
Fermi lab

PASCAL AND FORTRAN COMPARISONS FOR THE
PDP-11/34 AND VAX 11/780

A. M. Waller

March 1, 1982

TM-1095
2320.000

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Introduction

I. Introdl!.ction

TM-1095
Page 1

The Accelerator Control System's new host computer
configuration employs a mixture of PDP-11/34's and VAX
11/780's. Most application programs will be written in a
high level language for execution on the PDP-11/34. Two
high level language compilers will be available to the
application programmer for the development of programs
targetted for the PDP-11/34. These will be FORTRAN IV-PLUS
and OMSI PASCAL. Some applications will obviously be more
attractive or convenient to code in FORTRAN, others in
PASCAL. However. there will be a class of applications for
which the "correct" or "best" choice of compiler is not
obvious. In particular, there will be applications for
which the execution speed and/or execution storage
requirements are at a premium. In such cases it ic
necessary to know the relative properties of the target code
produced by the two compilers.

Similar questions arise naturally for applications
which are targetted for the VAX 11/780, where the choices of
VAX-11 PASCAL and VAX-11 FORTRAN are available. This memo
summarizes the results of tests that were made to compare
the relative execution speeds and relative storage
requirements of PASCAL and FORTRAN for analogous facilities
(i.e. comparable arithmetic expressior1s, DO loops vs.
WHILE loops, procedure calls, etc.). The results are
collected under four separate headings:

0 Efficiency compa1~isons of OMSI PASCAL and FORTRAN
IV-PLUS

0 E·fficiency compa~risons of VAX-11 PASCAL and Vl\X-·11
FORTRAN

o Comments,suggastions and hints on using OMSI PASCAL in
compatibility mode on the VAX 11/780 for programs
tarrgetted for a PDP-11/34

o Comments. suggestions.and hints on using VA~-11 PASCAL
for native mode programs

The comparisons described here should provide the
application programmer with SOJJl...@.. guidance on s~ of the
penalties he can expect to pay in using a particular
compiler for many common operations. These comparisons do
not claim to illustrate all the relevant differences between
the compilers in question.

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Introduction

II. Comparisori Methodo,logy_

TM-1095

Page 2

The PASCAL and FORTRAN comparisons for the PDP-11/34
and the VAX 11/780 were done in three stages.

1.

3.

Cursory inspection of code
aspects of both languages.
WHETSTONE timing test.
Modified WHETSTONE timing
non-weighted time of
WHETSTONE test;.

generated fo·r

program used
each module

various common

to measure the
comprising the

1.0 CURSORY INSPECTION

A non-runnable piece of coding was generated to inspect
the following statements/expressions:

1. Arithmetic expressions with variables and constants.
* Assignment expressions
* Intege·r arithmetic (multiply, divide, subtract)
* Exponentiation <not available in OMSI PASCAL>

2. Logical expressions.
* IF-THEN-ELSE construct <only IF-THEN in FORTRAN

IV-PLUS)
* relational constructs

3. Loop expressions.
* WHILE-DO/DO-WHILE <not available in FORTRAN IV PLUS>
* FOR-TO-DO/DO

4. Procedure and function call statements.

5. CASE/(computed)GOTO statments.

b. Memory allocation of arrays.
* BOOLEAN/LOGICAL*i
* WORD/INTEGER*2
* CHAR/CHARACTER <CHAR VS.

* REAL/REAL*4
BYTE for FORTRAN IV-PLUS)

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Introduction

2. 0 WHETSTONE TIMING

TM-1095
Page 3

The t..JHETSTONE performance test is a special 11 synthetic: 11

benchmark program. It was designed to take into account
machine architecture and compiler efficiency. Since the
architecture of the machines remains the same, this test
gives a good measure of PASCAL vs. FORTRAN compiler
efficiency for the PDP-11/34 and then the VAX 11/780.

The benchmark reports results in Whetstone
instructions/second. These "instructions" are only remoteltj
connected with physical machine instructions <hence
synthetic). The Whetstone instruction is a logical
instruction such as "take intege·r result" or "goto" Dr ;::i

"call 11 block. These 11 instructions" may comprise several
physical machine instructions. There are 11 modules in the
program. Each module -repr·esents a typical. common group of
statements that may well exist in a scientific program. To
further simulate reality these modules are weighted based on
statistics gathered about the style of scientific
programming used at one institution.

The complete article and original ALGOL program which
he~alded the age of Whetstone performance measurements is
available in the FERMILAB library. See below.

3.0 MODIFIED BENCHMARK

After looking at compiler generated code and Whetstone
performance numbers, what else is there to do?

It would be interesting to see where the inefficiency
of a compiler is when it is running the Whetstone test. The
Whetstone program was modified to report timing values for
each of the modules. This proved a useful tool in a few
isolated cases where a particular loop timing for a compiler
did not follow the general trend of timing differences. A
look at the generated code revealed introductions of short
cuts and other interesting side effects due to optimization.

A Synthetic Benchmark by Curnow and Wichmann
THE COMPUTER .JOURNAL Vol. 19, No. 1 1976

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of OMSI PASCAL and FORTRAN IV-PLUS

TM-1095
Page 4

III. Efficiency comparisons of: OM.SI PASCAL and FOHTRAN IV-PLUB

The conclusions reached in this section are a result of
the test programs that appear in Appendices A and B. The
modified Whetstone test is not listed since it 'is almost ·the
same coding as the Whetstone test program. ror the modified
Whetstone test; coding was inserted to measure the time it
took to execute each of the maJor loops.

The second number in the FORTRAN IV-PLUS column in
Table 1 below indicates the amount of coding generated with
constants defined in PARAMETER statements instead of DATA
statements.

PASCAL takes a few more bytes in order to store a value
into the variable on every assignment statement. FORTRAN
will leave values in registers until such time as it is
needed to be stored into the variable. The philosophy of
OMSI PASCAL is to disable variable assignment to registers
in the main program if any external procedures are
referenced <as in my test program). This is so because the
compiler can not determine what variables may be used by
suc:h routines.

There are cases where the PARAMETER statement may cause
more coding to be generated <as in the assignment block
below). This is because PARAMETER forces the compiler to
generate an instruction using a literal every time rather
than optimizing on a register-to-register move. This is
strictly a result of the compiler algorithms implemented to
generate code. It serves only to show that an optimizing
compiler can be "tricked" into 11 no-optimi:zation" on some
local instruction groups. In general. the results in
savings using PARAMETER statements is examplified in the
IF-THEN block below.

Although PARAMETER statements will generate literals,
arithmetic expressions are not reduced during compile time.
That is, the arithmetic coding is generated and executed at
run time. OMSI PASCAL ~reduce constants in arithmetic
expressions at compile time (called constant folding). In
the IF-THEN block below. where PASCAL is less efficient in
code generation for assignment statements it makes up for in
constant folding for a net gain on generated compiled code.

If the PASCAL procedure call is made and the argument
value is in a register the number of bytes of code generated
will be 2*N. If the argument value is stored then 4*N bytes
are generated where N is the number of arguments. If the
procedure is an external procedure only 2*N + 4 bytes of

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of OMSI PASCAL and FORTRAN IV-PLUS

Tl\1-1095
Page 5

coding are generated. If the procedure is NONPASCAL more
interface code is generated and a JUmp to a FORTRAN
interface routine is made. Thus the first set of numbers
for the CALL statement under PASCAL are for the argument
value being in the register. The second set is for stored
argument values. The first number in each set is for a
PASCAL external procedure. The second number is for a
NON-PASCAL external procedure.

The computed GOTO for FORTRAN requires more overhead
than a PASCAL statement.

A listing of the FORTRAN code used to produce Table 1
below appears in Appendix A.

TM-1095
PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of OMSI PASCAL and FORTRAN IV-PLUS

Page 6

TABLE i
TABLE OF COMMON LANGUAGE ELEMENTS FOR OMSI PASCAL AND FORTRAN IV-PLUS

ARITHMETIC AND
ASSIGNMENT
BLOCK

IF-THEN
BLOCK

FOR-TO-DO/DO
SHELL

CALL
STATEMENT

CASE/(computed>GDTO
SHELL

PASCAL FORTRAN IV-PLUS
=======================================

38 bytes

40 bytes

i2 bytes

2*N+4 2*N+18 bytes
4*N+4 4*N+18 bytes

32 bytes

34/36 bytes

60/44 bytes

:12 by·tes

8 bytes

42 bytes

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of OMSI PASCAL and FORTRAN IV-PLUS

TM-1095
Page 7

The only advantage of PASCAL PACKED arrays is in the
TYPE BOOLEAN. For example; a PACKED array Ci. .8, i. .32J OF
BOOLEAN will allocate only 32 bytes of memory. The same
DIMENSIONed array using LOGICAL*i in FORTRAN will allocate
192 bytes of memory. Therefore PASCAL offers a 160 byte
savings in this example.

Using the Whetstone program as a 11 typical 11 program;
the following statistics were compiled from the load maps
for total memory requirements.

The last th~ee items in Table 2 below would need to
have the word allocation modified in the Accelerator Control
System. These items would be replaced by in-house written
I/O for our real-time applications.

While not all of the initialization can go, such items
as OPEN/CLOSE and common I/O routines may disappear or take
on smaller procedure sizes.

For 1/0 format processing. PASCAL also includes the
write integer and write real routines. Fortran appears to
have read/write routines for integer.real, logical as
complete packages. Thus if one is only writing integer in
FORTRAN the package for readin~ as well as writing integer
is loaded. In both PASCAL and FORTRAN only the necessary
conversion routines are loaded. In· both PASCAL and FORTRAN
the general input and general output drivers are loaded.

For PASCAL, the common work area is basically HEAP/STACK
storage. Although 2048 words were explicitly allocated here
for HEAP storage. lass could have been allocated. The 2048
words is a default minimum. The HEAP area will always need
to be available for PASCAL if for nothing more than the
stack. The size of the stack will vary from application to
application and is principally determined by the maximum
depth to which procedures are called. Heap is currently
used for I/O control blacks as well as allocating dynamic
memory when the procedure NEW is called. Heap is freed
whenever a file is closed or whenever the procedure DISPOSE
is called.

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of OMSI PASCAL and FORTRAN IV-PLUS

TABLE 2

TM-1095
Page 8

LOAD MAP TABLE OF COMPARISONS FOR OMSI PASCAL AND FORTRAN IV-PLUS

PASCAL FORTRAN I ~i-·PLUS
===================================~===

WHETSTONE
CODE+DATA

MATH ROUTINES

INITIALIZATION
OPEN/CLOSE
COMMON I/O RTNS.
ERROR REPORTING
ROUTINES AND
SUPPORT ROUTINES
SUCH AS "SECND"

I/O FORMAT
PROCESSING

COMMON WORK AREA
LOGICAL UNIT TABLE
FCS BUFFER AREA

1297 words

4·01 wo·rds

3776 words

1005 words

OBJ. TIME FORMAT BUFFER
ETC. ,ETC. 2144 words

1284 words

505 words

2906 words

1387 words

1878 wor·ds

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of OMSI PASCAL and FORTRAN IV-PLUS

TM-1095
Page 9

Table 3 below gives the modified and normal Whetstone
benchmark times. The Whetstone benchmark indicates that
OMSI PASCAL is approximately 16% less efficient than FORTRAN
IV-PLUS.

Looking at the individual loop timings, only one loop
time is grossly different. That one is in PASCAL loop
number 9 with array referencing via procedure calls. <A
listing of the PASCAL source code is given in Appendix B>.
This warrented an investigation.

It turns out that the two other local procedures used
in the Whetstone test loops do not require full register use
<registers RO-R5>. One procedure uses the floating
registers and the other only uses R3 and R5. In this one
particular procedure registers RO-R3 are used far rapid
indexing of array elements. A full context save of
registers RO-R5 is done at the entry of this procedure and a
restore is done at the end of the procedure. FORTRAN need
not do this since it is not re-entrant. A quick check of
the save and restore routines verifies that each time the
procedure in loop number 9 is called there is an added
overhead of +70 microseconds. The actual body of coding
generated for the PASCAL procedure looks very similiar to
the coding generated by the FORTRAN compiler (conceptually>.

Loop number 8 in PASCAL is the second large variation
and this is due to the fact that three arguments must be
moved from local storage and moved ta the stack before the
procedure is called. This requires 12 bytes of coding for 3
move instructions so calling this procedure does take more
overhead.

A listing of the PASCAL version of the Whetstone test
appears in Appendix B.

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of OMSI PASCAL and FORTRAN IV-PLUS

TABLE 3

***** FORTRAN *****
EXECUTION = 0.00 MICRO·-SEC.
EXECUTION = 256. 68 MICRO-SEC.
EXECUTION = 1612.00 MICRO-SEC.
EXECUTION = 36. 31 MICRO-SEC.
EXECUTION = 0.00 MICRO-SEC.
EXECUTION = 140. 48 MICRD-··SEC.
EXECUTION ·- 337'7. 59 MICRO-SEC.
EXECUTION = 145. 42 MICRO-SEC.
EXECUTION = 65. 83 M ICRO--SEC.
EXECUTION = 0.00 MICRO-SEC.
EXECUTION = 827. 97 MICRO··-SEC.
ALL DONE

***** PASCAL *****

EXECUTION = 0. 00 MI CRO--SEC.
EXECUTION = 259.41 MICRO·-SEC.
EXECUTION :::: 1596. 50 MICRO-SEC.
EXECUTION = 33. 51 MICRO-SEC.
EXECUTION = 0.00 MICRO-·SEC.
EXECUTION = 154.44 MICRO-SEC.
EXECUTION = 3260.42 MICRO-.SEC.
EXECUTION = 169. 15 MICRO-SEC.
EXECUTION = 145.02 MICRO-·SEC.
EXECUTION = 0.00 MICRO-SEC.
EXECUTION = 860.44 MICRO-SEC.
ALL DONE

LOOP1 = NIL
LOOP2 = ARRAY REFERENCING IN-LINE
LOOP3 = ARRAY REFERENCING ARRAY AS PROCEDURE PARAMETER
LOOP4 = CONDITIONAL JUMPS
LOOPS - NIL
LOOP6 = INTEGER ARITHMETIC
LOOP7 - TRIG. FUNCTIONS
LOOPS = PROCEDURE CALL
LOOP9 = ARRAY REFERENCING VIA PROCEDURE
LOOP10= NIL
LOOP11= STANDARD FUNCTIONS

TM-1095
Page 10

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of OMSI PASCAL and FORTRAN IV-PLUS

TABLE 3 (continued)

***** BENCHMARK RESULTS *****
FORTRAN:

BENCHMARK EXECUTION TIME IS 2. i411 MINUTES.
EXECUTION = 233524. 56 WHETSTONE INSTRUCTIONS/SEC.
ALL DONE

PASCAL:

BENCHMARK EXECUTION TIME IS 2. 5442 MINUTES.
EXECUTION= 196526.00 WHETSTONE INSTRUCTIONS/SEC.
ALL DONE

TM-1095

Page 11

TM-1095
PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of VAX PASCAL a~d VAX FORTRAN

IV. Efficiency comparisons of VAX PASCAL and VAX FORTRAN

Page 12

The conclusions reached in this section are a result of
the test programs that appear in Appendices C and D. The
modified Whetstone test is not listed since it is almost the
same coding as the Whetstone test program. For the modified
Whetstone test; coding was inserted to measure the time it
took to execute each of the major loops.

The second number in the two VAX FORTRAN columns in
Table 4 below indicate the amount of coding generated with
constants defined as PARAMETER statements instead of DATA
statements.

As can be seen from Table 4 below, the PARAMETER
statement can greatly reduce the amount of code generated.
In all cases (optimized or non-optimized) VAX FORTRAN also
does constant folding so that if constants appear in an
arithmetic expression the ~cmpiler will reduce the result to
a liter•al value. VAX PASCAL does not use constan·t folding.
This is JUSt the opposite of OMSI PASCAL and FORTRAN IV-PLUS
for the PDP-11/34s. Optimization in VAX FORTRAN is for
execution speed and the compiler will generate the necessary
code to move values or addresses into registers before that
code which comprises the body o~ the higher level language
statement is executed. This can end up in the generation of
more bytes of code as shown in the assignment block below.

Although execution is faster via register, the compiler
mechanics implemented to generate the optimized code can be
"tricked 11 into generating code which actually executes
slower. This will be pointed out later. In general though
the compiler optimization algorithms can realize an overall
gain in efficiency of approximately 4%.

The formula given below for the amount of coding
generated by a VAX PASCAL call statement is general and not
totally applicable. The formula gives one a general idea on
approximately how much code ca11 be generated. It depends on
how the compiler will generate coding (registers.memory
reference. lite1·als. etc.). However, +18 bytes are generated
for every argument that is a string. This is because VAX
PASCAL must set up the string descriptor on the stack before
the procedure call. VAX FORTRAN JUSt references a fixed
list.

A listing of the PASCAL code used to produce Table 4
below appears in Appendix C.

TM-1095
PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of VAX PASCAL and VAX FORTRAN

Page 13

TABLE 4
TABLE OF COMMON LANGUAGE ELEMENTS FOR VAX PASCAL AND VAX FORTRAN

PASCAL FORTRAN

===

ARITHMETIC AND
ASSIGMENT
BLOCK

IF-THEN-ELSE
BLOCK

WHILE-DO/DO-WHILE
SHELL

FOR-TO·-DO/DO
SHELL

CALL
STATEMENT

CASE/(computed)GOTO
SHELL

::: 0 N 7 BYTES

47 bytes

41 bytes

8 bytes

i5 bytes

see formula
below

28 bytes

= 1 N 9 + 18*9 BYTES

optimized

50/21 bytes

28/24 bytes

7 bytes

15 b1jtes

8 bytes

27 bytes

)· 1 N ~ 12 + 6*<N-i> + 18*8 BYTES

Where N is the number of parameters passed.

n on-· op t i mi :z e d

44/17 bytes

38/25 bytes

8 bytes

13 bytes

8 bytes

27 bytes

Where S is the number of string descriptor arguments
passed.

TM-1095
PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of VAX PASCAL and VAX FORTRAN

Page 14

The advantage of VAX PASCAL PACKED arrays is identical
to the treatment given in the PDP-11/34 section of this
paper.

The length of individual library sections (such as
MATH, I/O, etc.) on a VAX VMS load map is impossible since
the library is sharable. Table 5 is what can be shown for
the Whetstone benchmark; again using this program as
11 typical 11

•

TABLE 5
LOAD MAP TABLE OF COMPARISONS FOR VAX PASCAL AND VAX FORTRAN

WHETSTONE
CODE+DATA

PA8$IOBASIC

PAS$IOOUTPUT

VIRTUAL MEMORY
ALLOCATED

PASCAL FORTRAN
--

3901 bytes 2357 bytes

2704 bytes
___ .. ___ ,.. _______

1330 bytes -·---·-· -... _ .. _, __

119296 b 1.,1 t es 113664 bytes

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of VAX PASCAL and VAX FORTRAN

Tl\1-1095

Page 15

Table 6 below gives the modified and normal Whetstone
benchmark times. The Whetstone benchmark indicates that VAX
PASCAL is approximately 40% less efficient than optimized
VAX FORTRAN.

Looking at individual loop timings; a passing comment
will be made abdut loop number 8 in non-optimized VAX
FORTRAN. <A listing of the FORTRAN source code is given in
Appendix D>. In this particular circumstance the optimizer
which produced code to load variables into registers must,
at the end of the routine, generate code to load the results
back into memory locations. This takes extra code but,
unfortunately, in this circumstance also extra time. The
non-optimized code just generates memory referenced
instructions so it need not go through the extra storage
steps. Her• the amount of code produced was small so the
effects of memory vs. register speed is not well taken
advantage of.

It will be noted that VAX PASCAL loop numbers 7,8,9,and
11 are markedly slower than VAX FORTRAN. All these loops
make procedure calls. VAX FORTRAN takes advantage of its
non-re-entrant nature and passes a local argument list via a
CALLG instruction. There is no overhead of pushing
arguments upon the stack before execution of the CALLG
instruction. For math routines a special entry point is
Jumped to for VAX FORTRAN via the Jump to subroutine
instruction JSB thus reducing overhead even mare. The loop
timings show that this special VAX FORTRAN entry reduces
overhead by about 3. 5%. The inefficiency in VAX PASCAL is
due to having to push arguments on the stack before using
the CALLS instruction.

A listing of the FORTRAN version of the Whetstone test
appears in Appendix D.

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of VAX PASCAL and VAX FORTRAN

TABLE 6

****** OPTIMIZED FORTRAN **'*'~"**

EXECUTION = 0. 00 MICRO--SEC.
EXECUTION = 29. 79 MICRO-·SEC.
EXECUTION = 235.88 MICRO-SEC.
EXECUTION ·- 9. 67 MICRO-SEC.
EXECUTION = 0.00 MICRO--SEC.
EXECUTION = 32.32 MICRO-SEC.
EXECUTION = 296.30 MICRO-··SEC.
EXECUTION = 40. 04 MICRO···SEC.
EXECUTION = 27. 19 MICRO-SEC.
EXECUTION = 0.00 MICRO-·SEC.
EXECUTION = 88. 72 MICRO·-SEC.
ALL DONE

****** NON- OPTIMIZED FORTRAN ***•*•Ii-*

EXECUTION = 0. 00 MICRO-SEC.
EXECUTION = 33. 48 MICRO-SEC.
EXECUTION = 393. 66 MICRO-SEC.
EXECUTION = 11. 90 MICRO--SEC.
EXECUTION = 0. 00 MICRO-SEC.
EXECUTION = 39.80 MICRO-·SEC.
EXECUTION = 299. 5i MICRO-SEC.
EXECUTION = 38. 24· MICi~O-SEC.

EXECUTION = 28. 78 MICRO-SEC.
EXECUTION = 0.00 MICRO-SEC.
EXECUTION = 89. 33 MI CHO-SEC.
ALL DONE

***** PASCAL NO OPTIMIZATION AVAILABLE ******

EXECUTION = 0.00 MICRO-·-SEC.
EXECUTION = 33. 36 MICRO-SEC.
EXECUTION = 281. 32 MICRO-SEC.
EXECUTION = 14. 28 MICRO-SEC.
EXECUTION = 0.00 MICRO-SEC.
EXECUTION = 39. 25 MICRO·-SEC.
EXECUTION - 553. 42 MICRff-SEC.
EXECUTION = 70.83 MICRO-SEC.
EXECUTION ::: 47. 91 MICRO·-SEC.
EXECUTION = 0.00 MICRO-SEC.
EXECUTION = 169. 16 MICRO-SEC.
ALL DONE

TM-1095
Page 16

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Efficiency comparisons of VAX PASCAL and VAX FORTRAN

TABLE 6 (continued)

Tl\1-1095
Page 17

LOOPi = NIL
LOOP2 = ARRAY REFERENCING IN-LINE
LOOP3 = ARRAY REFERENCING ARRAY AS PROCEDURE PARAMETER
LOOP4 = CONDITIONAL JUMPS
LOOP5 = NIL
LOOP6 = INTEGER ARITHMETIC
LOOP7 = TRIG. FUNCTIONS
LOOPS = PROCEDURE CALL
LOOP9 = ARRAY REFERENCING VIA PROCEDURE
LOOPiO= NIL
LOOP11= STANDARD FUNCTIONS

***** BENCHMARK RESULTS *****

OPTIMIZED FORTRAN:

BENCHMARK EXECUTION TIME IS 0.9307 MINUTES.
EXECUTION = 1146131. 75 WHETSTONE INSTRUCTIONS/SEC.
ALL DONE

NON-OPTIMIZED ~ORTRAN:

BENCHMARK EXECUTION TIME IS 0. 9650 MINUTES.
EXECUTION= 1105354.00 WHETSTONE INSTRUCTIONS/SEC.
ALL DONE

PASCAL:

BENCHMARK EXECUTION TIME IS 1. 5613 MINUTES.
EXECUTION= 683176.75 WHETSTONE INSTRUCTIONS/SEC.
ALL DONE

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Comments on using OMSI PASCAL for the PDP-11/34

TM-1095
Page 18

V. Comments ~n using OMSI PASCAL for the PDP-11/34

Some of the following comments are brought up
OMSI PASCAL manual but are important enough
re-iterated and expanded upon here.

in the
to be

The first thing to remember is to build OMSI PASCAL
tasks with the FP and CP sulitches fo·r floating point (we f!...Q.
have floating point) and to make the task checkpointable.
If one does not make the task checkpointable one will
§!tecifically_ have to define the amount of' dyn;amic heap
storage through the linker (one must have sysgened their RSX
system to include the Extend Task directive ... as ours is).

The RESET and REWRITE procedures have three extra
arguments. Other than the file variable argument there are
file name, default file fields. and file size arguments.
This is no·t standard but it is a yer4. good extension to OMSI
PASCAL for file definition.

The EXTERNAL directive is used
OMSI PASCAL procedures and functions.
FORTRAN IV-PLUS and MACRO routines.

for referencing other
NONPASCAL is used for

Since real precision is determined and set at
initialization of the main program; all external modules
must be compiled with the same real precision (single OT'

double) as the main program.

Procedures and functions ffom one co~pilation

single module and cannot be individually selected
module. One should structure their modules wisely
~ost or only the procedures needed will be linked.

form a
from the
so that

The final point to make about modules involves the use
of global. Since this topic applys to both OMSI PASCAL and
VAX PASCAL it will be covered below in the VAX PASCAL
section.

PASCAL AND FORTRAN COMPARISONS FOR THE PDP-11/34 AND VAX 11/780
Comments on using VAX PASCAL on the VAX 11i780

VI. Comments on using VAX PASCAL on the VAX 11/780

TM-1095
Page 19

VAX PASCAL and OMSI PASCAL
external modules ta share the
This makes all external modules
compiled with the main program.

allow global sections in
global in the main program.
appear as if they were

One should avoid global variables in modules,
especially those modules which will be used by other people.
While global is most tempting to use as a method of
inter-procedure communication within a module; it is
suggested that variables be passed as VAR parameters to
other procedures.

If one must use global in external modules the type and
size must corT'espond to the global existing in ·the main
program. The use of these globals must be well understood
by both main program and the external module.

TM-1095

APPENDIX A

PROGRAM PASFOR
C PARAMETER A=5.0,B=10. Q,C=20.0,D=2. 0

BYTE PROMPT
DATA A,B,C,D/5.0, 10. 0,20.0,2. 01
Z=A
X=A*B/C - Z
Y=A*D
Z = <C-B)+A
IF< <X. GE. Y) . AND. <Y. LT. C)) Z = <C+B)-A
DO 1 0 I = L 100

Z=Z-3.0
X=X+i. 5

10 CONTINUE
PROMPT = '>'
CALL PROC<PROMPT>
MODE = 3
GOT0(1,2. 1,2,3,3) I MODE+1
GOTO 4

1 X=O.O
GOTO 4

2 Y=O.O
GOTO 4

3 Z=O. 0
4 CONTINUE

END

TM-1095
Page 'A-·2

TM-1095

APPENDIX B

PROGRAM WHETSTONE<OUTPUT,OUTFILE);
CONST MAXWORD = 65535;

START = 0;
STOP = 1;

TYPE RARRAY = ARRAYEL. 4J OF REAL;
VAR OUTFILE: TEXT;

Xi, X2, X3, X4, X.Y, Z,T,T1,T2: REAL;
E1: RARRAY;
L J, Ii\, L, NL N2, N3, N4, NS. N6, N7, NS, N9, M10, N11: INTEGER;
LOOP,JJ: INTEGER;
STIME,TTIME: REAL;

WALL.WALLO: REAL;
FUNCTION WTIME(MODE: INTEGER >: REAL;
VAR ZERO: REAL;
FUNCTION SECNDS<VAR PARAM: REAL>: REAL;NONPASCAL;
BEGIN
ZERO : = 0. 0;
IF MODE <> 0 THEN

BEGIN
WALL:= SECNDS<WALLO/;
WT I ME WALL;
WALLO SECNDS<ZERO);

ENIJ
ELSE

BEGIN
WALLO SECNDS(ZERO);
WT I ME ZERO;

END;
END;
PROCEDURE PA< VAR E:RARRAY);
VAR J: INTEGER;
BEGIN

.J : = 0;
WHILE J<:6 DO

BEGIN
E[1J
E[2J :=
E[3J
EC4J

<EE1J+E[2J+E[3J-EE4J>*T;
<EE1J+EE2J-EE3J+EE4J)*T;
<EC1J-E[2J+EE3J+EC4J)*T;
<-EE1J+E[2J+EE3J+EE4J)/T2;

J : = J+1;
END;

END <* PROCEDURE PA *);
PROCEDURE PO;
BEGIN

E1 [JJ : = EHKJ;
E1[10 : = E1ELJ;
E1[LJ : = E1CJJ;

END <* PROCEDURE PO *);
PROCEDURE P3(VAR X,Y,Z:REAL);
VAR XLY1: REAL;
BEGIN

X1
Y1
Xl

X;
Y;
T*<Xl+Yl);

TM-1095

Page B-2

Y1 : = T*(Xi+YU;
Z : = <X1+YU/T2;

END (* PROCEDURE P3 *);

PROCEDURE POUT<.VAR N,J,K: INTEGER j VAR Xi, x2,x3, X4:REAL);
BEGIN

TM-1095

Page B--3

WRITELN<OUTFILE,N:7,J:7,K:7, Xi: 12:4, X2: 12:4, X3: 12:4, X4: 12:4);
END <* PROCEDURE POUT *);
BEGIN <*WHETSTONE.PAS*)
<* SPECIAL MODIFICATION OF REWRITE FOR OMSI PASCAL ONLY~~! *)

REWRITE(OIJTPUT, 'P.O.SRPT', '.DAT');
REWRITE<OUTFILE, 'PASWHT I, 1

. DAT l) j

WALL:= 0.0; .
WALLO : == 0. 0;

(* IF LOOP = 10 THEN THIS CORRESPONDS TO THE EXECUTION OF
10 TIMES 1,000,000 WHETSTONE INSTRUCTIONS. *)
LOOP : = 30;
STIME := WTIME<START);
T : = 0. 499975;
Ti : = 0. 50025;
T2 : = 2. 0;

(* I = 10 CORRESPONDS TO 1,0Q0,000 WHETSTONE INSTRUCTIONS/MAJOR LOOP
*)

I : = 10;
<* ESTABLISH MODULE EXECUTION TIME PARAMETERS *>

N1 0;
N2 12*!;
N3 14*I;
N4 345*1;
NS 0;
N6 210*L
N7 32*1;
N8 899*1;
N9 616*L
N10 : = 0;
Nil:= 93*L

<* BEGINNING OF MAJOR LOOP
WE HAVE THIS MAJOR LOOP RATHER THAN JUSING A BIGGER I BECAUSE
A LARGER I <GREATER THAN 36> WILL OVERFLOW ON A 16 BIT MACHINE *>
FOR JJ:=i TO LOOP DO

BEGIN
<* MODULE 1 : SIMPLE IDENTIFIERS *>

x 1 1. 0;
X2 : = -1. 0;
X3 := ·-1.0;
X4 : == -·1. 0;
FOR I:=l TO Nt DO

BEGIN
Xi <Xi+X2+X3-X4>*T;
X2 <X1+X2-X3+X4)*T;
X3 <X1-X2+X3+X4>*T;
X4 <-X1+X2+X3+X4>*T;

END (* MODULE 1 *);
IF (JJ=LOOP)

THEN

POUT(Ni,N1,N1, Xi, X2, X3, X4);
(* MODULE 2 : ARRAY ELEMENTS *)

E1(1J 1.0;
El E2J : = -1. 0;
E1 [3J : = -1. 0;
E1[4J := -1.0;
FOR I:=1 TO N2 DO

BEGIN
E1[1J \E1EiJ+E1C2J+E1[3J-E1C4J)*T;
E1C2J <E1[1J+E1C2J-E1C3J+E1C4l>*T;
E1C3J (E1[1J-E1[2J+E1[3J+E1[4J)*T;
E1E4l <-E1[1J+E1[2J+E1[3J+E1C4J>*T;

END <* MODULE 2 *);
IF (JJ=LOOP>

THEN
POUT<N2,N3,N2,E1E1J,EiE2J,E1E3J,E1[4J>;

<* MODULE 3 : ARRAY AS PARAMETER *>
FOR I:=l TO N3 DO

PA(E1);
<* END MODULE 3 *)

IF (JJ=LOOP)
THEN

POUT<N3,N2,N2,E1[1J,E1[2J,E1[3J,E1C4J);
<* MODULE 4 : CONDITIONAL JUMPS *)

J : = 1;
FOR I:=1

BEGIN
IF

IF

TO 1\14

J=i
THEN

,._l

ELSE
,,J

J>2
THEN

.J
ELSE

J
IF J(i

THEN

DO

- 2

- 3;

- 0

- 1;

J 1
ELSE

J 0;
END <* MODULE 4 *>i

IF (JJ=LOOP>
THEN

POUT<N4,J,J,x1.x2, X3, X4)i
(* MODULE 5 OMITTED *)
<* MODULE 6 INTEGER ARITHMETIC *)

J . = 1;
j.\ : = 2;
L · =' 3;
FOR 1:=1 TO N6 DO

BEGIN
J := J*<K-J>•<L-K>i

TM-1095

Page B-4

K := L*K-CL-.J>*K;
L := <L-K)*(K+J);
El[L-1J := J+K+L;
E1[K-1J := J*K*L;

END <* MODULE 6 *);
IF (J.J=LOOPi

THEN
POUTCN6,J,K,E1[1J,E1C2J,E1[3J,E1C4J>;

(* MODULE 7 : TRIG. FUNCTIONS *>
x : = 0. 5;
y : = 0. 5;
FOR I:=! TO N7 DO

BEGIN
x : =

T*ARCTAN<T2*SIN<X>*COSCX)/CCOSCX+Y>+COS<X-Y>-1. 0));
y :=

T•ARCTANCT2*SIN<Y>•COS<Y>l<COS<X+Y>+COSCX-Y>-1. 0));
END <* MODULE 7 *);

IF (JJ=LOOP)

<* MODULE 8

THEN
POUT<N7.J,K,x,x.Y,Y);

PROCEDURE CALLS *>
x : :::: 1. 01
y : = 1. 0;
z : = 1. 0;
FOR 1:=1 TO NB DO

P3{X,Y,ZL
(* END MODULE 8 *)

IF (JJ=LOOP)
THEN

POUT<N8,J,K,x,v.z.Z>;
<* MODULE 9 ARRAY REFERENCES *)

J : = i;
Ii. : = 2;
L : = 3;
Ei[iJ := 1.0;
E1£2J : = 2. 0;
E1 [3J : = 3. 0;
FOR I:=1 TO N9 DO

PO;
(* END MODULE 9 *)

IF <JJ=LOOP)
THEN

POUT<N9,J,K,E1[1J,E1E2J,E1[3J,E1[4J);
(* MODULE 10 : INTEGER ARITHMETIC *>

J : = 2;
K : = 3.;
FOR I:=1 TO NiO DO

BEGIN
J J+K;
I-<. : = .J+K;
J : = K·-.J;
K : = K-J-J;

END <* MODULE 10 *};

TM-1095
Page B-5

IF (JJ=LOOP>
THEN

POUT<N10,J,K,X1, X2,X3, X4);
<* MODULE 11 : STANDARD FUNCTIONS *>

x : = 0. 75;
FOR 1:=1 TO N11 DO

X := SQRT<EXP<LN(X)/Ti));
(* END MODULE 11 *)

IF (JJ=LOOP>
THEN

POUTCN11,J,K, X, X, X, X);
END;

TTIME WTIMECSTOP>1
STIME := TTIME;
TTIME := TTIME/60. 01
STIME := LOOP*L OE6/STIME;

TM-1095
Page B--6

WRITELN(' BENCHMARK EXECUTION TIME IS ',TT!ME:8:4,_' MINUTES_');
WRITELNC' EXECUTION = ', STIME: 11: 2, ' l..JHETSTONE INSTRUCTIONS/SEC. '>;
WRITELNC' ALL DONE ');

END.

TM-1095

APPENDIX C

PROGRAM FORPAS;
CONST

A = 5. 0;
B = 10. 0;
c = 20. 0;
D = 2. 0;
%INCLUDE 'SYS$LIBRARV:LIBDEF.PAS/NOLIST'

TYPE

VAR

WORDLEN = 0 .. 65535;
WORD = PACKED RECORD

WORDTYPE: WORDLEN
END;

STRINGLEN = 1 .. 72;
STRING = PACKED ARRAY CSTRINGLENJ OF CHAR;
MESSGLEN = 1 .. 12;
MESSAGE = PACKED ARRAY CMESSGLENJ OF CHAR;

X,Y,Z: REAL;
I: INTEGER;
MODE: INTEGER;
COMMANDLINE: STRING;
STATUS: INTEGER;
COMLEN: WORD;
PROMPT: MESSAGE;

FUNCTION LIB$GETFOREIGN<%STDESCR COM: STRING;
%STDESCR PRMPT:MESSAGE;
VAR LEN:WORD> : INTEGER;

EXTERN;
PROCEDURE LIB$STOP(%IMMED ERROR: INTEGER)
EXTERN;
BEGIN

Z : = A;
X : = A*B/C-Z;
Y : = A**D;
IF < X >=· Y) AND CY <C)

THEN
Z (C+B>·-A

ELSE
Z <C-B>+A;

I : = 0;
WHILE I < 20 DO

BEGIN
I:= I+L
Z : = Z+2. 0;

END;
FOR 1:=1 TO 100 DO

BEGIN
Z : = Z-3. 0;
X : = X+1. 5;

END;
PROMPT:= 'FILE NAMES:
STATUS := LIB$GETFOREIGN<COMMANDLINE,PROMPT,COMLEN>;
IF STATUS <> LIB$NORMAL

THEN

TM-1095

Page C-2

LIB$STOPCSTATUS>
MODE : = '3;
CASE MODE OF

o, 2: x 0. 0.;
1, 3: y 0. 0;
4, 5: z 0. 0;

END;
END.

TM-1095

Page C·-3

TM-1095

APPENDIX D

DIMENSION E1<4)
COMMON T,T1,T2,E1,J,K,L

c
C SET NTTY FOR TERMINAL OUTPUT DEVICE NUMBER
c

NTTY = 7
c
C IF LOOP = 10 THEN THIS CORRESPONDS TO THE EXECUTION OF
C 10 TIMES 1,0Q0,000 WHETSTONE INSTRUCTIONS.
c

c

c

LOOP = 64

STIME = BTIME(O)
T = 0. 499975
Ti = 0. 50025
T2 = 2.0

TM-1095

Page D-·2

C I = 10 CORRESPONDS TO 11000,000 WHETSTONE INSTRUCTIONS/MAJOR LOOP
c

I = 10
c
C ESTABLISH MODULE EXECUTION TIME PARAMETERS
c

Ni = 0
N2 = 12*I
N3 = 14*I
N4 = 345*1
N5 = 0
N6 = 210*1
N7 = 32*I
N8 = 899*I
N9 = 616*I
N10 = 0
Nii = 93*1

c
C BEGINNING OF MAJOR LOOP
C WE HAVE THIS MAJOR LOOP RATHER THAN USING A BIGGER I BECAUSE
C A LARGER I <GREATER THAN 36) WILL OVERFLOW ON A 16 BIT MACHINE.
c

DO 500 JJ = 1,LOOP
c
C BEGINNING OF MODULE 1, SIMPLE IDENTIFIERS
c

Xl = 1.0
X2=-1.0
X3 = -1. 0
X4=-1.0
IF<N1) 19, 19, 11

11 DO 18 I = 1 , N 1 , 1
X1 = <X1+X2+X3-X4>*T
X2 = <X1+X2-X3+X4>*T
X3 = <X1-X2+X3+X4>*i

.X4 = <-Xi+X2+X3+X4>*T
18 CONTINUE

19 CONTINUE
IF<JJ.EQ.LOOP> CALL POUT<N1,N1,Ni,X1,X2,X3,X4>

c
C BEGINNING OF MODULE 2. ARRAY ELEMENTS
c

EiC U = 1. O
Ei <2> = -1. O
E1.(3)=-1.0
E1<4> = -1.0
IFCN2> 29,29,21

21 DO 28 I = 1.N2, 1
E1<1> = <Ei<i>+E1t2)+E1<3>-E1<4>)*T
E1C2) = (E1<1>+E1<2>-E1C3>+E1<4>>*T
E1C3> = <E1<1>-E1<2>+E1<3>+E1(4))*T
E1<4> - <-E1<1>+E1<2>+E1<3>+E1<4>>*T

28 CONTINUE
29 CONTINUE

IFCJJ.EG.LOOP> CALL POUT<N2,N3.N2,E1C1),E1<2>,E1<3>,E1<4>>
c
C BEGINNING OF MODULE 3, ARRAY AS A PARAMETER
c

IF<N3> 39,39,31
31 DO 38 I = 1,N3, 1
38 CALL PA<E1)
39 CONTINUE

IF<JJ.EG.LOOP> CALL POUT<N3,N2,N2,E1(1),E1<2>,E1(3),Ei(4))
c
C BEGINNING OF MODULE 4, CONDITIONAL JUMPS
c

J = 1
IF<N4) 49,49,41

41 DO 48I=1,N4,1

42

43
44
45

46
47
411

4·12
48 CONTINUE
49 CONTINUE

IF<J-1) 43,42,43
J = 2
GO TO 44
J = 3
IF<J-2) 46,46,45
J = 0
GO TO 47
J = i
IF<J-1) 411,412,412

J = 1
GO TO 48

J = 0

IF<JJ.EG.LOOP> CALL POUT<N4,J,J,X1,X2,X3,X4)
c
C THERE IS NO MODULE 5
c
c
C BEGINNING OF MODULE 6, INTEGER ARITHMETIC
c

J = 1

TM-1095
Page D-3

K = 2
L = 3
IF<N6) 69,69,61

61 DO 68 I = 1,N6, 1

68 CONTINUE
69 CONTINUE

J = J*CK-J)*(L-K>
K = L*K-<L--J)*K
L = (L-K>*<K+J)
Ei<L-1) = J+K+L
Ei<K-1> = J*K*L

IF(JJ. EG.LOOP> CALL POUT<N6,J,K,E1(1),E1<2>,E1C3>,E1<4>>
c
C BEGINNING OF MODULE 7, TRIG. FUNCTIONS
c

x = 0. 5
y = 0. 5
IF<N7) 79,79,71

71 DO 78I=1,N7,1

TM-1095

Page D-4

X = T*ATAN<T2*SIN<X>*COS(X) I <COS<X+Y)+COS<X-V)-1.0))
Y = T*ATAN<T2*SINCY>*COS<Y> I <CDSCX+Y>+COSCX-Y>-1.0>>

78 CONTINUE
79 CONTINUE

IFCJJ.EG.LOOP> CALL PDUTCN?,J,K,X, X,Y,Y>
c
C BEGINNING OF MODULE 8, PROCEDURE CALLS
c

x = 1. 0
y = 1. 0
z = 1. 0
IF<NB> 89,89,81

81 DO 88 I= i,N8, 1
88 CALL P3(X,Y,Z>
89 CONTINUE

IFCJJ.EG.LOOP> CALL POUT(N8,J.K.x.v,z,z>
c
C BEGINNING OF MODULE 9, ARRAY REFERENCES
c

.J = 1
i'~ = 2
L = 3
El< 1 i = 1. 0
E1<2> = 2.0
E1<3> = 3. 0
IFCN9) 99,99,91

91 DO 98 I= 1,N9, 1
98 CALL PO
99 CONT,INUE

IF(~J.EG.LOOP) CALL POUT<N9,J,K,E1(1LE1(2),E1<3>,E1(4))
c
C BEGINNING OF MODULE 10, INTEGER ARITHMETIC
c

J = 2
K = 3

I F (N 10) i 09, 1 09, 1 0 1
101 DO 108 I = 1,N10, 1

J = J+K
K = J+K
J = K-J
K = K -J-J

108 CONTINUE
109 CONTINUE

IFCJJ.EQ.LOOP> CALL POUTCN1Q,J,K,X1,X2, X3.X4>
c
C BEGINNING OF MODULE 11, STANDARD FUNCTIONS
c

x = 0. 75
IF<N11) 119,119.111

111 DO 118 I = 1 ' N 11 I 1
118 X = SGRT<EXP<ALOG(X)/T1))
119 CONTINUE

IF(JJ.EG.LOOP> CALL POUTCNil.J,K,x.x.x. X>
c
C THIS IS THE END OF THE MAJOR LOOP
c
500 CONTINUE
c
C NOW PRINT THE EXECUTION TIME
c

TT I ME = IHI ME (1)
STIME = TTIME
TTIME = TTIME/60.0
STIME = LOOP*1.0E6/STIME
WR~TE<NTTV, 1000) TTIME

Page D-5

1000 FORMAT<' BENCHMARK EXECUTION TIME :rs ',Fa. 4, , MINUTES. ')
WRITE<NTTY, 1001> STIME

1001 FORMAT(I EXECUTION = ', F11. 2. I WHETSTONE
INSTRUCTIONS/SEC. I)

WRITE<NTTY, 1002)
1002 FORMAT<9H ALL DONE,/>

STOP
END
SUBROUTINE PA<E)
COMMON T, TL T2
DIMENSION E<4>
J = 0

1 CONTINUE
E<l> = <E<1>+E(2)+E<3>-E<4>>*T
EC2) = CE<1>+EC2>-E<3>+E<4>>*T
EC3) = <E<1>-E<2>+E<3>+E<4>>*T
E<4> = <-E(i)+EC2>+EC3>+EC4J)/T2
J = J+i
IF (J·-6) L 2, 2

2 CONTINUE
RETURN
END
SUBROUTINE PO
COMMON T,T1,T2,E1(4),J,K,L

E1(J) = E100
E100 = EUL>
E1(L) = Ei(J)
RETURN
END
SUBROUTINE P3(X,V,Z)
COMMON T,T1,T2
Xi = X
Yi = Y
Xi = T*(Xi+Yi>
Y1 = T~(Xi+Yi>
Z = (X1+Y1)/T2
RETURN
END
SUBROUTINE POUT<N,J,K,Xi,X2,X3, X4)
WRITE(6, 1) N, J, Ii\, XL X2, X3, X4

1 FORMAT<1H ,3J7,4E12. 4>
RETURN
END

TM-1095

Page D--6

Distribution

ACNET Design Group
Controls Software Staff
R. Ducar MS307
W. Knopf MS307
J. Zagel MS307
J. Tinsley MS306
f!ile..._
J.F. Bartlett MS222
D. R i t c h i e MS i 20

amw: USRSDISK: [WALLER. TEXTJPASREPORT.RNO

TM-1095

Page D--7

