
Fermi lab

EPICS SYSTEM: RSX IMPLEMENTATI~ ISSUES*

TM-1240
2311.000

T. E. Lahey, J. F. Bartlett, J. S. Bobbitt, B. J. Kramper,
B. A. MacKinnon, and R. E. West

February 1984

*submitted for publication in the Proceedings of the Digital
Equipment Computer User Society, Las Vegas, Nevada, October 1983.

EPICS SYSTEM: RSX IMPLEMErlTATIO!I ISSUES

T. E. Lahey
J. Frederick Bartlett, J. s. Bobbitt, B. J. Krai:tpar

B. A. MacKinnon, R. E. West
Fermi National Accelerator Laboratory

!atavia, Illinois

ABSTRACT

This paper presents implementation details of the
Experimental Physics Interactive Control System (EPICS).
EPICS is used to control accelerated particle beams tor
high-energy physics e1Cperil:lents at the Fermi National
Accelerator Laboratory. The topics discussed are:
interprocessor communication, support of beamline terminals
and devices, resource management, mapping, various problems,
aom.e ·solutions to tlle problems, performance meaaurement. and
aoditicatioas and extell81ons to RSX-11M.

This paper is the third of three related papers on th~
EPICS system. The other two cover (1) the sYftem overview~
and (2) the system structure and user interface.

INTRODUC'l!ION

EPICS is implemented with RSX11M running on
PD?-11 'a.

The hardware configuration (f'igure 1) includes t1io
closel7-coupled PDP-11 's: an 11 /44 and an 11 /34.
The 11/44 is a level-2 computer that runs the user
com:1and language, utilities, and the device
database. The 11/34 is a level-3 computer that
reads end writes be!!.::1line devices and creates an
interrupt environment for the level-2 computer. The
co~puters are coupled with shared memory and a
DR11-C interrupt link. The sh~red memory is located
o:i a shared UlHBUS. Also located 011 this shared
U?iIBUS are the serial CA."lAC controller and TIMER
controller.

Currently, the level-2 computer runs RSX-11M and the
level-3 computer runs a stripped-down version of
RSX-11M that is equivalent to RSX-11S. A separate
diagnostic SJ'Stem for the EPICS hardware runs
RSX-11S on both computers. The level-3 cocputer has
no disk. It is downloaded from the level-2 computer
by using the DR11-c. shared memor,y, and the 11/34
boot ROM.

The serial CAMAC controller is a special-purpose
controller providing access to serial CAlU.C. The
CA~.AC system runs throughout the experimental areas
and supports modules tor interfacing to bea.111line
devices, terminals, and experimenter computers. The
CJ~Y.AC system does not provide asynchronous de~ands,
so the level-3 polls all CAMAC modules. The serial
CA:U.C controller reads commands from and stores .data
i:i shared memory.

The TI~.ER is a second special-purpose controller
that synchronizes the level-2 and level-3 computers
to the external accelerator clock. The accelerator
clock generates timing pulses that announce events,
such as the start or an accelerator cycle and
delivery of beam to the experiments. The TU~ER
resides on the pricary UlHBUS of the level-3
coa:puter. The CA1U.C controller and TIMER ar~
level-4 computers.

Proce«Jings of t/111 Digital EquipmMlt Compur.r Users Society 229

POP-11/44
13/4M BYTE

POP-ll/34A
64K BYTE

UNIBUS A

DUAL
PORT

COUPL£R

CA MAC
CRATE

5
COAXIAL
CABLES

Fig. 1 EPICS Hardware Configuration

Las Vegas, Nevada • OctobH, 1983

IltEP..PROCESSOR COMM'J?UCATIOtl

The DR11-C and shared memory are used for
interprocessor eom:nunication. There are three
partitions in shared me~ory: one owned by the
level-2 co~puter, one owned by the level-3 cooputer,
and one containing COl!l!rmnication queues. The
initiating task creates a message in sha~ed memory,
and sends it to another task via a coilllilunication
queue. The initiating task enters fork state and
calls a coamunication routine to enqueue the message
on a co::iaunication queue. When the receiving task
is on the sa:ie processor, the communication handler
enqueues the message on the propet" queue. When the
receiving taak is on" the other processor, the
com!l!Wlication handler sends the address of the
message, via the DRtt-C, to the other processor.
~e coi:llllunication handler on the target processor
enqueues the aessage on the proper queue. If a task
OW?ls the coill!!lunication que~e. the collll!lUnication
handler infor:11s the task abo~t the arrival of a
message by setting an event flag or issuing an
As;r.tchronous S7atem Trap· (AST). The receiving task
calls a routine to dequeue the message. The DR1t-C
A ana ~ interrupts are supported with connect to
interrupt routines (CINTS) in an RSX task.

'BEA?(LINE TERMINALS SUPPORT

Figure 2 shows the path through the system for
access to a terminal. The user co111111and language
(CBASIC) and the utility tasks issue QIO's that are
supported with a minimal driver and the Terminal
Ancillsry Control Processor (ACP). The ACP
co::i:ir.l!licates with the level-3 terminal handler via
shared-memory messages and com:nunication queues.
These messages are input and output lines. The
level-3 ter.:iinal handler performs low-level
processing, e.g. , local-echoing and intra-line
editing, and schedules polling of the terminals that
are physically conne=ted via serial CAMAC.

BEA?n.ISE DEVICE SUPPORT

Figure 3 shows the path through the system for
access to beamline devices. The utility tasks and
CBA3!C iAsue QIO's that are supported with a minimal
driver and ~he Request Formatter ACP. The Request
For:ia~ter co::c.unicates with the Disk Database Access
task, and uses the memory-resident de~ice database
to perform i:litial processing on the device access
request. The Request Formatter sends the request to
the level-3 Request Handler via coDl!llunication queues
and shared aemory. This task converts the request
into a command list and sends the col!lll\and list to
the serial CJ.MAC driver for· execution on the serial
CAMAC a7ste:11.. Upon completion, the level-3 comp11ter
processes the date and sends it up to the utility
task via the Re~uest Formatter.

Util.i ties

Utilities are nonprivileged RSX tasks that typically
execut~ QIO's to create a device access request,
transfer a data buffer, and delete the device access
request. An exception to this is the Page utility
which is a nonprivileged task that repetitively
upd~tes many device readings on multiple terminals.
There can be a maxim~n of 8 page displays with 45
de•1ice readings each. Page updates up to 24 of
these readings every second, optionally updates
another 24 devices readings every 0.2 seconds, and
modifies the page displays in response to user
co::::i."td s.

230

CBASIC

• • ----. •
--- S>UREO
--- MtlolQ;t1

s
COAXJ.1.1.
CAIUS

I
I

- .J

LEVEL 2

LEVEL 3

LEVEL 4

Fig. 2 Support for Peamline Terminals

0151(
DATABASE

ACCESS

'-----: :--J

OEVICf
O!PEHO[HT

ROUTIH!S

DATABASE
COMMON

TIMER
NTROl.l.iR

'--- ----.,
·------1

I
I

• I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I

' •
MEMC;RT

' -----~

C..,AC
CRATt

CAAUC
CRATE

Fig. l Support for Beamline Devices

LEVEL 2

UVEL :S

LEVEL 4

-4-

its device record is placad at the end of the LRU
list. On tbe naxt access to the device, the Request
Foroatt~r hashes the device record, finds it on the
LRU list. removes it, and starts using the device
record without invoking DDA. \lhen ne~ device
records are being loaded, DDA retrieves the
least-recently-used record frOQ the front or the LRU
list and uses it for the ne~ ·device •. Al,l devices
that are no longer being accessed are thus
eventually removed trom the database co::u:ion.

Another araa or resou~ce manageraent is sharing or
data vhe~ two or more rea~ requests are identical
with respect to the device, attribute. and tine.
'.rhe EPICS system uses a data structure in shared
~e=or,y called the shared data point. the level-)
co~puter stores the data in the shared data point
where the data is accessible by all processes that
get data directlJ' from sha:red memory. For example,
the Page utility retrieves tha s9lll.a data tor all
users which are displaying the device. In addition,
the level-' computer distributes this data to all
buffers f~r utilities that are retrieving the data
in buffers. !his aechanis~ gives us fawar data
structures in shared lil&mor,r, fewer accesses to the
device. and fewer exec~tions or routines that
process that data.

Resource management ia applied to bea!llline terminal
support. On the level-' computer, there are two
polliag rate3: slo~ and fast. When no one is using
a terminal. it ia polled at the slow rate 0£ once
per second. When a user types the first character.
the level-3 computer starts polling the teri::inal at
the tast poll rate or 10 timN per second. There is
a th::eout of five minutes a~plied to fast polling or
a terc1inal. It a user has not typed within thia
time period, the level-' computer polls tbe terminal
at the slow polling interval.

Resource nanage:ant is implemented via the concepts
of defined terminals and active tel'i!linals. A
defined tercinal is one which bas been ider.ti!ied to
the EPICS·syste~ and which is polled by the level-J
coaputer. An ~ctive tel'i!linal is a tel'il!inal known to
ESX through an assigned Unit Control Block (UCB).
Vhen a user types at a defined terainal, the
Terminal ACP atte~pts to assign the tercinal to a
tet'E1inal UCB, making it an active terminal. 'rhis
technique requires fewer UCB'a in pool and hence
eaves pool. ~here is also a timeout or active
tel'lllinala. It there la no activity on an active
ter.::iinal, it is disconnected froa the UCB, so that
the active tel'l:11nal port can be us9d for another
de!in"sd teraina1. Thia timeout and the number ot
active terminals allows us to support the caximum
nuober of concurrent users without excessive use of
pool. At the current time there are 24 defined
terminals, 10 active tel'l:1inals, ancl a timeout of 15
ainutes on active terminals.

The level-2 utilities implement resource management
via ~imeouts and resource quotas. For e~ample, the
Database Editor cancels.an editing sessio~ if' a user
has typed no COllllllands within its timeout period.
Page cancels a page display ir it raceives no
co1::1!llands "'troQ the user within its til3eout period.
The Watch utility applies quotas on user requests.
Each type ot user is given a maximua number ot Watch
resources that can be used. For example, an active
experiment can watch more devices than an inactive
one.

MAPP INC:

All t~sk3 that acce3s the database COl!l.::IOn and shared
ce:iory cu.:it dyna:iically map to thoee arer
Cur:-a:i.tl7, the database COllllllOl:l is 15K words 11.

sha•ed ce~ory is 44K words.

The Disk Database Access task is a nonprtvileged
tas~ that maps to the databsse cociiion via ltSX PLAS
directive.a.

To decreas~ the ~pping time in i:tany other tasks.
the tasks cap directly. The tasks codify the
co:itents or the ~apping APa•s oa the.I/O page. For
a task to directly codify its mapping under RSX, you
must disable context switching. At the ne%t context
avi.tch, RSX vill recalculate the values o! the
mspping registers ~or the task. On~ aigple solution
is to _disable context svitch!ng b:r aodirying the
variable SCXDBL. When nonzero, the executive will
not s~itch to running a different task. So the ta3k
disables context awitching, ramaps and proces3as,
and then raanables context switching. The next tim9
that RSX switches the"ta:Jk out and back in, msp?1ns
will be as described in the window blocks.

We are starting to use another aetbod for rer.1apping
a task. . When building the taek, we allocate
.additional window blocks with standard RSX Task
Builder co:nmands. While the task is :running, "it
i:oditiea the contents ·or its window blo:~s to
dyna.zically reaap. This allows rast regappins and
tas~ switching while the task executes the section
or code 1n which it modifies mapping.

PROBLEMS

Many ot tha technical probleas that ve encountered
were related to mapping. There were also some
probleas with RSX pool. A ainor problem vas seen
with incorrect use or SWSTKS.

When a task disables context switching tor the
pur?ODa or codifying the l!l8pping, the task ca."t.~ot
issue any RSX directive that leads to a context
svi tch. This caused cinor problems related to
no?':lal use or such directives.· 'Ehis cansed cajor
problems related to use ot the OD'l' debugging tool
sin~e it issues such directives.

Another problea vith disabling context switching is
that a task can aonopolize the CPU. Additionally,
7ou reduce your ability to tune the "systet:i" with
ata:idard asx tuning parameters, sucb a$ task
priority.

Ir you.directly modify the capping registera, never
modify APR O. It is mapped to your task header. At
minimum, the Directive Status Vord (DSW) for your
task is stored in your task header. ~he syste~
continues to update the location at the offset 0£
t~e DSW into APR O. .

Aa•with c~y RSX-11M applications, we had typical
proble::is vith pool. Great care was required to
achieve the largest possible pool. Other•ise the~e
was not enough pool, especially on the 1ev~1-2
co::iputer. · Additionally, when the. 8.!;lount or ee
pool was low, it beca~e difficult or impoesib~- to
diagnose or solve the problems.

One minor problem was the use ot a SWSTKS !rom an
illegal APR. In a 20K executive, RSX proceases a
SWSTKS bj"' copying the user mapping registera 5 to 7

to the corresponding kernal mapping regisers. The
executive then transfers control to the code
~allowing the SWSTK$. If this code is in APR 0
~hrough 4, the executive is not mapped to your code,
~nd it will execute whatever is at that location in
the kernal address space.

SOLUTIONS

~here are multiple solutions to the above problems,
::ome of which first became available du-ring the
,,evelopment of EPICS.

«onversion from. RSX-11M to RSX-11 M+ on the level-2
,;0 mputer may solve many problems, such as those with
pool. We will use multi-user tasks to reduce the
number of tasks and hence the amount of task
swapping. Use of Instruction and Data Space gives a
larger task address space and can reduce the amount
of dynamic mapping.

For dynamic mapping of a task's address space, we
are increasing the usage of window blocks allocated
by the Task Builder and modified directly at
execution time. Another possible solution to some
of our mapping problems is to use a VAX.

To use ODT for debugging a task that disables
context switching while it remaps, we added the
ability to preserve the mapping of one task across
task switches. When debugging a task, the task
identifies itself as the task for which mapping is
preserved, and then remaps without disabling context
switching.

We can move the data structures associated with the
Request Formatter ACP from RSX pool to M+ secondary
pool or to another partition. Additionally, we are
moving all data structures that need not reside in
shared memory to other locations, thus using shared
memor-1 only when required. More effective use of
this critical resource allows us to reduce
allocation restrictions and to extend the automatic
recovery timeouts.

For the cor.ununication handler and TIMER handler, we
are converting to RSX drivers from the
connect-to-interrupt mechanism. This reduces the
time to handle an interrupt. Additionally, this
removes the con text switch which oc.curs when these
devices are supported with an RSX task. The
privileged tasks will enter fork state and directly
queue commands to the drivers via the routine
$DRQRQ. Future code can be nonprivileged and access
the drivers via QIO's.

Newer versions of the compiler have features that
allow us to write more code in PASCAL. This
provides for faster implementation and more
maintainable code. We currently have a

.stripped-down PASCAL run-time system that we will
use to write privileged code in PASCAL. For ·
example, new versions of the Terminal ACP will be
coded i~ PASCAL.

We are considering a modification to the code which
supports SWSTK$, such that a PR:O task (privileged
without being mapped to the executive) can execute a
SWSTK$ to enter fork state, provided the SWSTK$ code
is lo~ated in APR 5 or 6 for a 20K executive. We
will also check whether the task has executed the
SWSTK$ from a legal APR.

233

An improved method for support of critical sections
between the Disk Database Access task and Request
Formatter is the use of global event flags. The
task priorities can then be set according to
relative processing priority of the tasks.

We are migrating the low-level terminal processing
from the level-3 computer to intelligent terminals.
This reduces the level-3 computer load and provides
better response to a user typing at the terminal.
In many cases, these terminals can be supported by a
local (level-5) computer, e.g., personal computer.
This method provides even more power to the user and
off-loads more functions from the level-2 and
level-3 computers.

PERFORMANCE MEASUREMENT

To increase the real-time response of the EPICS
system, we measured performance in two ways.

The first method involves attaching a logic state
analyzer to the UNIBUS address lines. By attaching
the analyzer to the primary UNIBUS of the 11 /44 or
11/34, we can observe relative execution of code on
that processor. By attaching the analyzer to the
shared UNIBUS, we can observe overall use of the
shared memory by the 11/44, 11/34, and serial CAMAC
controller. ·

A second method involves use of a DR11-C attached to
an oscilloscope via Fermilab equipment that
conditions the DR11-C signals. An EPICS task or
driver sets and clears individual bits in the DR11-C
register to indicate its execution and its states.
The oscilloscope generates a trace of the reported
activity. We thus get a more detailed idea of
system activity and timing.

MODIFICATIONS AND EXTENSIONS OF RSX

To produce the implementation of EPICS that we have
described, we .made minimal modifications and
extensions to the executive.

Currently there are two modifiqations to the system.
First, the task switching code was changed to
preseI'Ve the mapping of a single task across context
switches. Second, we modified XDT on the:level-3
computer so that the system would reboot without an
operator-entered command, i.e., G command to XDT.

Additional functionality was supported by extensions
to the executive. During the RSX system generation,
we added routines for allocation and deallocation of
shared memory and for interprocesSQr collll!lunication.
At system reboot1 the RSX illegal instruction code
is extended by loading code into pool and changing
the executive code to branch to the new code. We
have programs to load and remove the illegal
instruction code whenever necessary.

As mentioned earlier, we will be modifying the
SWSTK$ code to allow its use from a privileged task
that is not mapped to the executive.

CONCLUSIONS

Many of the implementation techniques, such as the
use of ACP's, special-purpose drivers, and £~st
execution of code are applicable to both RSX-11M and
to RSX-11 !-!+. This discussion is useful for
time-critical RSX-11M applications on 18-bit
machines. Soma of the methods we used in
implementing the EPICS control system can be avoided
by use of RSX-11M+,

1. Bartlett, J.F., et al., "The EPICS System: An
Overview", DECUS Proceedings, Fall 1983.

2. West, R. E., et al., "EPICS System: System
Structure and User Interface", DECUS Proceedings,
Fall 1983.

234

