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Abstract

We find criteria on the cooling system to minimize effects of

RF stacking on the cooling tail.

1. Introduction

A scheme /1/ has been recently proposed to produce a
high-intensity antiproton beam in a stochastic cooling
accumulator. According to this scheme, the coasting beam of p 's
extracted from the Debuncher ring will occupy the injection orbit
of the accumulator ring with a total momentum spread of about
0.2%. This beam is to be bunched adiabatically. Then the buckets
are transformed to moving(decelerating) buckets, slowly enough to
obtain as large a capture efficiency as possible. The amount of
deceleration depends on the physical distance which must be
cleared by the bunch. After deceleration is completed, the RF 1is
turned off slowly to allow the beam to debunch adiabatically. The
beam is now ready for stochastic cooling. The debunched beam 1is
soon moved to down in the stream by the tail cooling system in
order to make room for the next stacked beam.

Although effects of RF stacking on the already stacked beam
have been pointed out by many people, we do not know
guantitatively much about this problem. This is a reason that the
design of the tail cooling system has been not yet determined in

detail. In the present paper, we understand the nature of the



above effect and obtain some criteria for designing the tail
cooling system.

There are in general two effects that RF stacking gives an
already stacked beam, which shall be called " tail " because the
main part of an accmulated beam has the common name of " core ".
The larger is phase-displacement acceleration and the other is
so-called dilution coming from non-adiabatic change of RF
parameters, say, Vr{(t) and fv4(t), which is understood to be
enhanced by non-linearity of RF stacking dynamics.

Phase-displacement acceleration 1is simply related to the
phenomenon of phase-flow as a consequence of Liouville's theorem.
Such phase flow 1is determined only by the nature of a dynamical
system. It would, 1in principle, be possible ¢to determine

phase-flow from Boltzmann's equation

where £ is the distribution function, H is the time-dependent
Hamiltonian, including non-linear terms for the present case, and
L , ) 1is the Poisson bracket. This, however, has considerable
mathematical difficulties. 1In the present report, we therefore
investigate the structure of the dynamical system which describes
RF stacking with a help of numerical experiments. We note that a
collection of phase points in the phase space behaves as an
incompressible gas. From this incompressible gas analogy, it is

easy to suppose that phase-flow close to the RF bucket is most



active. Thus we shall particularly concentrate our attention on
the phase space region where the RF bucket annihilates, near the
separatrix.

In the third section, we discuss dynamics of tail cooling
with a help of the Fokker-Planck equation, which has become a
common technique in a study of stochastic cooling. From the tail
cooling point of view, the effects of RF stacking can be regarded
as deformation of the tail which occurs within a limited period
(that is, 100 msec), tail cutting due to phase-displacement and
non-uniform dilution 1in the tail due to non-adiabatic diffusion.
An easy method for estimating beam-loss due to phase-displacement
is presented and used to obtain the criterion which should be

imposed on the cooling system.



2. RF Stacking & Its Effects on Cooling Tail

2—-a Stacking Process

The stacking process consists of the following four phases:
1. Adiabatic Capture. The injected coasting beam is adiabatically
captured in the RF bucket, whose phase space area 1s slowly
increasing until it becomes a little larger than the phase space
area occupied by the beam. The period which adiabatic capture
requires is chosen from general considerations about the
adiabaticity of a harmonic oscillator /2/ and is chosen equal to
3%, where Ts 1is the period of the synchrotron oscillation at
the final stage of this step. (See Fig.l-a)
2. Alteration (Stationary Bucket = Moving Bucket). An adiabatic
alteration of the RF parameters, say, V4 and £, is performed in
order to convert a " stationary bﬁcket " into a " moving bucket ",
capable of changing the mean energy of the particles trapped
inside. (See Fig.1l-b)
3. Deceleration. A period of deceleration follows, employing a
moving bucket of constant area and constant synchronous phase
angle ¢s- (See Fig.l-c)
4. Adiabatic Debunching. The RF is turned off adiabatically after
it has been transformed again into a stationary bucket of the same
area from a moving bucket. (See Fig.1l-4d)

The above process is performed by manipulating both
parameters of the RF, voltage V and frequency fry . In Fig.2, the

RF voltage V and the synchronous phase angle ¢g relevant to fuf



are shown as functions of time. In addition, other RF
parameters /3/ are listed in the same figure. Since the general
nature of phase space dynamics for RF stacking has been discussed
in detail in the previous report/4/, we will not examine it
extensively except for the present problems of interest.

Results of numerical simulations already shown in Fig.l-a
~ Fig.1l-d, also give the energy distribution of an injected and
released beam on the stacking orbit. We obtain a final full

energy-spread of 0.21% and a final capture efficiency of 98%.

<-b Phase-Displacement

As a consequence of Liouville's theorem, the phase area
transported downward in the energy plane by a decelerating RF
bucket must be accompanied by the upward trasport of an equal
phase area in the region outside the bucket, a property known as
phase~displacement, which is seen in Fig.3. This phenomenon gives
rise to a serious problem in the previous pulse , which has been
moved towards the cooling core by the tail cooling system during
one cycle. That is, following phase flow due to the mentioned
mechanism, a fraction of the previous pulse is transported upward
from the region where a new pulse -is deposited. Then the fraction
transported upward must be understood to be lost out of the
region where the tail cooling system is effective, since it is
removed more and more upward in the energy plane every cycle due
to the unique direction of motion of a decelerating bucket.

From the tail cooling point of view, we are not very



interested in the detailed nature on the phase space (E,9) of
phase-displacement, because stochastic momentum cooling is usually
discussed on the energy plane alone after averaging out the phase
variable. Therefore, 1in order to estimate qguantitatively the
effects of phase-displacement on the tail, we consider the
behaviour of phase points which are located in a small energy bin
at the initial time. We divide the energy region of interest into
many small bins. One-thousand phase points are distributed in
each bin and simulated for an entire RF stacking. After one
stacking cycle, these points will be located mainly in higher bins
as a result of phase-displacement. Hence, such a procedure yields
a kind of a transfer matrix which characterizes quantitatively
over-all effects of RF stacking on the tail. This transfer matrix
is involved in tail cooling calculations later. We also note that
the critical region for phase~-displacement exists, as seen 1in
table 1. Roughly speaking, the fact indicates a criterion which
must be imposed on the tail c¢ooling system so as to minimize
particle-loss, 1If all parts of the stacked pulse are moved toward
the core beyond this critical regions, our anxiety about beam-loss

should vanish.
2-c Non-Adiabatic Diffusion

RF stacking must be performed within a limited period of one
cycle time in order to retain enough time for tail and core
cooling. Such a situation 1leads to non-adiabatic diffusion

particularly in the tail region of interest. It is a kind of



dilution and its qualitative nature is explained schematically in
Fig.4.

Even the end of the tail is far from the synchronous stable
point of a stationary or moving bucket, and it 1is therefore
apparently impossible to linearize the motion of a particle in the
tail region. Thus it is just the non-adiabatic behavior of a
highly the non-linear system that we should investigate. For the
moment, we consider the mathematical structure of such a system.

We may write the dynamics of RF stacking in the difference

equations

Eﬂ‘H = Ev\ + eV(V\) Sl‘M(bM (2-1-a)
7
ZTE Eu-ﬂ"Eg
Puet = Pu + WY = [+ ] —— ] (2-1-b)
We @.lEb »

where (En ,¢“) are the energy and the electrical phase angle with
which a particle enters the cavity at the time of transit,
(V(n),cq4n)) are the RF voltage and the RF angular frequency
programmed as functions of time or step n, w, is the angular
rotation frequency of a particle with the fixed energy E, , (3, 1is
the relativistic beta corresponding to the energy E, , and *{ is

V%: _.|/}f . If changes of the variable and the parameter
z—
Eney = (Ehﬂ 'EO)/(Q" E, (2-2)
’

ooy = hwe [0t deod  Reoel o



where h is the harmonic number, are made, we have the transformed

difference equations

eV(M) '
Eawerv = €n  t ____ sSiud,, (2-4-a)
ﬁbz‘Eb 2
Puer = P, + 2mhR &, v2thfny (1+ 7 €4, ) (2747P)
To write down the difference equations in the form of exact
differential ones we may use a § -function:
. Eneim € evit)-2n
£ & ——— = — 3Sin Y (2-5-a)
Tt) BIE,T) P dunl )
$ = A g6 + dmcir ney] (2-5-b)
THY ’

where T(t) is the time period corresponding to one iteration of
the mapping and the rotation period of the synchronous particle,
Here T = Q(t)t+T,; LQ(t)=2T /T(t) and the $ —function of period

2TL is given by the Fourier expansion

| °Q
6 () = ;_T—L( |+ ZWZH Cos n“(). (2-6)

Thus the dynamics of RF stacking is described by the Hamiltonian

ey - Xk €* &
H(d,e t) = T(ﬂ{ T + fle~+ 1 z]}
2Te V(t) (2-7)
=P ¢ L
@onT(ﬂ osCt> zvc( ) .

Futhermore a change of the time scale
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t* = 27h g % , (2-8)

yields the transformed Hamiltonian
€2 €
H¥(b.e;t) =71 5+ + fum (e+15)

*
+ eV (t*)

e osd St (2-9)

3

It is trivial to obtain the usual Hamiltonian for stationary

stacking from (2-9). After neglecting rapidly oscillating terms

in (2-9), we have the so-called averaged Hamiltonian

GZ
CHYY = X = + firy e+ Awr) ccs<P’ (2-10)

with

e v(t*)
2-11
B E,-2T h | (2-11)

AEF) =

where we also neglect the third term in (2-9) for the reason that

it is small compared with the first and

second term. Canonical
equations derived from (2-10) are written in the form
. 2 <H*>
= = c .+ F(t* -12-
$ 5S¢ he ¥ ), (2-12-a)
. <" * \
= - = S
e o A24*) sind | (2-12-b)

Thus, the solutions ( & ,¢s) for the synchronous point are



11
€s(t* L 13-
s(t%) = —77((1; ), (2-13-a)

_ 1“—(1:*)
A (2-13-b)

Sty = sin |

We understand that stationary deceleration of RF stacking can be

made under the parameter conditions

£(£") const,

)

const or V(t¥) = const.

It is difficult to discuss anaiytically the adiabaticity of
the dynamical system (2-10) under slow changes of its parameters,
that is, f£(t*) and Vv(t*). So we consider a sequence of infinite
phase points, whose behaviors are determined by the
Hamiltonian (2-9). We assume that phase points comprising the

sequence have the same initial condition

& = &o at t*«co

We can regard a energy spread among these phase points after the
whole change of f and Vv, as a measure of non-adiabatic diffusion.
The energy spread AE obtained by numerical calculations is shown
as a function of energy E in Fig.5.

We can see the remarkable fine structure in the AE-E curve and
the existence of the critical region which is consistent with the
phase displacement mentioned in the previous subsection. This

fine structure seems to us to be directly relevant to the problem
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of stable or unstable solutions for the non-linear Mathiew

equation

cw + (o0 ~ 2@*cos2t) sw =0
because V(") is usually assumed to change following a cosine-like
function of time. However, since the fine structure itself is not
so important for the present discussion, we shall not examine it
extensively. Meanwhile absolute values of diffusion in the tail
region do not seem to be negligible whenever there are gradients
in the particle distribution. Thus these effects will be involved

in cooling calculations as periodic blow-up of the tail.
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3. Tail Cooling
3-a Estimation of Beam Loss due to Phase Displacement

Stochastic cooling in the energy plane is usually discussed

by the Fokker-Planck equation /5/

Y

2
= - %[:(e)z\:] +2~E-{[D.(E)+ DJE)IH%YS (3-1)

2
where <= is the density distribution function, and F,D, and D,
are cooling parameters of the system which are usually called the
drift coefficient and the diffusion coefficient. Solving (3-1),
we can know in principle the time evolution of the particle
distribution. 1In particular, we shall consider the time evolution
of the stacked pulse over one injection cycle T..
For the sake of simplicity, we assume:

1) F and (D, +D,%¥*) are constant in the region of interest,

F=F
9

(D,+D; ¥ ) = D
2) the distribution of a RF stacked beam is Gaussian at t=0,

No - (E- wo¥/20%
t= = — €
¥E o) = =0 ,

where N, 1is the number of particles per injection, G, is the

standard deviation, and me 1is the position of the initial

distribution center., These assumptions 1lead to the linear
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Fokker-Planck equation

g +—a’-4; (3-2)
>t =~ F 2E [)'BEL .
Then we have the exact solution of (3-2)
No e—(a-w»‘/zcrl
E,t) = (3-3)
with m = m°+'Et,

0‘l= O_pl'{" ZBt .

The solution (3-3) apparently represents the parallel displacement
of the distribution associated with increasing of the standard
deviation. Now, using the solution (3-3), let wus calculate the
number of particles ,say AN, which after one cycle is still left
in the upper stream above the critical region mentioned in the
previous section. That is,

o0

AN = (C ‘ll:(E /TC} dE, (3-4)

where we denote the critical region by C. Thus, after change of
the integration variable, we define the beam-loss ratio r due to

phase displacement in the form of the Gauss error function

o0
AN \ -x*
r= 9N - = < dx = Erie C")/FLI (3-5)
C=m
v

2
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with n = (C-m)/ y207(T¢) .
Y (g, 1)
Yr (g To) W(E,0)

f““ AE\“%:

\/

AER

It is obvious, from (3-5), that the larger.F and the smaller 75,
the smaller r.

A real situation is generally different from the assumptions
made early 1in this subsection. However, if we have a reasonable
way for the coefficients of F and (D, +D,}¥ ) to be approximated by
some constant values, that is, F and B; the loss estimation by

(3-5) may be still fruitfull.
3-b Effective Cooling Parameters F and D

This subsection will discuss how we should choose the
effective values of F and D. Before we proceed, we shall make the
important assumptions:

1) The present cooling system has a perfectly exponential gain,

that is,

FEY = F exP( E;dmo), (3-6)



16

where E is the distance from the center of the core, Egjis the so
/~
called characteristic energy /1/ , and F is the value of F(E) at

the center of a stacked pulse,
2) The standard deviation ¢, of the distribution is related to

the finite full energy spread AEg of particles which are

deposited on the stacking orbit by

st &, = A4Es, (3-7)

Then it is trivial to estimate the displacement of the
distribution peak over one injection <cycle, say, AE,. The

behavior of the peak is governed by the differential equation
— = FlE), (3-8)

with the initial condition

El) = wmo .,

Substituting (3-6) into (3-8) and integrating both sides, we have

T. & ]

AE, = - E4 n [1- Ea (3-9)

Thus we know the central position between the front and rear peak

over one injection cycle,

w, AE./Z- (3-10)

m|
"

Now, we define the approximated cooling parameters F and D as
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follows
_'\:- = t(—é), (3-11-a)
D = D(E)¥,, (3-11-b)
with Ay, = No/ZAEB.

Here we neglect D, and assume that the distribution after one
injection cycle does not change significantly except for a the
displacement of its peak. 1In fact, for the present case, D,¥ 1is
about five times larger than Dy at the peak, as seen later.

In order to ascertain the accuracy of the above approximation
for several examples, the estimation of beam-loss by using
(3-11-a) and (3-11-b) is compared with the result when Eq. (3-1) is
solved numerically. In Table 3, these comparisons are summarized.
They show that the loss ratio r by (3-5) is smaller than the exact
value by about 10%. Therefore the estimation by wusing the

mentioned F and D still has practical meaning.
3-¢ Criterion for Cooling Parameters

The estimate of the previous subsection is not accurate , but
would be as a guide line for designing the tail cooling system.
Since we have already derived an approximate relationship (3-5)
between the beam-loss ratio and the c¢ooling parameters, we
furthermore give a general criterion which should be imposed on

the tail cooling system in order to minimize beam loss.

If we want the beam-loss ratio r less than some value, say,
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Lo
v-o = Er—-}c (V\o} /JE 3 (3-12)
the approximate cooling parameters must satisfy the equation
C— wme - F Te -1
5o 2 ne (n, = Epye (FEN)), (3-13)
Then, using the more explicit expression of D
D o= AT T, (3-14)

where T 1is the revolution period and A is defined in Table 2, we

have a quadratic inequality for F

T AT NonZ\ =2 = 2 2he
(TJ SERLEANLL ) F o+ 280EsT F +(@E) (R~ = )D0 (3-15)
AEsg 6TC T o
where we make use of the relation
WMo — C = 'ﬁAEB . (3—16)

It is trivial to obtain the solution of (3-15)

— AEe ® 0t V\oj 5L+ €a = a3t ]
F ¢ -= [ —— - (3-17)
- Te |\ — any 2
with _ATN
a = TCAEa 5]
(Sz'l—:.o/\ N

4T.TI7IW* AEa. (3718)
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Given all the other parameters except n,, we can write the
right-hand side of (3-17) as a function of n, alone, which we
denote by ol(ng) and is plotted in Fig.6. We can also derive a
similar criterion formula for 'ﬁ. Substitution of (3-10) into

(3-11-a) yields

T
M

F = | - =L ] (3-19)

-~

Substituting further (3-19) into (3-11) and arranging for F, we

have the quadratic inequality for F

~2 Tc 2 il 2
E + —'E—d A (V\o\ I - o (V\OB Z O' (3-20)

Then the solution of (3-20) is

~ T, ¢
A R AL KR J (3-21)
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3-d Example

As an example, we attempt to integrate numerically the
non-linear Fokker-Planck equation which represents exactly tail
cooling in the proposed accumulator /1/. In this calculation, we

assume the RF stacked pulse is characterized by the parameters:

Gaussian distribution,

AEg 18.0 (MevV),
No = :I.O8 .

and the cooling system by the parameters:

frequency range of 1-2 GHz

I#zl = o0.02,
Tc¢ = 2.0 sec,
T = 1.6x10"° sec.

Figs.7-aa7-c show coefficients of the Fokker-Planck equation. As
the result of numerical integrations, we find that a beam fraction
of 13.4% is lost during the next stacking process. Meanwhile the
approximate method discussed in the earlier parts of this section
gives a beam-loss of 11%. In this estimate by Eq. (3-5), we use

the parameter

E = W, - q, 44 (Me,-V')

P
,because we have E4=31(MeV) and F =-13(MeV/sec) which can be read

by first-order linearization of the gain curve in Fig.7-a.
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4, Conclusion

The wunavoidable effects of RF stacking on the cooling tail
have been discussed in detail. It is still difficult to say that
we have a through understanding of the non-adiabatic diffusion
appearing in the present RF stacking, but its quantitative effect
has been obtained at least for the proposed system /1/ which is
directly available for cooling calculations. Unfortunately, in
the present paper, long-range effects due to this non-adiabatic
diffusion over a whole cooling time , that 1is, several houres,
were not investigated.

Further considerations of non-adiabatic variation in a non-linear
system will be given elsewhere /6/.

In addition, a simple method estimating beam-loss has been
presented which can serve as a guide line for designing the tail
cooling system. A more accurate estimate may also be possible by

applying a perturbation technique.
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Fig.6

Fig.7-an~7-cC

Fig.7-d
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Figure Captions

Critical curve for F versus the parameter ng Or r,
Coefficients of the Fokker Planck equation (3-1).

as functions of E.

E is the energy deviation from the cooling core.
Distribution of particles

The RF stacked pulse is shown by the dotted line, and
the pulse after T¢ by the solid line. The shadowed

area is the survival after the next stacking process.
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Fig.2
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Fig.4

Non-Adiabatic Variation of Non-Linear System (Simple Mcdel)
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Table 1

Matrix

Transfer

X

( each elewment /|03)
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Table 2

Cooling Parameters of Test Cases
F=WwT, T : revolution periood

D=D, +D, V¥

V=2E, TWGS, S

P "k
Dj= Ef WG S
- 2
D,= A v
A=BE, A/ T3l w2

2_ 2
Ee= f k@ e N, Ry /2T

= £

m“x-fwﬁ“ 3 bandwidth

> =
]

1n(fmax/ Fmin)

SP= Sc= Saexp(-E/E* ) ; sensitivity of pick-up and kicker
*. Eq /2 (14 Mev )

G : electric gain

E,: total energy

E : energy deviation

Ep= e o Np Ny Ry R, /T

(?) = velocity

f : noise figure

k : Boltzman constant

© : temperature of amplifiers

NP= N = 256 : number of pick-ups and kickers

RP,Rk : impedence of pick-up and kicker
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Table 3

Results of the system given in Table 2

W (GHz)

F (MeV/sec)

0.04

1

-14-2

2
D, (x10° ev®/sec) 10.5

Sz (x10|z eV3/sec) 4.85

initial value

m, (MeV)
To  (MeV)
final value
m-m, (MeV)
a (MeV)
r(C,Tp )
Estimation
m-m g (MeV)
a (MeV)

I‘(C,Tc )

1n2

~-11

4.5

0.86

-10-5

h.7
0.78

0.01

-13.9
10.0

18.5

1n2

-1

603

0.83

-10.3

6.7

0.71

0.02

-12.5
8.2
16.5

1n6

3.7

-10

6.0

0.96

-8-2

6.3
0.83

3.7

“‘905

4.5

0.99

-8.2
4.5

0.90

0.01

-20.0
10.4
9.57

1n2

-14
406

0.65

-13.7

5.3
0053



