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The traditional forms of the formulas giving the thresholds of the 

longitudinal (subscript i) and the transverse (subscript t) instabilities 

of a charged particle beam travelling inside the vacuum pipe of a storage 

ring are: 

Longj__~udi na ]_ 

where 

zi = longitudinal impedance of the whole beam pipe (in unit n) 

n = mode number = number of instability waves per turn 

E, I = energy and current of beam 

n = 1 1 dwo . 
---= _Q_ -=revolution . 2 2 w

0 
dp 

y Yt 
frequency dispersion factor 

(

w0 = revolution frequency) 

Yt = transition energy 

y_ beam velocity 
S = c = velocity of light ' 

e = charge of particle 

b2- = FWHM of momentum spread in beam . p 

( l) 



-2-

This formula is derived for a continuous (coasting) beam but can also be 

applied to a bunched beam if I is interpreted as the peak current in the 

bunch and Zt is modified to contain only the relevant frequency components. 

Transverse 

where 

Zt = transverse impedance of the whole beam pipe (in unit Q/m) 

<St>= amplitude-function of the transverse (betatron) oscillation 

averaged over the whole ring 

v = tune (wave number) of the transverse oscillation 

i:- dv h t · "t 
s = d(%) = c roma i c1 y . 

Again, when applied to bunched beams I should be interpreted as the peak 

current during the bunch and Zt should contain only the relevant frequency 

components. 

The longitudinal and transverse impedances of a circular beam pipe 

(ignoring the space charge impedances) are related by 

where b is the radius of the pipe and 2TIR is the circumference of the ring. 

A. Alternative Forms 

Since these coherent instabilities do not involve reasonances 

with the revolution frequency, explicit reference to the circumference of the 

ring should be avoidable. Furthermore, it should be possible to replace the 

impedances of the who 1 e ring by the average impedances per unit 1 ength of 

beam pipe. This can indeed be done. Equation (1) can be rewritten as 

(2) 

(3) 
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lz 'I < E/e _s ~ L'l(nw ) 
9, I 2TIC p 0 

I _ z'}., 
Zt = 2TIR = average longitudinal impedance per unit length 

of beam pipe 

nw
0 

= frequency of the nth mode of the longitudinal instability 

picked up at fixed azimuthal location = frequency sensed 

by the beam pipe, [To be exact this should be (n-vs)w
0 

where v
5 

=synchrotron (longitudinal) oscillation wave 

number. But since generally vs << 1 it can be neglected.] 

Similarly, Equation (2) can be written as 

where 

zt -
Zt = 2TIR - average transverse impedance per unit length of 

beam pipe 

(n-v)w
0 

= frequency of the nth mode of the transverse instability 

picked up at fixed azimuthal location = frequency 

sensed by the beam pipe 

and Equation (3) can be written as 

, 2c (z~ (w)) 
Z (w) = -

t b2 w 

where w = nw
0 

= frequency at which the impedances are measured. 

Only the radius of the beam pipe and not the total length appears in 

Equations (4), (5) and (6), Together with the fact that only impedances ~er 

unit length are involved this makes them purely local equations. The only 

(4) 

(5) 

(6) 
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implicit reference to the ring circumference is through the mode number n. 

But since nw
0 

and (n-v)w
0 

are simply the frequencies of the instabilities 

sensed by the beam pipe we see that the appearance of n is quite incidental 

to the physical meanings stated by these equations. Indeed they have the 

same forms whether the beam and pipe form a closed ring or are straight but 

infinitely long. In this sense these formulas apply equally well to a linac 

as to a circular machine. 

B. The Impedances 

There are 4 types of contribution to the impedance, 

1. Space charge term -This term depends on the energy and the 

dimensions of the beam and is non-zero even when the beam pipe is removed. 

Longitudinal 

or 

or 

where 

Z
0 

= 377 ~ = impedance of vacuum 

g,Q, = 1+2 Jln ~ = geometrical factor (a,b = radii of beam and 

pipe both assumed cylindrical) 

Transverse 

( 7) 
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or 
. z z I 1 0 

t = 2rr [32y2 9t 

where 

- l l -g - - - - - geometrical factor-. 
t a2 b2 

2. Resistive wall term - This term depends on the conductivity a 

and the permeabilityµ of the wall of the beam pipe through the skin depth. 

It is rich in low frequencies and is generally small. 

Longitudinal 

or 

or 

where 

Transverse 

or 

l . Z R _, 0 
z = --wo 

9, 2c b 

Zn l . Z R 
:X, -1 0 ~ 11 = -2--b-'!.:1 

I 

Zn 1 . Z 
-N=-.:l-2..0 
w 4rrc b 

cS = / 2 = skin depth . wµo 

3. Non-resonant broadband term - This term is the contribution 

from discontinuities in the pipe, bellows, eJectrodes etc. It has the 

frequency dependence of a parallel R(=Rs), L, C circuit with a resonant 

(8) 

(9) 

( 10) 
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frequency roughly equal to the cut-off frequency of the beam pipe, 

This term is mainly responsible for high frequency instabilities within 

each single bunch. 

Longitudinal 

or 

or 

where 

Transverse 

or 

Rs ( :r) [~ + iQ(l -~22)f z = Rs 
w f (w) -Jl wr 

z9., 
Rs ( R~r) f(w)' f (w) ~ (:r -i) -- = n 

Rs = total shunt resistance of beam pipe 

I R 
Rs = 2TI~ = shunt resistance per unit length 

J Rs 
Q ~ wl = "Q" of the resonant circuit ;l 

wr = - 1- = resonant frequency of circuit~ ~b = 
v{C 

cut-off frequency . 

2R (zi) ( 2c ) Zt = b2S n = Rs b2wr - f (w) 

for~« 
wr 

4. High-Q resonant term - This term arises from resonances of specific 

configurations or devices in the beam pipe and hence can not be expressed 

in a standard form. It is generally rich in low frequencies and gives rise 

( 11) 

( 12) 
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to interbunch or single bunch multi-turn instabilities. These insta-

bilities can be cured by feedback. Therefore this term can usually be 

neglected. 

From the above discussion we see that if one neglects the space 

charge terms one gets the relation 

2R (Z.v.,) 
zt = b2s n 

or 

z I : .?s_(z~) 
t 2 (Jj • 

b 

2 b2 
Si nee b gt = a2 - l is generally much larger than g n = 1 + 2 in Q_ the above 

x, a Z 
relation gives a lower limit for Zt' thus a separate threshold for ; 

through the threshold value of zt for transverse instability. 

C. Scaling Laws 

Here we assume that each beam bunch contains N particles, has a 

longitudinal emittance E.v., and is bunched by an rf with peak voltage V and 

wave length A = 2~R where h is the harmonic number. Generally E.v., is much 

smaller than the (stationary) rf bucket area. Thus, we can write for the 

full dimensions of the beam bunch 

Length = 1:::,.9., = - I- -
TT \TT a 

{ 

. ~ (€9., 1) ~ 
Momentum spread = 'W- = 2mpc ("; a)" 

where a is given by 

2 1 A eV -::t-r 
a = ( 2TT) 2 R mc2 In I . 

For the peak current during the beam bunch we have 

I = ecS N 
1:::,.9., • 

( 13) 

( 14) 

( 15) 

( 16) 
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Equations (l), (2), (3), (14), (15) and (16) give altogether the following 

scaling laws. 

and 

( ) 

E ~. 3/4 3/4 1/2 

I I 
!sv 1 1:5,.v £ A. y v 2t th a: T R y \)a: T R3/ 4 v~ 

1 v72 
3/2 2 y \) 

where the subscript th denotes threshold value and where we have used the 

following approximations 

Although the tune spread 1:5,.v is shown explicitly in these formulas, it is 

limited by resonances to a small and fixed value, and can therefore be 

cons; dered as constant. The dependencies in ( j Z £ j/n)th and ( j Zt !)th can 

be summarized in the following table of exponents. 

( jZ£_!!n \h ( l2t I ) th 
,,,... ~ r ..-... ....... 

I fixed N fixed I fixed N fixed ---
E 9, l 3/2 0 1/2 

A. 1/2 5/4 0 3/4 

R -1/2 -1/4 -1 -3/4 
y -1/2 -3/4 3/4 
\) -1 -3/2 1 1/2 
v 1/2 1/4 0 -1/4 

( 17) 

( 18) 

( 19) 
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To make the beam more stable i.e. to increase (lzil~n)th and 

this table shows that; 

1. For Ei• A and R the exponents have the same signs for all 

cases. Hence we conclude: 

The longitudinal emittance E£ should be large. 

The ring circumference 2nR should be small. 

The rf wave length A should be large. 

(Namely, the harmonic number h = 2~R should be small. 

For the ranges of energy and rf frequency of interest. 

A and Rare essentially independent.) 

All three are actually fairly obvious statements. 

2. The exponents of y and v in (lzil.J"n)th and (!Ztl)th have 

opposite signs. Therefore, no simple statement can be made regarding the 

choice of their values. 

3. For the fixed-current (I) case one may want to make the rf 

voltage V large to improve the longitudinal stability. However, for the 

more realistic fixed-number (N) case the effects of V on the longitudinal and 

the transverse instabilitie~ are equal and opposite. 

To reduce the magnet aperture or equivalently the radius b 

of the beam pipe Equation (19) states that one should reduce E£' A, R and V; 

and increase y and v. 

Combining the effects on the beam pipe radius and those on the 

threshold impedances we are left with only one unequivocal requirement, namely 

that the ring circumference should be small. 
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At low energies the considerations in the choice of the focusing strength 

(choice of v) are the beam size and the orbit distortion due to field errors 

which, together, generate a geometrical requirement on the size of the beam 

pipe and the good field aperture, Indeed, the strong focusing principle was 

invented to reduce the necessary magnet aperture, thereby the cost of the 

magnets. But, at high energies this is no longer true. The beam size is, 

generally, negligibly small and the orbit distortion is corrected to arbitrary 

desired accuracy, With properly designed trim dipole system the correction 

is straightforward. Other types of geometrical demands on the aperture arise 

from beam manipulations such as stacking and resonant extraction. These 

requirements tend to be local and can usually be satisfied by local lattice 

insertions (high or low-S, high or zero-dispersion etc.) 

The excitation of higher order resonances by magnet field errors is small 

and negligible beyond the octupole. However, in colliders the excitation by 

beam-beam forces is large and resonances up to the 7th order must be avoided. 

(This severely limits the allowable tune spread 6v, hence the available 

Landau damping of beam instabilities.) But this excitation depends only on 

the orbit functions at the collision point and not on the overall focusing 

strength. 

In a high energy collider for which there is no geometrical demand on 



-2-

aperture we are left only with the electromagnetic consideration in choosing 

the focusing strength and the aperture, namely that of the coherent instabilities 

of the beam. The beam current induces a voltage through an "impedance" of the 

beam pipe. This voltage acts back on the beam as positive feedback and making 

it unstable. The instability is damped by a spread in the natural frequencies 

of individual particles in the beam which causes the instability to lose 

coherence. The larger is the frequency spread (generally generated by a 

momentum spread) and the smaller is the "impedance" the more stable is the 

beam. 

The condition for longitudinal stability is, at high energies 

where 

z£ = longitudinal impedance 

n = mode number = number of instability waves 

around the ring 

E and I = energy and current of beam 

v = tune 

b2- = full momentum spread. p 

Solving for v we get 

The condition for transverse stability is 

or 

> l I R 1z I v 7T E/e 6.v t 

( 1 A) 

(2A) 
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zt = transverse impedance 

R = radius of ring 

6v = tune spread in beam. 

For a circular beam pipe the transverse impedance is related to the longi­

tudinal impedance through the pipe dimensions by the inequality 

where 

b = beam pipe radius. 

Equations (2A) and (3A) together give 

Thus, v i 5, hemmed in by 

z z -~ 

( ) 

1 

sql<v<A qi 
with 

where the tune spread 6v is limited by resonances to a fixed value of ~0.01. 

A. Scaling 

A wider range of acceptable v value would allow larger values of 

1z~l/n. Hence we would like A to be large and B to be small. To increase A 

and decrease B we should 

1. Increase f · This extends the acceptable v-range at both ends. 

(3A) 

(4A) 

(5A) 

(6A) 
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This also indicates that the tightest constraint occurs at injection when E 

is smallest. Reducing I helps~ but the luminosity suffers. 

2. Increase T. This raises the upper limit of the v-range, 

but requires either blowing up the longitudinal emittance or a huge increase 

in rf voltage (as the 4th power of 1W-). Neither alternative is very attractive. 

3. Increase~· Because of the squared dependence this is very 

effective in lowering the lower limit of the v-range. Since the stored energy 

in the magnet ring is proportional to B2 x (b2R) '\; b2/R, to minimize the increase 

in stored energy it is more desirable to reduce R than to increase b. 

B. Numerical example 

we get 

For a 20 TeV collider assuming 

E = l TeV (injection energy) 

I = l A (2xlo10 protons in a l m long bunch) 

~ = 2xlo-4 (a large value) 

R = 9 km (using l 0 T di po 1 es) 

b = 0,0254 m (l" radius aperture) 

6v = 0.01 (limited by resonances) 

which gives a range of about 40 to 90 even with jZil/n = 5 Q and shows that 

v = 60 is a good choice. Going to R = 36 km (2.5 T dipoles) raises the lower 

limit by a factor 16 and gives 

(12s n-1) M< \) < (200 n~) (M)-~ 
· n n 

The v-range narrows to zero at IZtl/n ; 1.35 Q. The value IZt\/n ; l Q is 

very difficult to achieve and the value v ~ 170 is not very desirable. 


