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ABSTRACT 

The production of 11c, 13N, 150 from c, N, O, and of 39c1 and 

41Ar from Ar by a p(66)Be(49) clinical neutron therapy beam has 

been measured. The results of these measurements were used to 

estimate the production of other radionuclides, then to estimate 

airborne radioactivity in a typical neutron therapy room and 

radioactivity induced in body tissues during treatment. 

Only under special circumstances would airborne radioactivity 

necessitate a waiting period before entering a typical treatment 

room. The additional dose to a treatment volume due to decay 

products from radioactivity induced within that volume would 

amount to a few thousandths of the given dose and the additional 

body dose outside the treated volume would be a few millionths of 

the given dose. 
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INTRODUCTION 

Modern neutron therapy beams, generated by 40 to 70 MeV 

protons incident on semithick beryllium targets, 1 have spectra 

with neutron energies reaching to within a couple of MeV of the 

incident proton energy. These neutrons produce radionuclides 

through activation of collimators, air, patient tissues and any 

equipment in or near the neutron beam, which may pose radiation 

problems for attending personnel. 2 ' 3 Results of measurements of 

radioactivity produced in the most common tissue and air resident 

elements by a p(66)Be(49)a neutron therapy beam are reported in 

this work. Applications of the results are also discussed. 

Since C, N and O are the major constituents of both tissues 

and air this report concentrates on the creation of 11c, 13N, and 

150, principally via (n,2n) reactions. These positron emitters 

are easily detected by their annihilation radiation and they have 

half-lives which make their production easy. The (n,2n) cross 

sections in c, N, and O are characterized by a 10-20 MeV threshold 

and maximum cross-sectional values of approximately 10-30 mb. 4 ' 5 

The cross section for 12c(n,2n) calculated by Dimbylow6 is 

presented as an example (Fig. 1). The p(66)Be(49) neutron therapy 

beam at Fermilab7-lO was used in this study. An estimate11 of its 

neutron energy spectrum is given in Fig. 2. More than half of the 

total neutron flux in the p(66)Be reference beam and more than a 
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third of that for the p(4l)Be reference beam are above the 10-20 

MeV threshold (Fig. 2). 

The production of 41Ar and 39c1 through activation of Ar was 

also investigated. High energy neutrons 

those above are required for production of 

in the same range as 

39c1 [via 40 Ar(p,pn) 

and 40 Ar(p,d)], whereas low energy neutrons are more important for 

41Ar production [via 40Ar(n,y)J. 

Other radionuclides are also produced by neutron bombardment 

of c, N, O, and Ar. Of special importance are 16N, and 1 2a, 

However, their short half-lives (7.13 s and .0204 s, respectively) 

make measurements difficult. Consequently, only estimates of 

their production rates were made and used below. 

MEASUREMENTS 

Small samples of graphite, melamine (C 3H6N6), distilled water 

and argon gas were irradiated in the neutron beam at 190 cm from 

the target. After activation, the samples were transferred to 

another vessel for counting in either a 10.2 cm X 12.7 cm NaI(Tl) 

well counter or by a Ge(Li) detector. 
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The decay of positron activity from the graphite, melamine 

and water samples was measured as a function of time with a well 

counter system connected to a multichannel scaler. Counts from 

the entire 0.511 MeV y-ray annihiliation radiation spectrum 

(singles and coincidence) and just the 1.022· MeV sum peak were 

recorded on two separate systems. Data was collected using either 

10 s or 20 s dwell times. Background rates were also noted for 

each measurement and three to five measurements were made with 

each compound. The mass of each sample was determined through use 

of a precision balance. The efficiencies of the well counter 

system were determined in separate experiments with activated 

samples of water and polyethylene using the "sum-peak 

method." 13 - 15 Corrections due to incomplete solid angle 

coverage15
r
16 were minimized by using small samples. The measured 

total efficiency, g = 0.749 ±0.022, and the 0.511 MeV photo peak 

efficiency, gp = .479 ±-024 compare well with calculated values 

for detectors of similar geometry. 17 

A Ge(Li) multichannel spectrometer system was used for the 

argon measurements. Balloons filled with the gas were irradiated 

in the neutron beam and then transferred to another balloon for 

counting. Gamma rays originating in the decay of 41Ar and 39c1 

were identified. The measured eff iciencies18 were corrected for 

the finite geometry of the balloon. The mass of argon was 

estimated from the balloon volume and pressure. 
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DATA REDUCTION 

The decay data for the graphite, melamine and distilled water 

measurements were corrected for dead time on a channel by channel 

basis and fitted by a function consisting of a series of 

exponentials plus a flat background using a non-linear least 

squares fitting routine. 19120 The known half-lives [T(l/2)] of the 

positron emitters and the measured background were used as input. 

The number of decays in the initial counting interval was 

determined for each sample from data for the whole spectrum as 

well as for just the 1.022 MeV sum peak. All data were fitted 

with chi-squares per degree of freedom between 1.0 and 1.3. 

The graphite data (Fig. 3) are fitted quite adequately with a 

single decay· curve corresponding to production of 11c [T(l/2) = 

20.4 min] plus background. The presence of other decay products 

was not detected. 

The melamine cc3a6N6 ) decay data (Fig. 4) are well described 

by the decay of 13N [T(l/2) = 9.96 min] and 11c. The fit to the 

data was not improved by including decay products other than 11c 

and 13N. 
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The distilled water data (Fig. 5) are best fitted by the 

decay of three nuclides; 11c, 13 N, and 150 [T(l/2) = 2.03 min]. 

Fits to the data become markedly worse if either the 13N or llc 

term is omitted and no improvement in fit is obtained by trying to 

include another term in the description. (In particular, y-ray 

contributions to the total spectrum from the decay of 16N [T(l/2) 

= 7.13 s] were not observed, due to typical lag times of several 

minutes between activation and counting.) This detection of llc 

and 13N is discussed below. 

The argon decay data were analyzed by hand for the production 

of 41Ar[T(l/2)=1.83 hr] and 39cl[T(l/2)=56.2 min]. Background 

subtracted peak values were obtained for each 10-20 minute 

counting interval. The number of decays in the first counting 

interval was computed by linear regression analysis using known 

half lives and a small correction term for gas leakage. Other 

reaction products are certainly present, but, due to the longer 

lag times involved here (20 - 30 min), signals from shorter lived 

products were not seen, and peaks with much lower yields were not 

analyzed. 
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ANALYSIS AND RESULTS 

The usual equations21 relating production and decay were used 

to compute the production rates of transformed nuclei per parent 

nucleus normalized, for convenience, to proton current Ip incident 

on the neutron producing target. We write: 

I p 
= 

1 

where cr represents the production cross section, ~ the incident 

neutron fluence rate, A the decay constant of interest, tA the 

production time and tL the lag time before counting. The activity 

A(tA + tL) was obtained from fits to the data described above. 

The number of parent nuclei N
0 

was computed from the measured 

masses of the samples using known elemental compositions. The 

efficiency term eff is equal to (€p) 2 for the 1.022 MeV sum peak, 

E(2-£) for the total singles plus coincidence spectrum and the 

measured efficiency multiplied by a geometry correction term for 

the Ge(Li) peaks. 

The results are summarized in Table 1. Values are weighted 

averages of all runs taken for each nuclide. Individual results 

were weighted by the inverse square of their statistical 

uncertainty. The errors quoted represent standard deviations of 

(1) 
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the means. The sum peak and total spectrum results for O, N, and 

C agreed quite well with each other and were all included in the 

averages. An extra scale factor uncertainty of two is associated 

with the argon results due to imprecise determination of the gas 

mass. 

The presence of l3N and llc from activation of oxygen follows 

directly from the distilled water data reduction and curve fitting 

discussed above. The 150 component is certainly expected. On the 

other hand, {n, 2n) reactions involving realistic quantities of 

dissolved gases cannot even begin to explain the amount of 11c and 

13N observed. The production of significant quantities of 13N 

from 16o{p,a) initiated by protons emitted from neutron reactions 

with the hydrogen and oxygen in water has been previously 

observed. 22 , 23 Calculations based on published cross 

sections4 ' 5 , 24
r

25 and on yields obtained here indicate that this 

(p,a) mechanism accounts for a large portion of the observed l3N 

{and of the excess 11c from activation of melamine observed 

below). Ratios of yields are consistent with those reported from 

activation of H2o (and NH4 N03 ) by a lower energy neutron beam at 

Hammersmith. 23 Higher energy neutrons and protons are apparently 

also initiating spallation-type reactions on oxygen leading to the 

production of some 11c and 13N. The magnitudes of cross sections 

reported for reactions initiated by 50 MeV protons26
r

27 support 

such an assumption. 
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The presence of 11c from activation of nitrogen in melamine 

(Table 1) is based on the graphite results. The llc signal from 

melamine is too large to be associated with reactions involving 

carbon only. The graphite results were used with Eq. 1 to compute 

the expected amount of 11c from activation of the carbon in 

melamine. Subtraction of that value from the total llc signal 

leads to the stated value of 11c production from activation of 

nitrogen. The excess 11c signal is attributed to contributions 

from 14N(p,a) from knock-on protons and N-spallation as discussed 

above. 

Comparison of published fast neutron cross sections for 

production of 39c1 and 41Ar from activation of argon28 to the 

yields observed here (Table 1) indicates that the vast majority of 

41Ar activity is not associated with fast neutrons. This is not 

surprising in light of argon's large thermal cross section. 28 The 

thermal flux from room scattered neutrons was not measured here 

and the amount of low energy neutrons present in the primary beam 

is uncertain. 11 Hence, the value presented here for production of 

41Ar is specific to the conditions under which is was measured. 

Thermal neutron fluxes will change as phantom, room materials and 

irradiation conditions are changed. 

The values in Table 1 are all that is needed, in conjunction 

with elemental compositions, to compute the majority of the 

activity produced from neutron bombardment of the C, N, O, and Ar 
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present in air and tissue. The production rates of other shorter 

lived and/or less abundant nuclides may be estimated by comparison 

of the energy dependence and magnitude of published cross sections 

and then scaling the values listed in Table 1 accordingly. Two 

applications of these results follow. 

ACTIVATION OF AIR 

Activation of air around proton and electron accelerator 

facilities has been studied extensively in the past. 29- 38 At least 

three reports 36- 38 have dealt directly with air transmutation in a 

medical setting. The activation of air by therapeutic neutron 

beams has not been widely addressed, although it could be a 

possible source of exposure to personnel. 

Following the nomenclature of Kase, 31 we assume uniform 

irradiation of an air volume V with uniform dispersal of 

radioactivity in a room volume P which has a ventilation rate Q. 

Activity builds up as 

~ = cr~No - AN - (Q/P)N • (2) 

The number of transformed nuclei present after bombardment time tA 

is 
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o<j>n v 
N(tA) = (X+~/P) {1-exp[-(A+Q/P)tA]} 

where n
0 

represents the number of target nuclei per unit volume. 

The activity A(tA) = AN(tA) has a concentration C(tA) = A(tA)/P 

and decays as exp[(-A+ Q/P)t]. 

Using Table 1 values and the elemental composition of dry air 

at STP39 (75.5% N, 23.2% O, 1.3% Ar, p = 1.293 kg m-3 ) we may 

compute the specific activity of each radioactive product at 

saturation (tA = ~, Q = 0) per unit incident proton current on 

target, cr<j>n
0
/Ip (Table 2) • Values listed represent the total 

induced activity summed over all constituents of air. The 16N 

value is an estimate based on comparison of the (n,p) and (n,2n) 

cross sections on 160. 28 Predominant species are l3N, 150, 11c and 

16N. The study of radioactive gas production by electron 

beams31 , 34 , 3G-3a has generally concentrated on 13N and 150. 41Ar 

production has also been estimated to be important in proton 

accelerator facilities.30,32 

The times required for each nuclide to reach equilibrium 

(exponential term in Eq. 3 equal to 0.01) 31 in any room for 

different levels of ventilation may be computed (Table 3). With 

the exception of 16N, all times are quite long compared to 

standard treatment times and equilibrium will rarely be attained 

except during prolonged dosimetry or radiobiology irradiations. 

{ 3) 
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As a specific numerical example, we considered an 

unattenuated trapezoidal beam volume of total length 5 m defining 

a 30 x 30 cm2 field at 170 cm from the source, a room volume of 

200 m3 and an incident proton current of 100 µA. Under conditions 

where equilibrium has been reached, we computed the equilibrium 

concentrations for the various radionuclides (Table 4). We note 

that shorter-lived nuclides become relatively more important for 

larger ventilation rates. Maximum permissible concentrations in 

air (MPC)a for most of the nuclides listed above have been 

calculated by various authors 3o, 3l, 36 , 4o, 4l using methods outlined 

in ICRP 242 , taking either the whole body or skin as the limiting 

organ. Values range from .37 to 2.96 MBq m-3 (1 to 8 x 10-5 µCi 

cm-3). Taking a limiting composite (MPC)a of .37 MBq m- 3 (10-5 µCi 

cm- 3 ) for the sum of all species, we see that at equilibrium the 

total concentration of radioactivity exceeds safe limits. The 

post-bombardment time necessary for this sum of equilibrium 

concentrations to decay to our composite (MAC) can be computed a 

noting that individual nuclides decay at their own characteristic 

rates in the calculation. These waiting times are listed at the 

bottom of Table 4 along with waiting times necessary for a 

reduction of IpV/P by a factor of two. 

In practice, equilibrium is rarely achieved, ventilation 

rates are typically 6 - 8 air changes per hour, and the time 

necessary to access the room may be 0.2 - 0.5 minutes. Thus, in 

the example given above, air activation is just marginally a 
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problem that may rarely require waiting time. For p(4l)Be neutron 

beams (Fig. 2), approximately one quarter as many neutrons per 

unit incident proton current have energies above the threshold for 

(n,2n) reactions and air activation should be of little concern, 

although, due to lower yields43 , 44 than p(66)Be, either incident 

particle currents and/or treatment times will be larger. 

ACTIVATION OF TISSUE 

Radioactivity induced in various tissues by photons, 45- 49 

protons, 5o, 5l and neutrons 52 , 53 has long been of interest as a 

source of added patient dose, 45 , 47 , 5o as a means of monitoring the 

concentration of some element in vivo 4G, 49 , 5o, 52 , 53 or for 

assessing dose distributions.48,51 

We assume a sample whose composition is an average of the 

total soft tissue and total skeleton values listed by 

Constantinou54 from reference man55 (10.00% H, 23.24% C, 2.70% N, 

60.83% O, 0.14% Na, 0.02% Mg, 1.11% P, 0.20% S, 0.12% Cl, 0.20% K 

and 1.43% Ca by weight with a density of 1.07 g cm-3 ). 

For a static situation in which all induced activity decays 

where it was formed, the total number of transformed nuclei of a 

species produced in an activation time = 

Using this, the elemental composition above and the data in Table 
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1, we computed radionuclide production rates per unit volume 

normalized to incident proton currP.nt, cr~n0/Ip, and the specific 

activities per unit dose, (cr~/Ip)n0A(D/Ip)-l (Table 5). D/Ip is 

the dose rate per unit proton current, taken here as 3.2 x 10-4 Gy 

s-1µA-l, the value at dmax for our p(66)Be(49) beam with a 10 x 10 

cm2 field at 170 cm SAD. Values for 12s and 16N were estimated 

from comparison of (n,2n) and (n,p) cross sections on C and o, 

respectively. 28 

(28Al, 30p, 3lsi 

38K from 39K; 

Order of magnitude estimates for other isotopes 

and 32P from 31P; 24Na from 23Na; 34c1 from 35c1; 

42K from 41K; and 49ca from 48ca) were also made 

from comparison of fast and thermal neutron cross sections28 and 

our measured yields. As mentioned earlier, results from 

comparison of thermal values are specific to the unmeasured 

thermal neutron flux present during our argon measurements. 

Contributions to added dose from the listed radionuclides, 

however, are found to be relatively unimportant and they are not 

discussed separately here. 

The dose corresponding to the total decay of the induced 

activity may be obtained for each nuclide using a standard 

expression56 such as 

(4) 
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where A is the total activity (Bq), Xis the decay constant (s-1 ), 

Ea(MeV) is the average positron or electron energy, m(kg) is the 

mass of tissue absorbing the dose, f is the fraction of decays y 

resulting in a gamma ray of energy E (MeV) and ~y is the specific 

absorbed fraction of Ey in m. The summation is carried out over 

all the emitted photon energies. 

For illustration, we consider one liter of centrally located 

average tissue uniformly irradiated to a dose of 1 Gy under the 

dose rate conditions described above. Using the data in Table 5 

and Eq. 4 we calculated the dose added to that irradiated volume, 

the dose added to the whole body, and the y-dose added to the 

whole body not in the irradiated volume. Half-lives, electron, 

positron and gamma ray energies and y-ray abundances were obtained 

from the Table of the Isotopes. 57 Average electron and positron 

energies were estimated using a standard appro~imation. 58 Values 

of ~y used were averages for activity concentrated in centrally 

located organs of mass similar to that of the irradiated volume. 55 

The results are summarized in Table 6. The largest portion of the 

added dose is predicted to come from decay of 16N and lla, 

(results derived from production rate estimates) with doses from 

the positron decay of 11c, 13N and 150 being the only other 

processes of importance. The additional dose added locally, 3 x 

10-3 Gy, is an insignificant part of the total treatment dose. 

The total body dose (including $-decays) 

outside the treatment volume of 6 x 10-S and 

and the body y-dose 

7 x 10-6 Gy per 
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target absorbed Gy, respectively, are quite small. They should 

not pose a problem in neutron therapy where scattered neutron and 

photon doses outside the treatment volume are expected to be much 

larger. 59
r

60 The to~al body burdens listed, however, are 5-50 

times greater than those predicted by Standen for photon 

activation of tissue elements. 47 

SUMMARY AND CONCLUSIONS 

Measurements of 11c, 13N, 150, 39c1 and 41Ar production rates 

from activation of c, N, O, and Ar by a p(66)Be(49) neutron beam 

have been presented. Estimates of the production rates of other 

radionuclides, principally 16N and 11B, have also been made by 

comparison of published neutron cross sections to the 

measurements. A direct measurement of 16N and 11B activity would 

be useful due to the magnitude of their projected production 

rates. 

The results have been applied to activation of air in a 

typical treatment room and to activation of tissue during 

treatment. Both computations indicate only minimal reason for 

concern from a radiation protection, viewpoint. 
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Table 1 

Production Rate per Parent Atom per Incident Proton 

Current for a p(66)Be(49) Neutron Beam.t 

TARGET PRODUCT HALF-LIFE O' 4> = Transmutations xio-21 
(minutes) Ip second µA 

c llc 20.4 34.4 + 0.7 -

N 13N 9.96 18.4 + 0.9 -
llc 20.4 3.60 + 1.13 -

0 150 2.03 30.0 + 1.6 -
13N 9.96 1.79 + 0.27 -
llc 20.4 4.33 + 0.37 -

Ar 41Ar 110. 20.0 + 7.0 -
39c1 56.2 4.7 + 2.6 -

t At o0 and 190 cm from the neutron production target. 
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Table 2 

Saturation Specific Activity per Unit Proton Current Induced 

in Dry Air 39 at STP by Neutrons from a p{66)Be{49) Beamt 

11<j>n
0
Ip-l 

NUCLIDE kBq µA-l m-3 µCi µA-1 .!!.-1 

llc 201 + 47 5.44 + 1.27 E-3 - -
13N 790 + 38 2.14 + 0.10 E-2 - -
150 338 + 18 9.12 + 0.49 E-3 - -
39Cl 0.25 + 0.11 6.8 + 3.0 E-6 - -
41Ar 5.1 + 1.8 1.4 + 0.5 E-4 - -
{16N)* {400 + - 270) {1.1 + - 0.7 E-3) 

t At o0 and 190 cm from the neutron production target. 

*Estimate, see text. 
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Table 3 

Production Time (minutes) Required to Reach Equilibrium 

in Air Activation at Different Ventilation Rates 

Air Changes Per Hour 

NUCLIDE 0 2 4 6 8 10 

llc 136 68 46 34 28 23 

13N 66 45 34 27 23 20 

150 13.6 12.4 11.4 10.5 9.8 9.1 

39c1 373 101 58 41 32 26 

41Ar 728 116 63 43 33 27 

i6N 0.78 0.78 0.78 0.77 0.77 0.76 
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Table 4 

Concentration of Activity Induced In Air at Equilibrium (kBq m- 3 ) 

Under Specified Conditionst for a p{66)Be(49) Neutron Beam 

NUCLIDE 

llc 

13N 

150 

39c1 

41Ar 

(16N)* 

TOTAL 

Time (min) to 
Decay to 
<370 kBq m-3 

Time (min) to 
Decay for 
IPV/P X (1/2) 

Air Changes Per Hour 

0 2 4 6 8 10 

131 66 45 33 27 22 

514 347 262 210 176 151 

220 200 184 170 158 147 

0.16 0.05 0.02 0.02 0.01 0.01 

3.3 0.6 0.2 0.2 0.1 0.1 

260 260 260 260 250 250 

1128 847 751 673 611 570 

9.4 3.1 1. 3 0.6 0.3 0.2 

1.3 0.2 - - - -
. . . ~ t Beam Volume: Trapezoidal, defining a 30x30 cm field 

at 170 cm from sour3e, 5 m long. 
Room Volume = 200 m 
Beam Current = lOOµA 
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Table 5 

Integrated Radionuclide Production in Body of 

Standard Man from Neutrons in a p(66)Be(49) Beam. 

NUCLIDE Transformed Nuclei per Activity per Unit Dose 

Unit Activation Time 

(S-1 µA-1 m-3) (MBq Gy-l m- 3 )* 

llc 5.33 + 0.15 ES 952 + 27 - -
13N 6.65 + 0.67 E7 243 + 24 - -
150 7.32 + 0.39 ES 1.30 + 0.07 - -

(12B)** 4.2 + 2.0 ES 4.5 + 2.1 - -
(16N)** 8.S + 5.9 ES 2.7 + l.S - -

* Using a neutron dose rate per unit proton current of 

3.2 x 10-4 Gy s-1 µA-l at the target volume. 

** Estimates, see text. 

E4 

E7 

E5 
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Table 6 

Added Dose Due to Decay of Activity Induced in io-3 m3 {11) of 

Standard Man Uniformly Irradiated by a p{66)Be(49) Neutron Beam 

Added Dose {Gy per given Gy) 

Radionuclide In Treatment Total Body Outside Treatment 
Volume Volume 

llc, 13N, 150 4.8 E-4 9.8 E-6 2.5 E-6 
------~---------------~------------------- ------------

... _____________ 

128 , 16N 2.9 E-3 4.9 E-5 4.4 E-6 

3ls. 1, 28Al 

30P, 34Cl 39K .r3 E-5 .r6 E-7 .r7 E-8 

24Na, 32P, 38c1, 

42K, 49ca 
.r2 E-6 .rs E-8 .r9 E-9 

TOTAL 3.4 E-3 5.9 E-5 7.0 E-6 

*All radionuclides below dashed line are estimates. See text. 
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Figure Captions 

Fig. 1. Calculated 1 2c(n,2n) cross section as a function of 

energy. 6 

Fig. 2. Neutron energy spectra for the p(66)Be and p(4l)Be 

beams. 11 Solid lines indicate reference spectra. Broken 

lines represent spectral variations for the p(4l)Be beam 

using half, twice or ingnoring the expected contribution 

from the evaporation process. The data (open circles) 

are from Ref. 12. 

Fig. 3. Graphite decay data with fit of 11c decay curve plus 

background to data. 

Fig. 4. Melamine decay data with fit of 13N and llc decay 

curves plus background to data. 

Fig. 5. Distilled water decay data with fit of 150, 13N, and 

11c decay curves plus background to data. 
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