Activation of the Major Constituents of Tissue and Air

by a Fast Neutron Radiation Therapy Beam.

Randall K. Ten Haken, Miguel Awschalom, Ivan Rosenberg
The production of 11C, 13N, 15O from C, N, O, and of 39Cl and 41Ar from Ar by a p(66)Be(49) clinical neutron therapy beam has been measured. The results of these measurements were used to estimate the production of other radionuclides, then to estimate airborne radioactivity in a typical neutron therapy room and radioactivity induced in body tissues during treatment.

Only under special circumstances would airborne radioactivity necessitate a waiting period before entering a typical treatment room. The additional dose to a treatment volume due to decay products from radioactivity induced within that volume would amount to a few thousandths of the given dose and the additional body dose outside the treated volume would be a few millionths of the given dose.
INTRODUCTION

Modern neutron therapy beams, generated by 40 to 70 MeV protons incident on semithick beryllium targets, have spectra with neutron energies reaching to within a couple of MeV of the incident proton energy. These neutrons produce radionuclides through activation of collimators, air, patient tissues and any equipment in or near the neutron beam, which may pose radiation problems for attending personnel. Results of measurements of radioactivity produced in the most common tissue and air resident elements by a p(66)Be(49) neutron therapy beam are reported in this work. Applications of the results are also discussed.

Since C, N and O are the major constituents of both tissues and air this report concentrates on the creation of 11C, 13N, and 15O, principally via (n,2n) reactions. These positron emitters are easily detected by their annihilation radiation and they have half-lives which make their production easy. The (n,2n) cross sections in C, N, and O are characterized by a 10-20 MeV threshold and maximum cross-sectional values of approximately 10-30 mb. The cross section for 12C(n,2n) calculated by Dimbylow is presented as an example (Fig. 1). The p(66)Be(49) neutron therapy beam at Fermilab was used in this study. An estimate of its neutron energy spectrum is given in Fig. 2. More than half of the total neutron flux in the p(66)Be reference beam and more than a
third of that for the p(4l)Be reference beam are above the 10-20 MeV threshold (Fig. 2).

The production of 41Ar and 39Cl through activation of Ar was also investigated. High energy neutrons in the same range as those above are required for production of 39Cl [via 40Ar(p,pn) and 40Ar(p,d)], whereas low energy neutrons are more important for 41Ar production [via 40Ar(n,γ)].

Other radionuclides are also produced by neutron bombardment of C, N, O, and Ar. Of special importance are 16N, and 12B, however, their short half-lives (7.13 s and .0204 s, respectively) make measurements difficult. Consequently, only estimates of their production rates were made and used below.

MEASUREMENTS

Small samples of graphite, melamine ($C_3H_6N_6$), distilled water and argon gas were irradiated in the neutron beam at 190 cm from the target. After activation, the samples were transferred to another vessel for counting in either a 10.2 cm X 12.7 cm NaI(Tl) well counter or by a Ge(Li) detector.
The decay of positron activity from the graphite, melamine and water samples was measured as a function of time with a well counter system connected to a multichannel scaler. Counts from the entire 0.511 MeV γ-ray annihilation radiation spectrum (singles and coincidence) and just the 1.022 MeV sum peak were recorded on two separate systems. Data was collected using either 10 s or 20 s dwell times. Background rates were also noted for each measurement and three to five measurements were made with each compound. The mass of each sample was determined through use of a precision balance. The efficiencies of the well counter system were determined in separate experiments with activated samples of water and polyethylene using the "sum-peak method."\(^{13-15}\) Corrections due to incomplete solid angle coverage\(^{15,16}\) were minimized by using small samples. The measured total efficiency, \(\varepsilon = 0.749 \pm 0.022\), and the 0.511 MeV photo peak efficiency, \(\varepsilon_p = 0.479 \pm 0.024\) compare well with calculated values for detectors of similar geometry.\(^{17}\)

A Ge(Li) multichannel spectrometer system was used for the argon measurements. Balloons filled with the gas were irradiated in the neutron beam and then transferred to another balloon for counting. Gamma rays originating in the decay of \(^{41}\)Ar and \(^{39}\)Cl were identified. The measured efficiencies\(^{18}\) were corrected for the finite geometry of the balloon. The mass of argon was estimated from the balloon volume and pressure.
DATA REDUCTION

The decay data for the graphite, melamine and distilled water measurements were corrected for dead time on a channel by channel basis and fitted by a function consisting of a series of exponentials plus a flat background using a non-linear least squares fitting routine. The known half-lives $[\tau(1/2)]$ of the positron emitters and the measured background were used as input. The number of decays in the initial counting interval was determined for each sample from data for the whole spectrum as well as for just the 1.022 MeV sum peak. All data were fitted with chi-squares per degree of freedom between 1.0 and 1.3.

The graphite data (Fig. 3) are fitted quite adequately with a single decay curve corresponding to production of 11C $[\tau(1/2) = 20.4 \text{ min}]$ plus background. The presence of other decay products was not detected.

The melamine ($C_3H_6N_6$) decay data (Fig. 4) are well described by the decay of 13N $[\tau(1/2) = 9.96 \text{ min}]$ and 11C. The fit to the data was not improved by including decay products other than 11C and 13N.
The distilled water data (Fig. 5) are best fitted by the decay of three nuclides; ^{11}C, ^{13}N, and ^{15}O [\(\tau(1/2) = 2.03\ \text{min}\)]. Fits to the data become markedly worse if either the ^{13}N or ^{11}C term is omitted and no improvement in fit is obtained by trying to include another term in the description. (In particular, \(\gamma\)-ray contributions to the total spectrum from the decay of ^{16}N [\(\tau(1/2) = 7.13\ \text{s}\)] were not observed, due to typical lag times of several minutes between activation and counting.) This detection of ^{11}C and ^{13}N is discussed below.

The argon decay data were analyzed by hand for the production of ^{41}Ar [\(\tau(1/2) = 1.83\ \text{hr}\)] and ^{39}Cl [\(\tau(1/2) = 56.2\ \text{min}\)]. Background subtracted peak values were obtained for each 10-20 minute counting interval. The number of decays in the first counting interval was computed by linear regression analysis using known half lives and a small correction term for gas leakage. Other reaction products are certainly present, but, due to the longer lag times involved here (20 - 30 min), signals from shorter lived products were not seen, and peaks with much lower yields were not analyzed.
The usual equations21 relating production and decay were used to compute the production rates of transformed nuclei per parent nucleus normalized, for convenience, to proton current I_p incident on the neutron producing target. We write:

\[
\sigma \phi = \frac{A(t_A + t_L)}{I_p \times N_0 \times \text{eff} \times [1 - \exp(-\lambda t_A)] \times \exp(-\lambda t_L)} \times \frac{1}{I_p},
\]

where σ represents the production cross section, ϕ the incident neutron fluence rate, λ the decay constant of interest, t_A the production time and t_L the lag time before counting. The activity $A(t_A + t_L)$ was obtained from fits to the data described above. The number of parent nuclei N_0 was computed from the measured masses of the samples using known elemental compositions. The efficiency term eff is equal to $(\varepsilon_p)^2$ for the 1.022 MeV sum peak, $\varepsilon(2-\varepsilon)$ for the total singles plus coincidence spectrum and the measured efficiency multiplied by a geometry correction term for the Ge(Li) peaks.

The results are summarized in Table 1. Values are weighted averages of all runs taken for each nuclide. Individual results were weighted by the inverse square of their statistical uncertainty. The errors quoted represent standard deviations of
the means. The sum peak and total spectrum results for O, N, and C agreed quite well with each other and were all included in the averages. An extra scale factor uncertainty of two is associated with the argon results due to imprecise determination of the gas mass.

The presence of ^{13}N and ^{11}C from activation of oxygen follows directly from the distilled water data reduction and curve fitting discussed above. The ^{15}O component is certainly expected. On the other hand, $(n, 2n)$ reactions involving realistic quantities of dissolved gases cannot even begin to explain the amount of ^{11}C and ^{13}N observed. The production of significant quantities of ^{13}N from $^{16}\text{O}(p,\alpha)$ initiated by protons emitted from neutron reactions with the hydrogen and oxygen in water has been previously observed. Calculations based on published cross sections and on yields obtained here indicate that this (p,α) mechanism accounts for a large portion of the observed ^{13}N (and of the excess ^{11}C from activation of melamine observed below). Ratios of yields are consistent with those reported from activation of H_2O (and NH_4NO_3) by a lower energy neutron beam at Hammersmith. Higher energy neutrons and protons are apparently also initiating spallation-type reactions on oxygen leading to the production of some ^{11}C and ^{13}N. The magnitudes of cross sections reported for reactions initiated by 50 MeV protons support such an assumption.
The presence of ^{11}C from activation of nitrogen in melamine (Table 1) is based on the graphite results. The ^{11}C signal from melamine is too large to be associated with reactions involving carbon only. The graphite results were used with Eq. 1 to compute the expected amount of ^{11}C from activation of the carbon in melamine. Subtraction of that value from the total ^{11}C signal leads to the stated value of ^{11}C production from activation of nitrogen. The excess ^{11}C signal is attributed to contributions from $^{14}\text{N}(p,\alpha)$ from knock-on protons and N-spallation as discussed above.

Comparison of published fast neutron cross sections for production of ^{39}Cl and ^{41}Ar from activation of argon28 to the yields observed here (Table 1) indicates that the vast majority of ^{41}Ar activity is not associated with fast neutrons. This is not surprising in light of argon's large thermal cross section.28 The thermal flux from room scattered neutrons was not measured here and the amount of low energy neutrons present in the primary beam is uncertain.11 Hence, the value presented here for production of ^{41}Ar is specific to the conditions under which it was measured. Thermal neutron fluxes will change as phantom, room materials and irradiation conditions are changed.

The values in Table 1 are all that is needed, in conjunction with elemental compositions, to compute the majority of the activity produced from neutron bombardment of the C, N, O, and Ar
present in air and tissue. The production rates of other shorter lived and/or less abundant nuclides may be estimated by comparison of the energy dependence and magnitude of published cross sections and then scaling the values listed in Table 1 accordingly. Two applications of these results follow.

ACTIVATION OF AIR

Activation of air around proton and electron accelerator facilities has been studied extensively in the past.29-38 At least three reports36-38 have dealt directly with air transmutation in a medical setting. The activation of air by therapeutic neutron beams has not been widely addressed, although it could be a possible source of exposure to personnel.

Following the nomenclature of Kase,31 we assume uniform irradiation of an air volume V with uniform dispersal of radioactivity in a room volume P which has a ventilation rate Q. Activity builds up as

\[\frac{dN}{dt} = \sigma \phi N_0 - \lambda N - \frac{(Q/P)N}{t_A} . \]

The number of transformed nuclei present after bombardment time t_A is
\[N(t_A) = \frac{\sigma \phi n_0 V}{(\lambda + Q/P)} \{1 - \exp\left[-(\lambda + Q/P)t_A\right]\} , \tag{3} \]

where \(n_0 \) represents the number of target nuclei per unit volume. The activity \(A(t_A) = \lambda N(t_A) \) has a concentration \(C(t_A) = A(t_A)/P \) and decays as \(\exp\left[(-\lambda + Q/P)t\right] \).

Using Table 1 values and the elemental composition of dry air at STP \(^{39}\) (75.5% N, 23.2% O, 1.3% Ar, \(\rho = 1.293 \text{ kg m}^{-3} \)) we may compute the specific activity of each radioactive product at saturation \((t_A = \infty, Q = 0) \) per unit incident proton current on target, \(\sigma \phi n_0 / I_p \) (Table 2). Values listed represent the total induced activity summed over all constituents of air. The \(^{16}\text{N}\) value is an estimate based on comparison of the \((n,p)\) and \((n,2n)\) cross sections on \(^{16}\text{O}\).\(^{28}\) Predominant species are \(^{13}\text{N}\), \(^{15}\text{O}\), \(^{11}\text{C}\) and \(^{16}\text{N}\). The study of radioactive gas production by electron beams\(^{31,34,36-38}\) has generally concentrated on \(^{13}\text{N}\) and \(^{15}\text{O}\). \(^{41}\text{Ar}\) production has also been estimated to be important in proton accelerator facilities.\(^{30,32}\)

The times required for each nuclide to reach equilibrium (exponential term in Eq. 3 equal to 0.01)\(^{31}\) in any room for different levels of ventilation may be computed (Table 3). With the exception of \(^{16}\text{N}\), all times are quite long compared to standard treatment times and equilibrium will rarely be attained except during prolonged dosimetry or radiobiology irradiations.
As a specific numerical example, we considered an unattenuated trapezoidal beam volume of total length 5 m defining a 30 x 30 cm² field at 170 cm from the source, a room volume of 200 m³ and an incident proton current of 100 µA. Under conditions where equilibrium has been reached, we computed the equilibrium concentrations for the various radionuclides (Table 4). We note that shorter-lived nuclides become relatively more important for larger ventilation rates. Maximum permissible concentrations in air \((\text{MPC})_a\) for most of the nuclides listed above have been calculated by various authors\(^{30,31,36,40,41}\) using methods outlined in ICRP 242, taking either the whole body or skin as the limiting organ. Values range from .37 to 2.96 MBq m⁻³ (1 to 8 x 10⁻⁵ µCi cm⁻³). Taking a limiting composite \((\text{MPC})_a\) of .37 MBq m⁻³ (10⁻⁵ µCi cm⁻³) for the sum of all species, we see that at equilibrium the total concentration of radioactivity exceeds safe limits. The post-bombardment time necessary for this sum of equilibrium concentrations to decay to our composite \((\text{MAC})_a\) can be computed noting that individual nuclides decay at their own characteristic rates in the calculation. These waiting times are listed at the bottom of Table 4 along with waiting times necessary for a reduction of \(I_p V/p\) by a factor of two.

In practice, equilibrium is rarely achieved, ventilation rates are typically 6 - 8 air changes per hour, and the time necessary to access the room may be 0.2 - 0.5 minutes. Thus, in the example given above, air activation is just marginally a
problem that may rarely require waiting time. For \(p(41)Be \) neutron beams (Fig. 2), approximately one quarter as many neutrons per unit incident proton current have energies above the threshold for \((n,2n)\) reactions and air activation should be of little concern, although, due to lower yields\(^{43,44}\) than \(p(66)Be \), either incident particle currents and/or treatment times will be larger.

ACTIVATION OF TISSUE

Radioactivity induced in various tissues by photons,\(^{45-49}\) protons,\(^{50,51}\) and neutrons\(^{52,53}\) has long been of interest as a source of added patient dose,\(^{45,47,50}\) as a means of monitoring the concentration of some element in vivo\(^{46,49,50,52,53}\) or for assessing dose distributions.\(^{48,51}\)

We assume a sample whose composition is an average of the total soft tissue and total skeleton values listed by Constantinou\(^{54}\) from reference man\(^{55}\) (10.00% H, 23.24% C, 2.70% N, 60.83% O, 0.14% Na, 0.02% Mg, 1.11% P, 0.20% S, 0.12% Cl, 0.20% K and 1.43% Ca by weight with a density of 1.07 g cm\(^{-3}\)).

For a static situation in which all induced activity decays where it was formed, the total number of transformed nuclei of a species produced in an activation time \(t_A \) is \(N(t_A) = \sigma \Phi \sigma_o \nu t_A \). Using this, the elemental composition above and the data in Table
we computed radionuclide production rates per unit volume normalized to incident proton current, $\sigma \phi n_0 / I_P$, and the specific activities per unit dose, $(\sigma \phi / I_P) n_0 \lambda (D / I_P)^{-1}$ (Table 5). D / I_P is the dose rate per unit proton current, taken here as 3.2×10^{-4} Gy s$^{-1}$ µA$^{-1}$, the value at d_{max} for our p(66)Be(49) beam with a 10 x 10 cm2 field at 170 cm SAD. Values for 12B and 16N were estimated from comparison of (n,2n) and (n,p) cross sections on C and O, respectively. Order of magnitude estimates for other isotopes (28Al, 30P, 31Si and 32P from 31P; 24Na from 23Na; 34Cl from 35Cl; 38K from 39K; 42K from 41K; and 49Ca from 48Ca) were also made from comparison of fast and thermal neutron cross sections and our measured yields. As mentioned earlier, results from comparison of thermal values are specific to the unmeasured thermal neutron flux present during our argon measurements. Contributions to added dose from the listed radionuclides, however, are found to be relatively unimportant and they are not discussed separately here.

The dose corresponding to the total decay of the induced activity may be obtained for each nuclide using a standard expression such as

$$D(\text{Gy}) = 1.6 \times 10^{-13} \frac{A}{\lambda} \frac{E_{\beta}/m + \sum f_{\gamma} E_{\gamma} \phi_{\gamma}}{\lambda}$$

(4)
where A is the total activity (Bq), λ is the decay constant (s^{-1}), E_p (MeV) is the average positron or electron energy, m (kg) is the mass of tissue absorbing the dose, f is the fraction of decays resulting in a gamma ray of energy E (MeV) and ϕ_γ is the specific absorbed fraction of E_γ in m. The summation is carried out over all the emitted photon energies.

For illustration, we consider one liter of centrally located average tissue uniformly irradiated to a dose of 1 Gy under the dose rate conditions described above. Using the data in Table 5 and Eq. 4 we calculated the dose added to that irradiated volume, the dose added to the whole body, and the γ-dose added to the whole body not in the irradiated volume. Half-lives, electron, positron and gamma ray energies and γ-ray abundances were obtained from the Table of the Isotopes. Average electron and positron energies were estimated using a standard approximation. Values of ϕ_γ used were averages for activity concentrated in centrally located organs of mass similar to that of the irradiated volume. The results are summarized in Table 6. The largest portion of the added dose is predicted to come from decay of $^{16}_N$ and $^{11}_B$, (results derived from production rate estimates) with doses from the positron decay of $^{11}_C$, $^{13}_N$ and $^{15}_O$ being the only other processes of importance. The additional dose added locally, 3×10^{-3} Gy, is an insignificant part of the total treatment dose. The total body dose (including β-decays) and the body γ-dose outside the treatment volume of 6×10^{-5} and 7×10^{-6} Gy per
target absorbed Gy, respectively, are quite small. They should not pose a problem in neutron therapy where scattered neutron and photon doses outside the treatment volume are expected to be much larger. The total body burdens listed, however, are 5-50 times greater than those predicted by Standen for photon activation of tissue elements.

SUMMARY AND CONCLUSIONS

Measurements of ^{11}C, ^{13}N, ^{15}O, ^{39}Cl and ^{41}Ar production rates from activation of C, N, O, and Ar by a p(66)Be(49) neutron beam have been presented. Estimates of the production rates of other radionuclides, principally ^{16}N and ^{11}B, have also been made by comparison of published neutron cross sections to the measurements. A direct measurement of ^{16}N and ^{11}B activity would be useful due to the magnitude of their projected production rates.

The results have been applied to activation of air in a typical treatment room and to activation of tissue during treatment. Both computations indicate only minimal reason for concern from a radiation protection viewpoint.
ACKNOWLEDGMENT

This investigation was supported by PHS Grant Number 5PO1CA18081-08, awarded by the National Cancer Institute, DHHS. The authors also wish to thank Dr. Sam Baker and Mr. Jay Baldwin of the Fermilab Radiation Safety Department for their assistance, the unknown referees for their editorial suggestions and Miss Michelle Gleason for typing this manuscript with fortitude and patience.
REFERENCES

(a) The expression $p(66)\text{Be}(49)$ means that 66 MeV protons are incident on a semi-thick target, where protons not undergoing nuclear scattering lose 49 MeV by ionization. $p(66)\text{Be}$ would mean a thick target.

16. W. Mannhart and H. Vonach, Absolute Calibration of a Well-Type NaI Detector to an Accuracy of 0.3 - 0.1%, Nucl. Instr. and Meth. 136, 109 (1976).

Table 1

Production Rate per Parent Atom per Incident Proton

Current for a $p(^{66}\text{Be})(^{49}\text{Ne})$ Neutron Beam.†

<table>
<thead>
<tr>
<th>TARGET</th>
<th>PRODUCT</th>
<th>HALF-LIFE (minutes)</th>
<th>$\frac{\sigma\phi}{I_p}$ = Transmutations $\times 10^{-21}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>^{11}C</td>
<td>20.4</td>
<td>34.4 ± 0.7</td>
</tr>
<tr>
<td>N</td>
<td>^{13}N</td>
<td>9.96</td>
<td>18.4 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>^{11}C</td>
<td>20.4</td>
<td>3.60 ± 1.13</td>
</tr>
<tr>
<td>O</td>
<td>^{15}O</td>
<td>2.03</td>
<td>30.0 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>^{13}N</td>
<td>9.96</td>
<td>1.79 ± 0.27</td>
</tr>
<tr>
<td></td>
<td>^{11}C</td>
<td>20.4</td>
<td>4.33 ± 0.37</td>
</tr>
<tr>
<td>Ar</td>
<td>^{41}Ar</td>
<td>110.</td>
<td>20.0 ± 7.0</td>
</tr>
<tr>
<td></td>
<td>^{39}Cl</td>
<td>56.2</td>
<td>4.7 ± 2.6</td>
</tr>
</tbody>
</table>

† At 0° and 190 cm from the neutron production target.
Table 2

Saturation Specific Activity per Unit Proton Current Induced in Dry Air\(^{39}\) at STP by Neutrons from a \(\text{p(66)Be(49)}\) Beam\(^{\dagger}\)

<table>
<thead>
<tr>
<th>NUCLIDE</th>
<th>(\sigma_{\text{en}}) (\text{J}_{\text{p}}^{-1})</th>
<th>kBq (\mu\text{A}^{-1}) m(^{-3})</th>
<th>(\mu\text{Ci} \mu\text{A}^{-1}) (\text{m}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{11}\text{C})</td>
<td>201 ± 47</td>
<td>5.44 ± 1.27 E-3</td>
<td></td>
</tr>
<tr>
<td>(^{13}\text{N})</td>
<td>790 ± 38</td>
<td>2.14 ± 0.10 E-2</td>
<td></td>
</tr>
<tr>
<td>(^{15}\text{O})</td>
<td>338 ± 18</td>
<td>9.12 ± 0.49 E-3</td>
<td></td>
</tr>
<tr>
<td>(^{39}\text{Cl})</td>
<td>0.25 ± 0.11</td>
<td>6.8 ± 3.0 E-6</td>
<td></td>
</tr>
<tr>
<td>(^{41}\text{Ar})</td>
<td>5.1 ± 1.8</td>
<td>1.4 ± 0.5 E-4</td>
<td></td>
</tr>
<tr>
<td>((^{16}\text{N})^{*})</td>
<td>(400 ± 270)</td>
<td>(1.1 ± 0.7 E-3)</td>
<td></td>
</tr>
</tbody>
</table>

\(^{\dagger}\) At 0\(^{\circ}\) and 190 cm from the neutron production target.
*Estimate, see text.
Table 3

Production Time (minutes) Required to Reach Equilibrium in Air Activation at Different Ventilation Rates

<table>
<thead>
<tr>
<th>NUCLIDE</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11C</td>
<td>136</td>
<td>68</td>
<td>46</td>
<td>34</td>
<td>28</td>
<td>23</td>
</tr>
<tr>
<td>13N</td>
<td>66</td>
<td>45</td>
<td>34</td>
<td>27</td>
<td>23</td>
<td>20</td>
</tr>
<tr>
<td>15O</td>
<td>13.6</td>
<td>12.4</td>
<td>11.4</td>
<td>10.5</td>
<td>9.8</td>
<td>9.1</td>
</tr>
<tr>
<td>39Cl</td>
<td>373</td>
<td>101</td>
<td>58</td>
<td>41</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>41Ar</td>
<td>728</td>
<td>116</td>
<td>63</td>
<td>43</td>
<td>33</td>
<td>27</td>
</tr>
<tr>
<td>16N</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.77</td>
<td>0.77</td>
<td>0.76</td>
</tr>
</tbody>
</table>
Table 4

Concentration of Activity Induced In Air at Equilibrium (kBq m\(^{-3}\))

Under Specified Conditions\(^{+}\) for a p(66)Be(49) Neutron Beam

<table>
<thead>
<tr>
<th>NUCLIDE</th>
<th>Air Changes Per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>(^{11})C</td>
<td>131</td>
</tr>
<tr>
<td>(^{13})N</td>
<td>514</td>
</tr>
<tr>
<td>(^{15})O</td>
<td>220</td>
</tr>
<tr>
<td>(^{39})Cl</td>
<td>0.16</td>
</tr>
<tr>
<td>(^{41})Ar</td>
<td>3.3</td>
</tr>
<tr>
<td>(^{16})N</td>
<td>260</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1128</td>
</tr>
</tbody>
</table>

| Time (min) to Decay to <370 kBq m\(^{-3}\) | 9.4 | 3.1 | 1.3 | 0.6 | 0.3 | 0.2 |
| Time (min) to Decay for \(I_p/V/P X (1/2)\) | 1.3 | 0.2 | - | - | - | - |

\(^{+}\) Beam Volume: Trapezoidal, defining a 30x30 cm\(^2\) field at 170 cm from source, 5 m long.
Room Volume = 200 m\(^3\)
Beam Current = 100\(\mu\)A
Table 5

Integrated Radionuclide Production in Body of

Standard Man from Neutrons in a p(66)Be(49) Beam.

<table>
<thead>
<tr>
<th>NUCLIDE</th>
<th>Transformed Nuclei per Unit Activation Time (s(^{-1}) µA(^{-1}) m(^{-3}))</th>
<th>Activity per Unit Dose (MBq Gy(^{-1}) m(^{-3})) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{11})C</td>
<td>5.33 ± 0.15 E8</td>
<td>952 ± 27</td>
</tr>
<tr>
<td>(^{13})N</td>
<td>6.65 ± 0.67 E7</td>
<td>243 ± 24</td>
</tr>
<tr>
<td>(^{15})O</td>
<td>7.32 ± 0.39 E8</td>
<td>1.30 ± 0.07 E4</td>
</tr>
<tr>
<td>(^{12})B**</td>
<td>4.2 ± 2.0 E8</td>
<td>4.5 ± 2.1 E7</td>
</tr>
<tr>
<td>(^{16})N**</td>
<td>8.8 ± 5.9 E8</td>
<td>2.7 ± 1.8 E5</td>
</tr>
</tbody>
</table>

* Using a neutron dose rate per unit proton current of 3.2 x 10\(^{-4}\) Gy s\(^{-1}\) µA\(^{-1}\) at the target volume.

** Estimates, see text.
Table 6

Added Dose Due to Decay of Activity Induced in 10^{-3} m^3 (1%) of Standard Man Uniformly Irradiated by a p(66)Be(49) Neutron Beam

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Added Dose (Gy per given Gy)</th>
<th>In Treatment Volume</th>
<th>Total Body</th>
<th>Outside Treatment Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11C, 13N, 15O</td>
<td></td>
<td>4.8 E-4</td>
<td>9.8 E-6</td>
<td>2.5 E-6</td>
</tr>
<tr>
<td>12B, 16N</td>
<td></td>
<td>2.9 E-3</td>
<td>4.9 E-5</td>
<td>4.4 E-6</td>
</tr>
<tr>
<td>31Si, 28Al</td>
<td></td>
<td>γ3 E-5</td>
<td>γ6 E-7</td>
<td>γ7 E-8</td>
</tr>
<tr>
<td>30P, 34Cl, 39K</td>
<td></td>
<td>γ2 E-6</td>
<td>γ5 E-8</td>
<td>γ9 E-9</td>
</tr>
<tr>
<td>24Na, 32P, 38Cl, 42K, 49Ca</td>
<td></td>
<td>3.4 E-3</td>
<td>5.9 E-5</td>
<td>7.0 E-6</td>
</tr>
</tbody>
</table>

All radionuclides below dashed line are estimates. See text.
Figure Captions

Fig. 1. Calculated \(^{12}\text{C}(n,2n)\) cross section as a function of energy.\(^6\)

Fig. 2. Neutron energy spectra for the \(p(66)\text{Be}\) and \(p(4\text{l})\text{Be}\) beams.\(^{11}\) Solid lines indicate reference spectra. Broken lines represent spectral variations for the \(p(4\text{l})\text{Be}\) beam using half, twice or ignoring the expected contribution from the evaporation process. The data (open circles) are from Ref. \(^{12}\).

Fig. 3. Graphite decay data with fit of \(^{11}\text{C}\) decay curve plus background to data.

Fig. 4. Melamine decay data with fit of \(^{13}\text{N}\) and \(^{11}\text{C}\) decay curves plus background to data.

Fig. 5. Distilled water decay data with fit of \(^{15}\text{O}\), \(^{13}\text{N}\), and \(^{11}\text{C}\) decay curves plus background to data.
Fig. 1

$^{12}\text{C}(n,2n)^{11}\text{C}$

σ mb

E_n MeV
Fig. 2

RELATIVE YIELD (n MeV⁻¹ sr⁻¹)

NEUTRON ENERGY (MeV)

p(66) Be

p(41) Be