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Two Dimensional Magnetic Fields 

1.1 Representation By Complex Numbers 

In what follows, only two dimensional magnetic fields and 
their harmonic analysis will be considered. In most 
applications to accelerator magnets, this approximation will 
suffice. In two dimensions, the static Maxwell~s equations 
state 

'~ ?B~ .,... d8'j rJ..w B , o ===* :0 
7> ~ 'C> J 

..... 'J ~ ;.£. - jB'=' ~\,l A = o ~ - ~ D 
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However, if w=x+iy and a function f (W) is analytic in w, the 
cauchy-'B.eimann equations imply 
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This implies that B:B,+iB~ 
However, it also implies 
complex conjugate of W 

cannot be analytic in W 
that B is analytic in w• , the 
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A general two dimensional magnetic field can be expanded in 
powers of w" 

) 

The coefficients G~ are known as the harmonics of pole 2k. 
e.g G1 is the dipole harmonic. The dipole harmonic field 
is constant with respect to w* G~ is the quadrupole 
harmonic. The field due to the quadrupole varies linearly 
with respect to w~ 

The GK are in general complex since B is a general function 
of w~ The real part of GK is known as the normal 
harmonic and the imaginary part of GK is known as the skew 
harmonic. For instance, if B is a pure quadrupole field, 
all GK are zero except G2 , so B may be expressed. 

-=<> .• I'" . ·+ 
~ ::;. ,,I- \::S' 2. 11\1 

G2 = GN +i Gs where GN and Gs are the normal and skew 
quadrupole harmonics respectively. Then it W = .~ _,e;: ¢ 

yielding 

1. 2 Conventions 

~ c G N + .(. & s ) )l.. ~.i. f 

~ { {;, N .s;~ cf - &_s ~ tP) 

t'i- . C &t.1 ~ f + &.s .s""'" <f) 

The magnets are measured from the downstream end. i.e. we 
look at the magnet in such a way that the direction of the 
positive beam leaves the magnet and strikes the eye. In 
this co-ordinate system, the y axis is drawn so that +y is 
vertical up and +x is horizontal to the right. Positive 
theta is a counter-clockwise rotation. 
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The definition of normal and skew harmonics used in this 
paper are related to those employed by the Magnet Test 
Facility (MTF) in a simple way. MTF defines 

C>Q - I< . k-1. 
B1 + .1..: 13.>(. -= I(~, (g'Y\ ..... -'- J f:..,__) r ''" -t ~a J 

Comparing the two definitions, it is easy to show 

i.e the normal harmonics are defined the same way. There is 
a sign change in the skew harmonic. This is carried over to 
the definition of harmonic moments. (see below) 

1.3 Definition of Harmonic Moments 

The harmonics defined in Section I are not solely dependent 
on· the properties of the magnet in question, but also on the 
amount of current flowing through it. In order to arrive at 
quantities solely dependent on the magnet geometry, harmonic 
moments are defined. 

For a magnet 
quadrupole has 
defined as 

of primary pole 2p (a dipole has p=l, 
p=2 and so on), the harmonic moment M ~ is 

where r 0 is a reference radius usually taken to be l". 

M~ is in general complex~ its real part is the 
moment and the imaginary part is the skew moment. 
independent of the current. 

normal 
MK is 

MK is in fact the magnetic field due to the k"" harmonic at 
a point rQ on the real axis normalised to the maximum 
field due to the primary pole on a circle of radius r0 
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1.4 Transformation Properties of Harmonics 

Consider a transformation of co-ordinates such that 
I -i.B' 

w =w..R- • > 

This corresponds to a rotation by e- in a counter-clockwise 
direction. During this rotation, a vector such as w is 
trasformed to w/ as given by the equation w / = w .e-..4e • 
Consider a magnetic field Btc. ,, .i. <Sx.()l.J"')~-! Then B 1<. being a 
vector has to transform similarly. i.e. 

B,. ,, -.i.e 
i<. = •.:::>;c. ..e 

= -'- Git (w-1 )JC~i e-~ 9' 

/.._ ( -+: -.i. e)><-i ,;·IJ e 
::. _),. t.:JH. ""' A!.. ..c:;... 

.. I c., I<- -

I 
i.e. under a rotation, the new harmonic G~ is given 

-i~B 
by G"' R... • 

If GK is real, it is a normal harmonic. One can ask, what 
angle does one have to rotate a magnet till a normal magnet 
becomes a skew magnet ? For this to happen, 

GK.' -GK 
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Thus a dipole has to be rotated through 90 degrees, a 
quadrupole through 45 degrees, a sextupole through 30 
degrees and so on for a normal magnet to become a skew 
magnet. 

1. 5 Definition Of Magnetic centers 

The polynomial expansion 

N+I 
&*)k.-i. 

B z. .L &k... = jlt.: I 

can be used to approximate a magnetic field in a region of 
interest within which the expansion is deemed valid. The 
magnetic center is defined to be that point at which B =O. 
The above expansion of B is a polynomial of degree N. 
Clearly there will be N values of W for which B = O. In 
general, not all these values of W will lie within the 
region of interest. For instance, in the qase of the dipole 
magnet, none of the N values of W will lie within the 
region of interest. For the quadrupole, sextupole etc., 
there will be one and only one such value of W at which 
the field is zero within the magnet volume. That point is 
defined as the magnetic center. 

1.6 Effect of being Qff-center. 

Consider a primary pole 2p 

Clearly the center of the above field is at W = 0. If 
one now transforms the measuring system such that w' = W 
+ !r then in this system the center ls at W' = !· Then, 

st>' ; .i- &I"' ( w·· - ct )r-i 
. ( -;. r-1 ' * lw•"') r-2. 

- ·'- &p wj) - . .t. (p-1) G-r ~ c: 



to first order in a. -
Then in this system, there will be a harmonic G~ given by 

r-1 

Gp-i ;;: ( p-1) 

I M Gt-' It r·-1 -
lG-r \ 

if;;. 
where M \::> is the p-1 

' . 

Gr 
.... 
~ 

- ( p-1) G *" rl:> )Lo :: 1 ~ 

\&r \ 

harmonic moment. 
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Thus, by measuring the p-111'.. moment, the center a can be 
determined for small displacements a. If all N-harmonics 
are determined, the center may alternately be found by 
solving the polynomial equation B = O. 

The following note is an attempt to 
1
clear up some 

misunderstandings about the effects of being off center. 
This is perhaps best done by giving a specific example. For 
a quadrupole magnet, being off center will induce a dipole 
harmonic. Also, if the magnet symmetry is slightly 
distorted, a dipole term will be present. People then 
worry1 is the dipole term being measured produced by being 
off the magnetic center or is it produced by symmetry 
violations in the magnet fabrication?. The question is 
basically meaningleas as can be illustrated by the 
following. Consider a perfect quadrupole whose magnetic 
center is also its geometric center. Now introduce symmetry 
breaking distortions in the magnet that produce a dipole 
term. Thus the new field can be written: 

B =- ,{_ G- 1 v\llf" """' L '--o 

where G0 is the new dipole term. 

But the net effect of the dipole term thus introduced is to 
shift the magnetic center away from the geometric center of 
the magnet. For B can be re-written: f3 ;:; .i.. G 

1 
("w~ -1- f:!:g.) 

' ~ ~ 
~ \'.>, :::: ,l. &1 WI 
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i.e. the magnetic center is now at w' = 0 or W 
·It-

= -(~)· 
So if we now remain at the geometric center, we will measure 
the dipole term. But is it due to the symmetry breaking 
effects or due to the fact that we are off the magnetic 
center? The answer is that the symmetry breaking effects 
can be absorbed into a term describing a displacement from 
the magnetic centert 

1.7 Transformation of Harmonics under a rotation and 

translation 

Consider a transformation of co-ordinates such that 

f e< l = :i I . e. 
- .~ G

« .::. ..e... 

w / is the co-ordinate measured in a system rotated counter 
clockwise by angle f7 and translated by 1- p from the W 
co-ordinate system. ~~i 

B = ~ ;. t:iic (w'*) 
i<: I 

C'" . ." ; "'--i 
5 I :. L (.. bl(. ( .v,..) 

. J /~ \L-1 
: . ~ G-~ lw ) 

I K I 

Equating coefficients of (w") we get Gi<- in terms of GK 
Let 

b R :IC f1. )/ . 
r -::. - r > 'V .: 1..._W "' > r -= ol • 

&:> j( -i ~-\ 

~ I &: j:_ ~ l G;c. ( v~cv) 
~ .. , 

""'' 
re.-\ r 

'l.Y.t"--~~ ~ ~ i-\~ i..).:.. 1e..t 
) 

G/ G1- ~ 
'!-

b- t3 G-\ t- -+ G-~ ~ + - - 't-- : r l'- ,~ 

"" 
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&' J_ c {;-~ 2. c..31 2. 

) 2 - ~ + 3 '"~ _t - -
at. )" T r i... 

~"" e~ 

C'l 
~-1) ! 

' k-.-L 

" L_' L (.,.. K. (;-. ::: o( 
,t.. 

f( ::.,{.. ~-1) ~ (!!-j_) ! i jc:-:l. 

Not<- ~ ~ °""' 
g \-\ 5 ..,.~') *~ ,.L __, C>-3 

1.8 Calculation of Magnetic Fields from Current 

Distributions. 

consider a current element jds at a position given by z. 
what is the magnetic field dB due to this current element at 
a position W ? This can easily be shown to be 

(w~ - z!) 

The field due to an arbitrary current distribution j (Z) can 
be calculated by integrating the above equation. 
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a) Dipole Magnets 

Consider now a current distribution where for every j(Z) 
there is a j{-z) such that 

acz) = - J [- t:) 

j 

This is the case for a typical dipole magnet. Then the 
field due to the dipole magnet can be written 

2.:n 

-~ \ w I .c::: \ z \ 

A + 

\ 
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i.e the field due to a dipole magnet with perfect symmetry 
does not contain odd powered harmonics. i.e no quadrupole, 
octupole 12 pole etc. Only 6 pole, 10 pole 14 pole etc may 
occur. 

b) Quadrupole Magnets. 

e 

Quadrupole magnets have current distributions such that 

_,i.~ 

tie> 4 IC -t 1 

~ °'K~'*) 
It= 0 

So quadrupoles with . perfect symmetry can only have the 12 
pole, 20 pole, 28 pole etc harmonics. Similarly the 
harmonics occuring in higher poles can be worked out. In 
general, a magnet with primary pole 2p with perfect symmetry 
can only have harmonics 2. f ( 1.1<. .. 1) j k-:.. 1, 1, ·~ ... EO 

c)Arbitrary Shaped Areas with constant current density. 

Very often, the current density is constant within a given 
area of arbitrary shape. For this special case, the surface 
integral in two dimensions can be reduced to an integral 
around the contour of the area in question. For this 
purpose, we employ the two dimensional version of Stokes' 
theorem which can be stated 

- Z...).. JJ 



where A is an analytic function of z. 

We wish to calculate, 

~ f { a J .s ~ 
5 ;;;. . ~ .,, 

z. "TT 
w -f. 

Taking the complex conjugate of Stokes~ equation 

f A4( d l: = 

·2-,L (£_)if' = 

- ~ a-·- --+rr w-l: -
~a. [1 + 

w :i... 
:: .... ~ 

t..;.1j l:: ~ ?:.'-

[ i!v1 
(."' 

.. A = ~ ~-
2. w"--'-t 1i ii~ I ~CK 

[1 ~ - f 1r• ,h.. = /A-" d - 't (f 

-J 

f 
lv.. i "fl 
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()0 

f~(w</ z 
«@•)'< jL:. I 

The above equation is the harmonic expansion of the field 
due to an arbitrary shaped conductor. In practice, while 
working out the dipole term on a computer, one has to be 
careful that the conductor does not cross the negative real 
axis, since the cut in ln(Z) on the negative axis can lead 
to spurious results. In cases where such a crossing is 
inevitable, it may be advisable to translate the conductor 
to the positive real axis, work out the dipole contribution 
and translate back. 
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1.9 Morgan Coil Pickup Equations. 

A Morgan Coil is a device of a particular harmonic symmetry 
such that it is sensitive to fields having that particular 
harmonic and its odd multiples only. To illustrate, a 
quadrupole Morgan Coil will look as follows: 

we will work out the flµx suspended by a Morgan Coil of 
symmetry 2n in a field of symmetry 2k. e.g for a quadrupole 
Morgan Coil in a sextupole field n=2, k=3. 

f· 
/ · .... .J:> 

E 

.... 
0 

fl 
A 



The radius of the Morgan Coil =r. The 
the center by the two consecutive 
bisector OC between the two legs is at 
the zero reference direction OE. 
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angle suspended at 
legs = e::. Jr . The 

an angle .p 'Y\.- about 

We wish to calculate the field at D and integrate the radial 
component of th~ field along AB to get the flux subtended by 
one sector of the Morgan Coil • The field is given by 

rz. &" r. ·k . k. - i .,.:. ~ (' A.. _J 
j...] i<. = i... K. l w ) ) w = )!.. <. .:.lk. .. u. ': =- ..,.,-~ +"-

:kt_ ~~ 'l Bl<. ,~ tk 

13r == R.~ f~ Jl 

-;: £,_ { ,,(.. & I<. 

Therefore the flux through the leg = 

where L = length of Morgan Coil • 

((,_ ( l ;.._&_~ "'-...t.-1e._L 
it:. 

To get the total flux through the coil, we have to sum over 
every other sector of the coil. To see this , consider the 
total area subtended by the coil and integrate the field 
over it taking care to remain on the same side of the 
subtended area. 



14 

The~the sectors which are to be summed over are at angles 
lfi·A given by 

q>). ~ ~ 1 r (>. -i) i.rr A:. 1,i.·· tt.. 

"'--

Therefore total flux 
ih 'V\. 

'1" k. =- 2... ...,..KL 
1 ~~ii 

K 

Consider the case when n = k. i.e. 
same symmetry as the field. 

, 
Morgan Coil has the 

In this case, 

= 
Yi. . 

2.. T L 

In the above equation, 4'1 is the angle of the bisector of 
the first sector. The angle cp of the first leg = 4>, - :rr. 

Z-11'\.. 

- If\. 
- .... Y\ f } <t~ - 'I'\ L (!..~ r G-K .. - 2. T ..e.. 

\I\ L [ G-~ ~ vt ~ -r G-5 S-v~ vt 4 1 -= 2. "( 
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where G 1<.. = G n +.,t.G_s , G .,_ and Gs are the normal and 
skew components of the field respectively. 

The case k + n. 

When the Morgan Coil symmetry is not the same as the field 
symmetry, the flux suspended is in most cases zero except 
for those cases where k is an odd multiple of n. To see 
this, examine the behavior of the sum 

-.i k 4·, 
Y'\. 

- j_ k {:>..-I) s L l-ir 
:::; -42.. .JZ.. ...,_ 

)-::. I 

~ 1, ~c~~> 
When k is an odd multiple of n, one can show that, 

p;: K. 

[ K k 
le. 9>] = 2; L'YL G\o\. ~ le. c\> ;- G- .$ .5:W... 

K 

~\. GI'-
K . & K 

G- '"" .,. ,l. .s 
-

So a dipole Morgan Coil is sensitive to a ,sextupole field 
but not to a quadrupole field. 

1.10 Transfer constants 

Using a Morgan Coil with various windings, one can perform 
harmoniJ analysis of. magnets. Also, it is possible to 
derive Bdl for the magnets at a fixed radius r0 

The flux subtended by a field of symmetry 2n on a Morgan 
Coil of symmetry 2n is given by 

assuming no skew term is present,for the sake of analysis. 

S~u.. ..... t 

xj~~~ 
\..U...tjU 0 0 Q -0..V . 
\nr.,-..-,-, 3- iv\o"<j<W- eo~I 

v~c. 
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To measure the transfer constant (another term for ~dl at 
r~ ), the above circuit is used. The voltage acf;ss the 
shunt is measured to obtain the current in the magnet coil. 
The voltage across the Morgan Coil is measured to obtain the 
field produced by the magnet. 

The voltage induced in the Morgan Coil 
J - "t = - ({i"l 

;ff:. 

The harmonic G ·II\.. is proportional to the current I. 

where I 
0 

is the standard current usually taken to be 50 
Amps. 

11. _c 

(~:) ~ ·vtf t • VM (. = 2. Jt.. L r;. ...... 
.Io 

.r (+) ~ r Ctn (.v t w =- A c.. r~~1-- tv...o-?( 
) 

. 
\[tt l. 

;I\, Go 
5v.;.. ~ b .. 2- 'f L '1-1.. Cu~ ~ -~p .__ 

Io 
"if.. ti~ 

2.. T~ L 
c IW\¥ .::. & 1'i CV .. Mc -:I c 
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The current 
voltage. 

I can be 
~ 

found by measuring the shunt 

. . 

.. f) Bdi 

--

~ 

1!~~ 
'Ks;~'-* 

t1 (J..,i,.. 

'"'\ f .L D 

v Mc. 

z.. ,"" L w 

c:~ c r-' ~-1 ·= 
J Yo 

0 

:.:. g 'VI 

Q_ :::: 
1( >1a.,c 

11l. 

L {~~ f-f~o-~ V) ~ 
. -fb-. 11411~) 

to R~ 
2-. .h.. w , V"~ 

~s-, 

The above expression in RMKS will yield Q in Tesla metres if 
{...)is in Hz, R~is in Ohms, and. r is in m~tres. 

to convert to kG" remember that 

lOkG = 1 Tesla 
-2. 

l" = 2.54xl0 metres 
-3 

lkG" = 2.54xl0 Tesla metres 

·-3 
Q should be divided by 2.54xl0 to get the answer in kG 
in. 



18 

REFERENCES 

For additional reading, please consult: 

1) "Stationary coil for measuring the harmonics ln Pulsed 
Transport magnets" G.H.Morgan, Proceedings of the 1962 
Magnet Conference at Brookhaven National Laboratory. page 
787 

2) Some Analytic Methods for winding configuration of 
ironless beam transport magnets and lenses. A.Asner and 
c.Iselin, Proceedings of the 2nd International conference on 
Magnet Technology, Oxford{l967) page 32. 


