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In this paper we derive the expanded forms for the transfer matrices across 

an arbitrary two-dimensional fringe-field, i.e. the field is independent of the 

coordinate along the magnet edge. 

The Coordinates 

curvature = -1 
Pa 

B 

0 

magnet edge 

equivalent bending edge 

L 

The field on the mid-plane is written as 

l;; = 0 
( 1) 
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where tis a measure of th€ 11thickness'' of the fringe-field. We also have the fol

lowing relations between differentials 

ds = dz case = dx sine (2) 

where e = e(s) = angle between z and s-axes and is given by 

or, when integrated 

s 
sine = sine + -1 J bdr; ( 3) 

O Pa 
0 

where B0p0 is the magnetic rigidity of the particle. The total variation of 

e in the fringe-field is generally small. In the following we shall simplify 

computation by assuming e to be constant having the value at the "equivalent 
Q, 

bending edge 11 located at s = L =I 0 bdr;. The normally used "hard edge 11 angle e 
is defined by 

sine 

The angle e we use here is given 

sine 

Q, 

= si ne
0 

+ _l I bdz;. 
Pa 

0 

by 

= sine + -1 I: bdr; 
0 p

0 

= sine - -1 Ji bdr; 
Pa 

L 

or, since the difference between a and e is generally small' it is given 

approximately by 

e = e ---1-= p
0 

case 

a; 

IL bdz;. 

Iterative Solutions of the Linear Orbit Equations 

The linear orbit equations are 

(4) 

(5) 

(6) 



where 

and 

-3-

x11 -mx = 0, y11 -ny = 0 (prime = J!_) dz 

m = 1 as 1 __ sine b __ l_ b2 
- B

0
p

0 
ax - p2 - p

0 
2 

Po 

d (dot = ~). 

To solve the equation x11 = mx by iteration we have: 

l. First order 
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Putting x = x(~ = 0) = x
0 

in the right-hand-side and integrating 

we get 

x11 = mx 
0 

x 1 = x 1 +x f mdz 
0 0 

x = x +x 1 z+x ff mdz2 
0 0 0 

where we used the short hand notation 

etc. 

2. Second order 

Substituting the first order x from Eq. (10) in the right-hand-side 

and integrating we get 

x11 = x m+x 1mz+x m ff mdz 2 
0 0 0 

x' = x '+x f mdz+x 1 f mzdz+x f mdz ff mdz 2 
0 0 0 0 

x = x +x 'z+x ff mdz2+x ' ff mzdz2 
0 0 0 0 

2 2 
+x0 ff mdz ff mdz 

(7) 

(8) 

(9) 

(10) 

( 11) 

( 12) 
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The regularity is now clear and we can write for the x-transfer matrix 

M =i 

M11 = 1+ f J mdz 2+ ff mdz2 ff mdz2+· · · · 

M12 = z+ ff mzdz2+ ff mdz2 ff mzdz2+ · · · · 

M21 = O+ f mdz+ f mdz ff mdz2+ · · · · 

M22 = 1+ f mzdz+ f mdz ff mzdz2+ · ... 
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where the terms in the elements of Mare vertically lined up according to the 

generic order (power of m). When applied to the fringe-field at a magnet edge, 

however, they should be ordered by the power of the 11 softness11 parameter and the 

terms should be realigned as 

M11 = l+ ffmdz 2+ ffmdz 2 Jfmdz2+···· 

2 M1 2 = 0 + z + J J mzdz + · · · · 

M21 = f mdz+ f mdi J f mdz2+ f mdz J f mdz 2 J J mdz2+ · · · · 

M22 = 1 + J mzdz+ f mdz J J mzdz2+ · · · · 

i.e. when £+0 (hard edge) M becomes 

Transfer Matrices 

The calculation of the elements of the transfer matrices across the fringe-

field from s = 0 to s = £ is straigthforward. We shall give only a few examples 

below. 

( 13) 

( 14) 
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J tane Jt · l 9.. 2 mdz = --P- bdr,; -~2-- f b de,; 
fringe o o Pa case o 
field 

2 9.. r; • l 9.. r; 
ff mdz = - tane J dr; f bdr; - J dz;; J b2dz;; p case 2 2 

fringe o o o Pa cos e o o 
field 

= _.!_ tane [l Ji dz;; fr; bdr; + 9.. l ( ol2 Jio dz;; for; b2dz;;)] p0 case t p
0 

sine IV 

0 0 

t e t . l f mzdz = - an J bz;;dz;; - -----,....------,,,_... 
• p0cose 2 cos2e 

fr1nge o Pa 
field 

Jfmzdz2 = - tan~ 
fringe Pacas e 

i z;; • l Q, z;; 

J dz;; f br;dr; - 2 3 J dz;; f b
2

z;;dz;; 
o o Pa cos 8 o . o 

field 

We shall now simply exhibit the total result. 

1. Horizontal transfer matrix M 

2 2 M11 = 1-E(al+allA)+E (a2+a21A+a22A )+···· 

M12 = t:~e £[1-db1+b11 A)+····J 
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( 15) 

( 16) 



where 
_ £ tane 

E = p
0 

case 
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A - £ l 
= p

0 
sine ' 
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and _!._may be considered as the 11 softness 11 parameter. The numerical coefficients 
Po 

are given by: 
( 

= i ff b ; al 

< l c, . 
= f b = -1 

all = _l ff b2 
£2 

ell 
1 2 

= T ff b 

1 . . 
a2 =~ff b ff b 

Q, 

[•21 = i
1
3 [ff b ff b

2 
+ff b

2 
ff .bJ 

l c21 = t12 [ f b ff b2 + f b2 ff b J 

1 2 2 
a22 =-;if ff b ff b 

Q, 

1 2 2 
c22 = ""3'" f b ff b 

Q, 

1 . 
bl= £2 ff b<; 

1 • 
dl = Q, J br; 

bl l = :3 J J tic; 

1 2 
dl l = Q, 2 f b <; 

1 • • 
d2 = ~ f bf f br; 

Q, 

b21 = t~ [ff b ff b2r; +ff b2 ff br;] 

d21 = i
1
3 [f b ff b

2
r; + f b

2 
ff br;J 

l J 2 J 2 b22 = £5 J b J b <; 

l J 2 2 d22 = ~ b If b <; 
Q, 

( 17) 
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c =-
1 fbff bff b 

3 Q,2 

C31 = :3 [f b ff b ff b
2+ f b ff b

2 ff b+ f b
2 ff b ff b] 

C32 = i~ [f b
2 ff b

2 ff b+ f b
2 ff b ff b

2+ f b ff b
2 ff b

2 l 
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etc. 

where we have omitted all ds and where the limits of integration are as exemplified 

by the coefficients explicitly exhibited in Eqs. (15). 

The simplest is the linear fringe-field given by 

b = 1 _ 1. and 
Q, 

• 1 
b = -y. 

For this we have, to £
2 terms 

1 
bl 

l 
c, = -1 al = -2 , = -o-' ' 

1 1 - 1 all - 4 , b11 = 20 ' ell - 3 , 

l 
b2 

l 1 
a2 - 24· , - 120 , c2 = 6 ' 

- 13 b 13 - 7 
a21 - - 360 ' 21 · = - 2520 ' c21 - - 60 ' 

_l b - 1 c _l 
a22 - 160 ' 22 - 1440 ' 22 - 84 ' 

- 1 - 11 211 
C3 - - 120 ' C31 - 1260 ' C32 = - 90720 

2. Vertical transfer matrix N 

- 1 dl - -2 

r 
dll = T2 

•ct 1 
2 = 24 

7 
d21 = - 360 

,1 
d22 = - 672 

Without the centripetal term ~ in n the vertical transfer matrix is 
p 

considerably simpler and is given by 

Po 
-- dl+b £+• ... ) tane l 

N = 
tane ( 2 -- C +c E+C £ + • · • • ) p

0 
l 2 3 

2 l +d E:+d £ +· •.. 
l 2 

( 18) 

( 19) 

(20) 
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where the coefficients are as given in Eqs. (17) and (19). 
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Conventionally one continues the magnet interior matrix to the "equivalent 

bending edge", multiplies it by an "equivalent edge matrix", then continues with the 

drift (field-free) matrix from the equivalent edge onward. In this case the 

"equivalent edge matrices" are then, for a dipole edge 

1 t-L cos - cose Pa 
horizontal M 

a -1 sin 
Po 

vertical 

L 
case 

L 
p

0 
case 

"colse) 
l I 

-.po 

cos 

sin L 
p

0 
case 

L 
p

0 
case 

The case of the three-dimensional fringe-field, i.e. B = B(~,s) = B0b(~,s) 
will be treated in a separate report. 


