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Abstract
ANSYS has been used to determine the deflection of the central tracking

chamber and stress levels during construction and in the final configuration.

Introduction

The central tracking chamber (Fig. 1) is made of two aluminum dished
heads 108 in. in diameter separated by a distance of approximately 10 feet.
Approximately 40,000 wires are strung between the heads, each wire requiring
a 0.120 in. diameter hole penetrating the head. There must be sufficient
tension in each wire to prevent excessive sag. The questions to be answered
are:

1. In the final assenbled state, what will be the deflection of the

head both radially and axially (need to know wire poéitions) .

2. How large an effect do the edge conditions of the dished head have

aon the final deflection; i.e., how does one support the dished head.

3. How does the head deform during assembly.

4. What are the stress lewels in the head.
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Validation of Results

There is no way to accurately predict the deflection of a dished head
by analytical methods. For this reason, ANSYS, a finite element program,
has been used. Before tackling the problem at hand, one needs to establish
the validity and accuracy of the finite element method for a problem of this
type. By considering a flat circular plate with a hole in the middle of the
same size as the dished head, one can compare the ANSYS solution with an
‘analytic solution. Fig. 2 shows such a plate. First, using Roark, Page 339,

Case 2a (simple support), the following results are obtained.

Fig. 2 a = 54.331 in.
b = 8.661 in.
H-T— g = 0.1 psi
D et E = 4.5E6 psi
t = .375 in.
A
c, =1.2602
c, =2.7817
L,; = 0.0112
Ly, = 0.1848
D = (4.586)(.375)3/12(1-.3%) = 2.173E4 (L)
Resulting in a deflection at the inner hole:
=K gl _ -2.91 in )
Yb Yb D - - .
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The ANSYS solution for the same loading is -2.93 in., a difference of about
0.7 percent. The distorted geametry plot for the circular plate is shown in
Fig. 3; It is of further interest to note that the same flat circular plate
with a fixed edge deflects approximately .645 in. One should, therefore,
expect large differences in deflection based on different edge conditions.
The second case used to campare ANSYS with an analytical solution is a
partial distributed load over the same flat plate. The significance of this
case will be obvious in later sections of this paper. The problem to be

solved analytically is shown below:

a = 54,331 in.

b = 8.661 in.

r, = 17.795 in.
g = 0.1 psi

E = 4.5E6 in.

t = 0.375 in.

v = 0.3

Roark, Page 339, Case 2a, has the load applied as shown below, so superposi-
tion must be used to solve the case just described.

Fig. 5 a = 54.331 in.
b = 8.661 in.
g =0.1psi

17.795 in.

(A

D:IOH

| T 4,.5E6 psi
’ b
L v =10.3
Yo
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G = ( 2 /l'\_E’ Intg) + | I b a, = 1.2602
NS 7o
¢, =% (1-.2)a_ 9) = 2.7817
\ J
. 2 4 2
_ ;___ /' . vro \.\.. ,:/'rO \,\: "ro \ 7.-‘_r \\ \ ]
fnTe i\ttt = -5y - 4('—a_,.f —Z ) f.‘— = 0.00566
. ¢ N N 2
_x 1-=.3 / _{ro> i To / A
D = 2,173E4 (see Eq. 1)
_ (20.1) (54.331) '/(1.2602) (0.1410) _ S
Y, ST 7Aoo 2.7 - 0.00566) = -2.33 (3)

\

The solution for the case of interest (Fig., 4) is found by subtracting Eq. 3
from Eq. 2:
Yb = -2,91 + 2.33 = -0.58 in.
The ANSYS solution for this case is ~0.574 in. The distorted geometry plot
for this case is shown in Fig. 6.

One last point which needs to be mentioned concerning validation of re~
sults is that the cases solved so far have involved pressure loading in
which the loading stays normal to the surface of the plate. For flat plates
and small deflections applying pressure loads is an accurate way of modeling
the loads applied by wires which always pull in the axial direction. However,
for dished heads, the surface of the plate is not normal to the force applied
by the wires, consequently one must use a mass type loading in which the plate
material is assigned in artifically high density to model the force of the

wires. A sketch may make this more clear:
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Pressure Ioad Mass Load

For the purpose of demonstrating the validity of this technique, the two
cases solved previously (Fig. 2 and Fig. 4) have been resolved by assigning
a density of ‘.0006901 1b sz/j.n.3 to the flat plate and removing the pressure
load of 0.1 psi. The density was camputed so as to apply the same total force
over the surface of the flat plate as a pressure load of 0.1 psi applies.

The results of the ANSYS solutions for the two cases are summarized in Table 1.
As a point of interest, the difference between deflections produced by
mass and pressure loading applied to a dished head is approximately 30 percent.

One clearly cannot use pressure loading to model the real problem.



Table I

ANSYS Solution

Analytic Solution (Pressure) Pressure Load Mass Load
Full Load  Partial Load Full Load  Partial Load Full Load  Partial Ioad
(Fig. 2) (Fig. 4) (Fig. 2) (Fig. 4) (Fig. 2) (Fig. 4)

-2.91 -0.58 -2.93 -0.57 -2.93 -.058
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Elastic Constants

The dished head has a 0.120 in. diameter hole for each wire to penetrate
through. There will be approximately 40,000 holes in each head. One must,
therefore, modify the elastic constants for the head by an appropriate amount.
Robert Cook‘at the University of Wisconsin brought to our attention a paper
by Slot and O'Donnel which describes a fairly simple way to treat perforated
plates. Although the wire pattern is not exactly uniformly distributed over
the dished head, it is close enough to allow modeling the load as a uniform
pressure load of 4.1 psi or a total force on the head of about 35,000 lb.

The assumption of a uniform hole pattern also allows the elastic constants
to be determined as described in Slot's paper. All effective elastic con-
stants will be denoted with an asterisk. The material used is aluminum.
Carpute E® using Slot and O'Donnell's paper:

2p cos 30 + p = .5669

_ 5669
P=5css 30 +1 -~ 0-20750

PRI R
A TION h=p - dia = 0.20750 - .120
PPy i ERN

il

0.08750
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Ligament efficiency n = & = 2872 = 0.422. From Table 4: (5)
%i= .3105 + <—§—2—2—-:——§%%/ (.5291 - .3105) = .4270

v = .3400

gf. = .4161

E = (.4270) (10.6E6) = 4.526E5 psi

v' = .3400

G* = (.4161) (4E6) = 1.66E6 psi
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First Approximation to Solution

To establish the upper and lower limits of deflection within which all
proposed construction techniques will fall, the dished head will first be
treated as a simplified dished head with no flange, 108 in. outer diameter,
17.324 in. diameter center hole, 0.375 in. thickness, and aluminum material
with the effective elastic constants described in the previous section. This
simplified head will be simply supported and fixed at the outer diameter.

The actual dished head will have a stiffening ring welded around the outer
diameter and will probably approach the fixed edge case rather closely. The
simplified head is shown in Fig. 7. The simply supported head under a load

of 4.1 psi is shown in the deflected position in Fig. 8. The maximm displace-
ment in the Y direction (at the edge of the hole) is 0.251 in., The maximm
radial displacement (at the outer edge) is ‘0.120 in.

The fixed edge head is shown in the deflected position in Fig. 9. The
maximm displacement in the Y direction is 0.013 in. The maximum radial dis-
placement (at r = 35 in.) is approximately .003 in. These two cases establish
the window within which all actual construction cases will faill.
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Fig. 7
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Fig. 8
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Solution with Outer Stiffening Ring

The actual dished head is shown in Fig. 10. Note that there is an alumi-
num stiffening ring welded around the circumference of the same dished head
treated in the previous section. The head will be supported by simply sup-
porting the stiffening ring as shown. The stiffening ring is 4 in. wide and
1 in. thick.

Not only is the final deflected state of interest but the behavior of
the heads during stringing of the wires is of interest to help determine
whether each wire should be tensioned as strung (using little springs at the
end of the wire) or whether all wires should be strung loosely and the entire
assenmbly post tensioned by driving the heads apart. Because the assenbly
technique is still wnclear, the effects of gravity should be considered on
the head vhen it is oriented with its axis parallel to the ground. If the
effects of gravity tending to distort the head into an ellipse are small, the
analysis can be done» ignoring gravity and including only the effects of the
w:i.fes. Fig. 11 shows the distorted shape of the head due to its own weight
when standing on edge. The maximum deflection is just less than .001 in., so
gravity will be ignored. ‘

The actual assenbly sequence will be modeled by applying the load in
annuli of increasing radius, progressing through 180° at a time. A sketch
showing this loading sequence follows:

No Load First 180° Second 180° Third 180°
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Fig. 10
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Fig. 11
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To aid the reader in interpreting the plots (Figs. 12-21) showing the
distorted shapes of the head at various stages of winding, note that the plots
are made by viewing the head at Section A-A labeled in the previous sketch.
Actually, only half the head has been modeled. Fig. 10 shows the wndistorted
shape of the head. Fig. 12 shows the distortion due to application of load
in the first 180° region. The title on this plot (Fig. 12), "ETYPE 1 ON,"
means that all the element types 1 have had their density turned on so that
the load is applied through the first 180° arc. Fig. 13 shows the distortion
due to application of the load in the second 180° region and is titled "ETYPES
1, 2 N" to indicate that element types 1 and 2 have had their densities turned
an. There are a total of five annuli for a total of 10 element types and,
consequently, 10 distorted plots. The numnber in the upper right hand corner
of each plot (0.03379 in Fig. 21) indicates the maximum displacement for that
particular load case. The maximum displacement in all cases occurs either
right at the edge of the inner hole in the head or very near the inner edge.
The surprising result is that the maximum deflection is almost reached after
the first full annulus is turned on (Fig. 13). Then the displacement decreases
as the next annulus is loaded (Fig. 15), increasing smoothly with load to
final fully loaded condition (Fig. 21). This can be understood by examining
the rotations of the elements as the first annulus is turned on; however, a
rather simple physical explanation can be had by considering the following.2
‘Imagine loosely holding the opposite edges of a piece of paper in each hand
so that the paper sags in the middle. Application of a load in the center of
the paper causes significant deflection. Now consider application of a load
on each side of the center of the paper, near your hands. This load causes
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Fig. 12
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Fig. 13
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Fig. 14
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Fig. 15
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Fig. 16
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Fig. 17
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Fig. 18
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Fig. 21
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the paper to "balloon" out, and the center of the paper actually deflects
up rather than down. A similar effect is seen in the dished head. The final
distorted shape (Fig. 21) has a maximum radial displacement at the outer

stiffening ring of 0.015 in. and a rotation of the ring of 0.0022 radians.

‘Solution Using Center Post

One proposed construction technique involves welding a 1 in. wide by
1-1/2 in. thick aluminum ring inside the hole in the dished head, then
pulling down on this inner ring until the same maximm deflection is achieved
as in the final assembly state (all wires strung). The question to be an-
swered is how closely does the profile of the head match the profile of the
head in the final assenbly state when pulled down by the inner ring. The
answer seen in Fig. 22 is not very close at all. It in interesting, however,
to note how closely the first annulus loading (Fig. 13) matches this center
post loading (Fig. 22).

Stresses
Stress concentration factors are needed for perforated plates. Work by
O'Donnell and Langer® provides the needed factors. The ligament efficiency
already camputed (Eq. 5) as 0.422 is used along with Figs. 12 and 13 in the
O'Donnell and Langer paper to determine the following stress concentration
factors (SCF):

SCr

3.3 for isotropic stress

SCF

5.1 for uniaxial stress
SCF = 2.73 at the rim (p/b = 0.0783)
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Fig. 22
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The uniaxial SCF should only be used where either Oradial OF Jg = 0, i.e.
where either radial stress or hoop stress is zero. For the problem at hand,
the isotropic SCF is most realistic.

Fig. 23 shows the meaning of the various stress values plotted in Figs. 24
through 31. Fig. 23 shows SMXT, the maximum principal stress on the top sur-
face of the plate element. Both the maximm and minimum values of QMXT are
plotted. Note that the convention used throughout is a positive sign for the
tensile stresses and a negative sign for campressive stresses., Fig. 25 repre-
sents the minimm principal stresses on the top surface. Fig. 26 represents
the maximm shear stresé on the top surface. Fig. 27 represents the maximum
equivalent stress (or Von Mise's stress) on the.top surface. Figs. 28 through
31 represent the same stress camponents on the bottom surface of the plate.

The conclusion to be drawn from the stress information comes from the
SGET and SGEB plots (Figs. 27 and 31). The maximum value of SGET (2918 psi)
occurs in the outer sﬁffaﬁng ring which needs no stress concentration factor
applied. The values of SGET near the outer edge of the head are approximately
1500 psi. (This is scmewhat difficult to see fram the plot but is easily
extracted fram the printout.) Applying the outer rim SCF of 2.73, the stress
levels near the outer rim are on the order of 4500 psi, certainly nothing to
be concerned about. |
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Fig. 23
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Fig. 24
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Fig. 25
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Fig. 26
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Fig. 27
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Fig. 29
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Fig. 30
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Fig. 31
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