canonical transformation of dynamical variables. Ana­
lytical treatment of more than one resonance is not pos­
sible for general cases. 

2. In the formalism using the action-angle varia­
bles, the Hamiltonian can have terms which are independ­
ent of the angle variables. These terms are called 
"phase-independent terms" or "shear terms". The tune 
is then a function of the oscillation amplitudes. In 
the lowest-order treatment, the (4N)-pole components 
but not the (4N+2)-pole components contribute to this 
dependence. In deriving the. resonance width analytical­
ly, one ignores these terms in the Hamiltonian for the 
sake of simplicity. If these are retained, one needs 
at least three extra parameters and the analytical 
treatment becomes rather unwieldy. Qualitatively speak­
ing, the phase-independent terms move the tune away 
from the resonance (detuning effects) as the oscilla­
tion amplitude grows so that an unstable motion can 
become stable at some large amplitudes (which, however, 
may be meaningless if the amplitude is larger than the 
available physical aperrure). Unfortunately, they also 
tend to shrink the central stable area and consequently 
increase the resonance width. -This lengthy explanation 
is included here to warn the readers that the resonance 
width given below could be an underestimate. 

We start with the expression which is similar to 
what G. Guignard gives in his report, CERN 77-10, "SE­
LECTION OF FORMULAE CONCERNING PROTON STORAGE RINGS", 
pp. 69,70 & 76. His definition of the width seems to 
be regarded as the "official" definition at CERN. Con­
sider a nonlinear sum resonance 1 characterized by three 
positive integers ~.n ,p). The operating point (v , 

x y x. 
v ) should not be too far from this resonance line(the 
flrst of two approximations given above) so that the 
magnitude of the quantity 

e = n v + n v - p x x y y (n + n = N) x y 

is not too large. This resonance ~s driven by the 
multipole field component bN-l (normal field) or 8N-l 
(skew field), N=n +n, depending on even n or odd n, x y y . . y 
respectively. The definition of bn and an is 

y = 0 (median plane) 

normal field 

skew field 

B
0

(1 + L bnxn), 

B l: a xn (B •dipole field) 
o n o 

Now define the parameter Id I, 
p 

d n n ~ 
jdpl =j(l/2n)f ~·(Bx x By y) bN-l (or aN_1)·(N-l)! 

x exp{i(n ~ +n ~ -e8)} 
x x y y 
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where p is the radius of curvature for each dipole, 
~ and W are the linear phase advance, B and B are x y x y 
the linear lattice parameter, e is the azimuthal angle 
of the machine and the integral is for the entire ring. 
The integral is usually replaced by a summation over 
each magnet with (ds/p) • bend angle. The resonance 
width of Guignard is then 

(Ii2 + n2)~ 
x y EG • ~-----"-~-

2N-l n In I 
x y 

where the transverse beam emittance is taken to be TIE 
in both directions. If two emittances are not identi­
cal, one must use the expression 

Id I 
G 

x 

However, a certain caution is required in using this 
expression when either n or n is unity since either 

x y 
E or E then appears in the denominator. Formally, 
o~e finas a very large resonance width for a very small 
amplitude which is of course absurd. 2 

v 
y 

+ n v = p y y 

Note that the "bandwidth" l::,.e used by Guignard is related 
to EG by the relation 

1 

l::,.e = 2EG (n2 + n2 )~ x y 

The importance of two approximations used in the deri­
vation of the resonance width has already been stated. 
When these approximations are valid, the physical mean­
ing of EG is: If the operating point falls within the 
distance EG from the resonance line, a particle with 
the initial emittance rrE becomes unstable regardless of 
its initial phase. The initial emittance (divided by n) 
of a particle in the horizontal phase space, for exam­
ple, is defined with the initial values x

0 
and x~ 

E = Y x 2 + 2a xx' + B x' 2 
x x 0 x 0 0 x 0 

where (y ,a ,B) are the linear lattice parameters. 3 

x x x 
Note that when the distance to the resonance line is 
more than f.G, a particle may or may not be stable de­
pending on its initial phase. In this sense, the width 
EG is the most underestimated, i.e., the quantity taking 
the smallest value compared to other widths defined in 



different manners. 

_one can define the resonance width, call it ES 
(''S" for "safe"?), such that it is the most overesti­
mated: If the operating point falls outside the dis­
tance s

5 
from the resonance line, a particle with the 

initial emittance rrE is always stable regardless of its 
initial phase. If the distance to the resonance line 
is less than £s, the motion may or may not be unstable 
depending on its initial phase. Obviously, for an i­
dentical situation, Es is larger than eG for any reso­
nance. It is not possible to find an analytical ex­
pression for Es except for a few cases such as 3v, 
v

1
+2v

2 
and 2v

1
+2v

2 
•. A table is given here, therefore, 

showing the numerical relation between EG and Es for 
a number of resonances. 

nlvl + n2v2 • p, nl < n2 or n2 • 0. 

nl n2 £G/£S nl n2 EG/ES 

3 0 .500 1 5 .366 

1 2 .518 7 0 .342 

4 0 .414 3 4 .343 

2 2 .414 2 5 .349 

1 3 .433 1 6 .350 

5 0 .377 8 0 .332 

2 3 .380 4 4 .332 

1 4 .391 3 5 .335 

6 0 .355 2 6 .339 

3 3 .355 1 7 .338 

2 4 . 362 

The width Es is termed the "most overestimated" in 
view of its physical meaning. This should be examined 
more carefully. A definite possibility of an under­
estimation has been mentioned in connection with 
phase-independent terms which shrink the central stable 
area in phase space. In addition, when we define the 
widths EG and s 5 , the stable motion is possible only 
for an arbitrarily large aperture. If the physical 
aperture is limited (as it always ia:.in real machines), 
particles could be lost even when their motions are 
theoretically stable. For example, if resonance Vx + 
2vy is dominant, the emittance can grow by a factor of 
as large as 2.9 in the horizontal direction and 4.8 in 
the vertical direction. This is of course for the 
worst initial value of the phase combination (~x+2~y)• 
For other particles with different initial phases and 
especially with initial emittances less than the maxi­
mum stable value, the increase may not be as large. 

Nevertheless, this is a serious problem when one cannot 
tolerate a large emittance growth. In order to f ~nd a 
more realistic growth factor for a 
particle), we take 5,000 particles 
ly in (~ .~ ) but exponentially in x y 

beam (and not for a 
distributed uniform­
E and E : x y 

where 0 < E < 60 2 

x x 
and 0 < E < 60 2

• The growth 
y y 

factor for the beam as a whole in the horizontal direc·· 
tion is defined as 

E 'ff'ax )/( E Ei ) 
k x,k k x,k 

k 1,5000 

where Ei k and F!°axk are the initial and the maximum 
x, x, 

possible emittances, respectively, of the k-th parti-
cle. If the resonance width is redefined such that the 
beam emittance growth is no more than 10% in both direc­
tions, this width (call it e10%) is in general larger 
than E5 and of course larger than EG. Actually, £10% 
is larger than Es only for a few low-order resonances: 

3 l 4 l 

0 2 0 3 

2.56 2.33 1.29 1.01 

Again it is important to realize that any analytical 
estimates made in this report are based on the two ap­
proximations and one must resort to numerical simula­
tions by a computer in order to find a more reliable 
emittance growth • 

1 Width of a difference resonance is a rather nebuous 
quantity. Guignard seems to feel differently; he de·­
fines the width but the precise physical meaning of his 
width is not clear. 
2 S. Ohnuma, IEEE Trans. Nucl. Sci., NS-28 (1981), p. 
2491; Fermilab report TM-988. 
3 When the closed orbit is not centered (field error or 
~p/p + 0), one must redefine all multipole fields in­
cludfng the quadrupole component around the off-centered 
closed orbit. All linear lattice parameters are then 
modified. Since we do not allow any driving terms for 
linear coupling resonances in the Hamiltonian (the ap­
proximation 1), there are no ambiguities in the defini­
tion of linear parameters. 


