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Introduction

Pick-up electrodes for stochastic cooling of particle beam are often suffered
either from their frequency limitations or from their low bandwidth characteristics,
Furthermore, the induced signal on these electrodes are often very weak and pol-
luted by noise when the particle density is low and the corresponding energy is
small. People from Berkeley [1] designed a Traveling Wave Tube type pick-up for
the Stochasting cooling experiment here at Fermilab that seemed to be able to
overcome the frequency and bandwidth problem. However, it was designed for low
energy (200 MeV) coasting beam and thus does not meet the requirement for the high
energy experiment intended for the Precooler design, Loop type or wall type pick-
ups suggested by Bramham and others [2], because their frequency characteristic,
seemed not to satisfy this requirement either, Slot type pick-up was proposed by
Faltin [3]. However, its induced signal onto the electrode was found to be very

weak and vertical cooling was almost impossible to carry out,

In this report, a design for slot type pick-up and kicker are proposed. A novel
analytical approach, as well as a different physical setup and dimensions for the
electrodes are presented, Electromagnetic waveguide fields, which are generated by
the particle beam in the beam chamber, and their physical interaction mechanism be-
tween the beam and the electrodes are derived in details, Coupling and power trans-
fer between the beam and the electrode are also obtained, It will be shown that,
because of characteristic of this design, the physical dimension and the inter-

action mechanism for the pick-up and the kicker are not identically the same.

This report is written in two parts, In the first part, we shall present the
theoretical basis for this analysis and the numerical results, Part two of this
report deals with the exact dimensions and drawing for the pick-up and kicker.,
Expressions for- the signal induced on pick-up or kicker due to various beam current

are also shown.
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WAVEGUIDE MODAL FIELDS.

Considering an infinitely long waveguide with cross sectional dimensions axb and

W\

in mind that we are looking for waves in a waveguide X Fﬁg.l. Beom chambe

situated in the coordinates as shown, slots are cut
on its broad side walls. A beam current of finite 3

size in cross section is flowing in the center of |

the waveguide. The electromagnetc fields inside

this waveguide, as well as the waves in the slots,

are to be found. Let us, for the moment, assume

P gauiin

that the beam current and the slots are not there

j )

in the structure. This thus becomes an ideal \&

waveguide with perfectly conducting walls. Bearing

N . ]
with a longitudinal current compcnent, hence, there is and s eoordinates
no Z component magnetc field. Since V*H = 0, here we assume homogeneous medium

and U = constant, we have

’?,0
_a_H+lH 2 /_
ax Mx a;;y""‘é—z"o
\]

e T A
These magnetic fields can be derived from a magnetic vector potential A = A 22"

(1)

Only z component is present for this current clement lies in the z direction only La].

— i
We have H = Vx A

Ay Al
_ oh: __-2A;
o , A I 3 )
Here we assume Az to be of the form
' ~ir'z
Az (x,y,2d) = A () e (3
From Maxwell's equation
0
P—HZ'{ aHg .
ey <3 = 9% Hy
8" '
with = replaced by - jT , then
Al
- 2Ag
Ex = we, X (4a)
similarly, we have
] A
£ = -1 Az (4b)
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We can also apply the Maxwell's equation to obtain Ez’ this becomes

or

- =3 _ [ » A R A
Bz = weo( % Azt 3y Az ]

At
1t becomes obvious that if one can find Az(x,y),
then all the waveguide fields will be found by using Egs.

this end, we shall use the Maxwell's equation again:

o€ 2F :
53? - 225 = TgwhMebr
or
}, LAY a2 4! —_
)8 L '5;1 AZ + gjz Az )7 Wéa
or

,—2-'- , 3.2. A/
3&4 ———‘ (%z 'z + 953. )

(Z« Z)h == )

C;'-

where Pz = of/.(o €o
[

A solution to Eq. (6) pertinent to Fig. 1 is in the form

Ia,; ()() z) = //q\lzmn Cx’y)—' Z Z SH"(ME){) S\n(,—_‘d)

-0 "\=~m

where -—F _ (WT> (ﬂ%)x — FM,:'L

Here, obviously, T is a function of m and n and A (x,y) contains both forward and

. ~
+ Wik A%] =0

This is certainly true if the quantity inside the bracket is zero_ or

TM—1002

(2), (4) and (5). To

Ny

2A 7
24

backward travelling waves. The reason for A (%, y) in the form of Eq. (8) is

because the boundary conditions require that the tangential electric fields are

all zero. (eq.. (,4))

(5

(6)

)

(8)

(9
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Let us now incorporate a longitudinal current

- - z

Y = Lpe ME z (10)
into the waveguide. ©Note that this current has only one component, namely, the
Z component, and it is not necessarily lied in center of the waveguide. Now

the Maxwell's equation in the presence of this convection current becomes

My _ aux_gwéE + Jz

oX J
or : 11
c,= 3 (A 33A2> ()
2 wéo ax'l
Here Az is the z component of the vector potential of the waveguide in the
presence of the beam current. It has the same form as that of the case when the
beam current is absent, or
A -arz
Ag (x4, 2) = Alx1) € (12)
Using the. same technique given in Eq. (5) through (6), we obtain:
-()2 A 92 A . 2 -
Z 4+ = = - -
3 X2 C a:;? z (P FC,)AZ . TZ (13)
T
1f we express Az and J in terms of the waveguide characteristic function gz s 1.e.
mn
A =, Ei
Z CmnA = Cmn Sin (M2AX N7
Az s 2mn g n ( =) ﬁt(—gi) (14)
and
T = =2 S AL, =5 ~ ' (15)
Z O Az T N Sm(ﬁ‘%‘:’f)sun(ﬂfgﬁ_) .
where
(16)

I N G
Jonn Z‘gj Tz (%,Y) Sin (12X) Sin (1) dx dy

o 0
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From Eq. (6), the fundamental m,nth modal field in the absence of current

density is

s 2=\ 4 — 2 A (17)
(3 v Zp) b, o) = (17 = 1) Azl D
while for Eqs. (13) and (14), we have
. NN A
( S 97’“> Cﬂn Zmn )= Corn (r*- Fo ) Azm <X'(7> ~ T Az (414D (18)
comparing Eqs. (17) and (18), we have
¢ Tne o)
_
mn r?. - rm"
thus
o N _‘PZ
AZ :Et \Jmﬂl Azmn(“/ﬁ)jﬁa
ran F:.— ]-,lhm 20)
= S5 | _Jmn Sin ( M7X) s\'nci”gﬁ)] e—ar
T A “
from Egs. (11) and (13) we see that
_ 2 2 2
Ez =L (r- 8 he
= __F__.EL). S [ Tw MZEX LS’ -3z (21)
e %L [lT;;—Tﬁg—‘ Sn1( BTy Sin ( ,)]
from Egs. (4), (5) and (2), we have all the field components created by the beam
current
( ___P 3_ ‘
Ey = > dmm T X nxy
we, = (F 1,T",H,Jchch("’ )Sm )] e (224)

\ e T

‘3 Z. Z Tmn nr)b Lsm Mé) COS(_E—EL>] E’ (le)
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I

= v;nh N7 . o
b [Py Lo (epeesqegs) [ endr e
= - -3z
Hy =~ 2 JmetZ {cos(mﬂ) sin(hx1y ] e i (220)
\‘ hn (Pl_ mln’-)a Qa B

It is seen from Eqs, (21) and (22) that these fields inside the waveguide are
transverse magnetic fields (TM). However, they are by no means regular hollow
waveguide modes simply because there is a center beam current in the waveguide.
This is in sharp contrast to the result obtained by Faltin [Sj, who showed that

TEM waves were exclusively in the same physical structure. It is easy to visualize
that a longitudinal electric field is indeed existed in such a waveguide structure by
way of continuity. A hollow waveguide is known to support TM modes, it's Ez
component is bound to interact with the longitudinal field existing in the beam
current. This interaction is followed in such a fashion that Ez decreases as it
walks away from the beam in the transverse direction, Although there may be a
discontinuity as it crosses the beam boundary, nonetheless, this field will not
diminish to zero until it reaches the waveguide walls, because of the boundary
condition requirement. As a matter of fact, this interesting result was defived
by Pierce[ 6 ], who showed that Ez in this structure is the consequences of the
contribution due to the impressed current and the interaction between this current
and the fundamental modes of the waveguide., In the following, we shall show this

interesting result.

Since

]—'1' ﬁz — (PZ— [’;::) + ( "‘ln:: _ Fpl)
then Eq. (21) becomes
Er =€ 3 < (T T, -
We, 2L G (MAXY o .
we, ,%—(Fz — Fn:ri 3 Sin( a*)Sm(%—a T;uaé:% Jmn S.‘»{m_}’f)s.‘n%i}

- 'é’ﬂz{ ) 1e
— ¢ ;2' Sruﬂ-hf> Jﬁn IMTXN e NT
o E Ty SR « g ny) | @
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Eq. (23)clearly shows that the longitudinal electric field for this beam-guide
stucture is the result of contributions due to the longitudinal current JZ and

the interaction between this current and the fundamental modes of the waveguide.
It also shows that there is a sudden drop in Ez as it crosses the boundary of beam
current in the transverse plane, for Jz is zero outside the source region. There
is a special case where E, is identically equal to zero (see Eq. (21)), that is
when the phase velocity of the wave in the waveguide generated by the beam current
is exactly equal to the velocity of light (P = ?o). However, this is very unlikely
even though as the case in which the velocity of the beam is Co' This is because
the current carriers tended to slow down or speed up, or bunched up, in order to
give up some of the energy to the coupling system, In fact this is the operating

principle for the longitudinal pick-up designed by the Berkeley people [1 1.

Power Flow in the Beam-—-Guide.

It is of interest to comsider the power carried by the beam in the +z direction.

This power is

EB:%_S.S Exﬁ‘-’go{,&
S

I

4
= ‘XY
2 _E._ &z mzzzji 2
. e { R O () s’ (1)

d) 2 2 .
+ S P o - ey
=0 G-,x’ r’;::)bl S (ngr‘/) cos (ﬂéﬂ’.)} dx 39

(24)
—_ F;TZ XD Tﬂj;

Swe,ab ™ =D ( 2 2 [L’Lmzﬁ—a?n’]
’ . Ppﬁnn.)l
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where a * indicates complex conjugate. It is clear that this
power depends on the current Jz in the waveguide as well as on
the configuration of the waveguide relative to the beam current.

IV. TFields Due to Various Beam CurrentS.

(1) Infinitesmal cross—sectional beam current.

In this case, an idealized beam current is considered. An infinitesmal

small cross-section beam current

T = T, d (x-x) 3(3—3,) 2

(25)
is located at (xl,yl) inside the waveguide. Although this is an idealized
case, it is by no means impractical in the experimental sense. A thin wire
(compared to wavelength) fed with desired signal at a particular frequency
can be used to test this circuit and the theorectical results. This is
equivalent to testing the impulse response (or the characteristic) of this
device. It is seen from Eq. (15) that
j = —i— ) b : o NTH
mn ab . japX(y»XJBYy_%)Sm(ﬂgﬁjﬁn(jﬁjdrdg
[~
= 4Tz0 . ,smxv\c. /nTH (26
TLE’_ SIH ( -———’—a ) 5“’\ <—_-—bg') )
The characteristic vector potential is
_ < 4T Sin (MEA) gy (NEY: . :
AZ-—Z ( a.) ( h))sln(w)tv“(n—[ "3{72
0 ab( 2 r,,z ) G Y .———ﬂ—b ) e
F - Tmn (27)

Expressions for individual field components can be found by
substituting Eq. (26) into Eq. (21) and (22).



(2)

10 TM—10C2

Rectangular cross-section beam current.

As shown in the Figure ZT a uniform

rectangular cross-sectional beam is Y
i

assumed in the waveguide. This beam [

TS
bas a width ay and a thickness b.1 and Beam Currest — X
is situated at 3 and ¥ away from the
y and x axes, respectively. In order FagleLﬂcﬂ%ﬁW of Beéam Curredt
to simulate a more realistic beam current ngaﬁue to the Ckamber,

in the accelerator, we shall follow the technique suggested by Faltin [3].

The Schottky noise current Izo due to a coasting beam of current Ib is

IZO = \f 2¢ Ib B (28)

where B is the bandwidth of the pickup system. This current in the presence

of betatron oscillation becomes

_ ]:Zo (wt <[z
T, = —2"(11’ coS}/wi’) ea(w rz) (29)

Here, we have in effect subdivided the current into two-halves with equal
amplitudes but with different time-phase. Referring to Fig. 2 the current

density is

T . + - "L“—JIS X £ + /
—&’?’(w coS Yk ) eg(w rz) Lor { ‘ wrasz
1 By

% = LERRAEAS<

T;o

! - (30)
a5, (1 cosywt) pilwt-ra) Lor {"»‘%‘s

T We shall adopt the notation convention as follows: (1) Variables without
subscripts refer to the beam guide, e.g. a, b; (2) Variables with a subscript
"1" refer to the beam current, e.g., a,s bi; (3) Variables with subscript "2"
refer to values in the coaxial line, e.g. EPe bz; (4) Variables with subsecript
"3" refer to values associated with the slot.
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The Fourier counter parts of these currents are (omitting the phase factor):
+b

ab E 11—3;/2 .:ia ( l‘f’CQS,Uw‘ﬁ)Siﬂ(ing)s}n(ﬁ?Ej)
| 4

Xatdyp ol
ab g, | ¥ dy (| — cosyut) sin (LX) s (1ZE Y

X1~ % ﬂL'b%g‘

- 4 Too X3+ 01 . Yy + bi/2
ab b { S dx dy  Sin (MEE) S (L)

X1-a/2 Jy, —o 4

Xi fdi/z LJL'{‘ E,’L/Q '?J,"L‘&-/Z

"15;/2[ ::3 + :} ]sm(*“ m(m#))

4+ Cos Pt

= 4 Iz
Y7 a4, be { [C"S rﬁf%lﬁﬁ)_ cosm;v_:f_'l?’—][cosnn(g;béz — cos nn’(;bl— bz{z:lz

+ ces Yot [CDS M7 (;(Ifa,ﬁ)__ wsm—g(:f—%)] [Ces m(g‘+b1/23 ~ cos nn(gzb— L-Vz)!
—2es(2h) )

= 1bTIzo i MATXg mrd . 7fb1
Sin S { nr4, N "i" cos Y nx y;

(31)

[‘1 cog nxb, ] }

Again, the electromagnetlc field components due to this current can be found
by substituting Eq. (31) into Egs. (21) and (22). It is interesting to observe
that from Eq. (31), there are two current components contributing to the EM
fields. One is due to the Schottky current eth and the other due to the beta-
tron oscillation, the term associated with cosMwt. They are what is now known
as the common mode and the push-pull modal field. It is also interesting to
see that these two modal fields are identifiable and separable from the pickup

signal because their frequencies are different, It is the push-pull mode



42 TM—1002

that we are interested in thevertical stochastic cooling
experiment. We shall elavorate more about this latter in the second part

of this write-up.

(3) An elliptical cross-sectional current.

To further simulate the beam current

in the accelerator more realistically, o Zy——ed

A
it is assumed the beam current is uni- & ""_{b‘

formly distributed in an ellipse. As ; -

shown in Fig. 3, an ellipse with axes

length a, and b, is centered at (xl, yi) F"% 3, E[];Fﬁcd] beam in

inside the waveguide. Following the Beam Chambe
ampér .,

E”‘PS& Qrea =7[a1b1_
B3 Bi(x-xF+ a’i(ﬁ"?i.)za?&

same technique as given in case 2
(rectangular beam), the current density

now becomes

. : £
—EQE (1+ co;/wt)@gcw re) Loy { X -3 7

A d4bs
da €42y, 4 _l.’.‘.‘.‘/_—/‘_‘v
J—Z = J Ji’ "TA_ cf."(X "‘J)

Tz 3 J(wt -2 ‘ (32)
—— 1= cosywt ) € Pﬂ{xl'%Sx-x1“’%

4y b [
1 -2 1.2 LY
Thus, this Fourier current is a4 Gj -(%- xl) = 3‘ gl

a by [z '
&4’_2: ‘#L"' a—1~ {"(x”‘i)‘)’

— 4 T
T Ay I+ coS Yt
Ta,b ( )f qu d.g S('H(—VMZ)S{“(WT%)
it A E
91
2 Y
+ 4 T. At 3 ;3 ‘
ab T:L (I—C.oﬁ)/wt) dx S'l'n(f%f)s‘m@zgé)
% -3 b -
2 71""" al—()(’xi)
X4 + Q1 Ej‘i
__ 4T= Ty hot a — (x—X1)
"Gt e | dy o) s (2FE)

| g - (x-%)
¥+ bs S
'g.i T ‘31‘#’.51 'q;'— (x-%o Y ‘y‘l—ﬁ% ’af—cx-vq) ]}

g ), SEIRED T | R

11
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et
— 4120
— T-go _
2 dx S\n(m-ﬂ{) { Cog N
niw Qa‘[bl J_g—' (g TJ (X-Xq> )
2

¥1+ GJ

+ Cos X
5 L (5:/ / @1- (g-—yl) ):} + cos Vst dx Sm(mrry)

A
4

'[:cos_“_ﬁ_ - b N —
b (gi (Ti,lﬁi—-(x—xi)z)— (‘,'SSM(U _ b ¢
b \d1 2

+ 2Ces (1 2,)}

I .
n72ad by

mA*y NZYq

EM SIH(ZSm ¢) + Oi cos ¢J’(z)+zcoscnrd*-)51 me‘ Sin M;f‘] } (33

Where

o=t (o), e= 1T

<7,:=h—95?—5,2=a1_\/'€—17+—{,—5 (34}

kJo(z)= Bessel function of the first kind, zero order.

Results in Eq. (33) are derived in details in Appendix A and B.

It is interesting to note that the term associated with betatron
motion is retained in this Fourier current element, and that this Fourier
current is zero if the center of the ellipse is located at the center of

beam chamber i.e. (:gl, yl) = (—% ? %) and m =M = 1.



TM—1002

V. Fields in the TEM Line.

Expressions for the characteristic e— 24, b
impedance and the field configurations '

in an infinitely extended TEM line b i o plge I
have been found by Begovich[7]. However, f ey

in order to find the coupling coefficient ) |77"~ -f__jzpuu ,.r,.-_,"” —— o
between the beam chamber and the TEM line, | P .

we shall find a rigorous solution to the T il '? 1 f%z
field expressions for a finite size TEM c -';

line by matching the boundary conditions
on the conductors [8,9].

Figure 4 shows a rectangular coaxial

Flg'-f- TEM line and it

‘Flt:H bvu,namr»d chJ 'hun
line that is coupled to the beam guide. " Region T
Let us now temporarily assume that there

is no slot on the broad side wall and

the conductivity is infinite on the out-side wall as well as in the center

conductor. In view of the symmetry of ihe 1ine, we need only to find the field

distribution for one quarter of the cross section as in Fig, &4 with potential ¢(X,y
satisfying the following boundary conditions:

Dix, )= 0 Fu Y=o wd X=a, 0yl GTO

& x,y) =Ve  oon iner gonducter (85 b

= -,—_—--105 =0 On X=D, D£YsGC &sc)
2(;7 n Y= b, £<x<a2 X,dz DLy h, (35d)

The genlral Qo]‘.‘;—%lon to the Laplace s equation for these potential functions

subjected to boundary conditions are

o
d;i(x,g):: S An cashlﬁg—f Sin mé( 4+ _VLE. v ogxgld 0LY<C,
M- 2 2. Cz 7
(36)
Rloy)= > 2;3 anln‘«[w —Y)]s:n”ﬂ foo fexga, | osyzl,
7= oddl
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The unknown constants A_ and B can be determined by assuring the
potential and the electric fields are continuous across the
boundary separating regions (1) and (2). Continuity of the potential

at x={ gives

Ql
2 A Cosh mTL SM.——J + j
fi= |
(38)
= Z B' .Jml"l[ ,ﬁ) Sin u—ﬂ'} v <ue ¢
Y= odd j} 2 fo 0 =dst2
The continuity of EX is ensured by making —5—‘- continuous at x = &,
o0 0 |
2 An BT sinh 1EL g MY
m=1 “ Cz €2
ao (39)
::% ) ~ B LT coq” nt (a? 2>Jum”

for
o< y < (_‘2
To determine A " we shall multiply both sides of Eq. (38) by Sln(—Ez) and integrate

over the 1nterva1 (o, C ) and make use of the orthogonality propertyzr of trigommetric

functions, we have

G
G pré Vol .. PrC

= . nx .
v=odf ) Bn Si LL_TZ_J;(QZ"Q)] Sin % Sin ﬁc%{— d!j

or

CZA :
Zhp cosh PRL LV, ¢, )P
2R e (B ]

2

m [}
- Z 12, Sirh [YU[ (d ——Q)] 1 S'"[(—Z_%”'CE;)IQ] _ Sin zL ‘E‘)R’Cz]
o e : (HTC — PX) RET 4 PZ)
Zb,
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® _ (4 b/C;)PJ'"(h;: Sl ’DP
:;ﬂw M%Df[ %)3
iz o ( ”2___ 2 F

or
(Pl
AP CO-)"I(_LE:)
= —4V= - st 191 ) < (717CC2) (,_‘)
DJ-i' EBnSlnh '_;f;(z J(g /Cz P n (U—OD
[ - (@2
Similarly, multiplying both sides of Eq(39) by sin(gl) and
integrating over the interval (O,cz), we have 2
AP P’( 5”’];1 P/L-p
= - HK n7x
%ﬁ(j 8,1 CUSl’I[ CGL -—ﬁ)][ Sm ——- S\W,P_I_i ‘j
C
- - nzx
h:zm B b, Co‘“‘h[ (az-f)] = 4k >m("m)(l) (41)
[n zbz),P J
or
;(@P
AF Shh e )
S x
= 2 =B, cosh| 7T 4 ’ﬂ,Sm(n &Y (-1
" Dq‘fm(az—ﬂ)] b £)(-1) )

Nzped —
CzTCLn’—- %)Fz:)

Taking the ratio of Eq. (40) to (42), we have

NMa

26 e [B (-0 g (5000 e (a2t
G [ - (%)2 P j
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— -2\/0 F ’ .
= - r ') - Z B, 5:%[-”7_ _e>](SE:/C':)PSM(’E}-S?)(—J)P
h=odd
T ,b; 2 2
or " [ " Géﬂf:)’j -]

© 2 l’_l-)sm(nrcz)
= By,
nodd [n _ (?bg) ] [n cvﬁa(Pfﬁ) cosh[— (oz~£)]

-t 2 bz

& Sml') (a _.Q)]J = 0 (43)

Setting the value of p=1, then Eq. (43) becomes
£ - () () et (E) e B (0D 2 i [ (0] )

2,5 =1
h=edd [n _ (252) ] (44)

This is equivalent to the form

n};inf; 1 (45)
where £ is a function of n as defined in Eq. (44). Hence, B_'s

and fr/15 are orthonormal functions. A simple solution to Eq. (45) is

I |
P05 BF (46)

Bn ;,g{m 2b1 - 0 [n’z— (;zCI:2 )Z]
( )Sm ”ICZ { n Coth (%5 )cosh[ - (0, f)]+——s|nh[_igl(az—e]}
Substituting this into Eq.(40), we have
— Sech(mré) V, ( 1) { N—' 4 [n*- J% m
T h= odd [r- (%= )m]N[nccdh(ﬂ)cdh[ - (4,-0) +(§”2)]} “7

(47), and Ap in (40).
of the TEM line uniquely.

(474)

With B
n 8iven in Eq. One can determine the field in Region I

Fields in the other three regions can also be found by
symmetrical considerationms, they are:

o
do=> A, Cosh DEX 5, vy Y
m=j z 2 Ca

fr { texso
D<(j<c7_
aN-1
y (48>
CP( ZJ—HZQHB Sml\LY\T (a 1—7()]3!\0 & ‘FW {—az<,<<

G<?<b



18 TM—1002
® (%, 4= 2 Am“’s‘ nmzx Sin m:c(z(;,,,u,) 4 Vo (2b.-4) %{BZXZO
s Ca (21’1"?)\<35?bz
2N-1 (49)
4%& ) h}:l B, Smh}_ (o, *X)] Sm[n_rg_zé,_ﬂ L { gexea,
¥ (k-c)s Y= al,

¢ ()= Zﬁmww@ﬂ)wmﬂﬁ;L+.vueg> e

ﬁ Ca (@b -c)< 4 2 b,
2N-1 (50)

d) CX:;)—Z B Snh (al+x>]5‘n[nx(z}>z y)-} 'Fm ‘a;$x< -{
‘CZB—C)Sgézbz

where Am and Bn are defined in Egqs. (47) and (40).

It will be shown latéer that explicit expressions of the electric and magnetic
fields in the TEM line are beneficial for calculations in the following. They are

given below:

—_ 2 .
E* - = T)_)?d)CXJ j)
oo
mr mmr X R s DS XL

m= c
=] 2 2 053561

I\

IN-4. o (512)
n—ZQ{d B“ 2b, %Sh[_ (Qz "X)] SmeL L { L<x<a,
] Oy by
Ez-%¢vw
“Z A, M mr cosh mxx cas_g_ o Loy { vsxsf
- m=1 =3 0L l‘,ls Cy (515)

M1
-> BMT_g.h[nx a — Ny {ex<a,
, e "2k ['2*’2( ol cosohy 0<y<b,
an Hx':—'"'J’e_p__o Ey
Hy = JE Hx (52D

Here we tabulated only the fields in one-quarter of the region in the TEM line
?

fields in the other three regions can also be found in a similar fashion,
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DETERMINING THE COUPLING COEFFICIENTS.

Let us now intiroduce slots to the common wall between the coaxial line and the
beam~guide. These slots are intorduced so that the field configuration in the
main beam guide is not significantly altered because of the presence of the
scattered slot field. This is equivalent to saying that the perturbation due to
the slot is small compared with the normal operation in the absence of the slot.
If this is true, one can determine the wave number (I') of the beam current (and
consequently the associated fields) and the amplitude of voltage V0 on the center
conductor of the coaxial line by requiring that the total electric flux and
tangential component of the magnetic field be continuous across the slot. Bearing
in mind that potential and field equations in the coaxial line are referring to
their own coordinate system, thus when it comes to‘matching the boundary con-
ditions, appropriate values must be set for the coordinate systemson both sides
of the boundaries. For instance, in the case of total electric flux flows across

the boundary, we must have

€ Eoy(x, 0, 2> &xdz = | & By (% b, 2) dx dz (53)
S S
where the subscript c and g are referring to the coaxial line and the beam guide,
respectively, and S is the surface area of the slot. Without loss of generality,
let us assume that the glot is displaced xq toward the right from the center of

the coax and from the beam guide. Using Eq. (53) we see that

2/2 £ ] 1 p 2 3 —my
2N~ Y
) Rt o] g “
“® ex,) T T *‘f;;:\\

of the Slot, the sl

— dx Z A, wsh mnx)(mx) Vo )] -ﬁ,al)e—lengﬁ‘l {‘CQﬂ}e, of
Zy ~}

%+d . Fi? 5. Slof lecation Yelabive to

"fzﬁx Z&,Sm‘*\_—n%—(a‘z ~-x) | 8& "'}"Z the TeEM line .
_25/ ’e—

%4-\(3*‘"3 2/
e S T 17T .
we, ° | dx )b[ "
m, ” ( [oin

a
ERa S LN z

Q"Z%)(’J] ¢ (54)
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4
Note that in Eq. (54), we have assumed that the bj -__fiﬁﬁ-ﬁ__u
slot is located at z = o and and it has a width Z4 F‘Qﬁ““’**‘“s"ﬁ
and the electric field vector E = - VQ. Integrat- |
ions on the left hand side of Eq. (54) corresponds E
to regions 1, 2, and 3 in Figure 5 and they are o a/z a¢r*
non-zerQ only if the slot exists in that particular F73 6. Slot location relative

region. The dielectric constants in the coax and to the beam chamber
N 2t im mber.

in the beam guide are also assumed to be € and €,

respectively. Evaluting the integrations in Eq. (54), it becomes

[msk o (4-0) = coshBE (4% -05)7) 2S(k2:/0)

r-ad R
o0
_\’e ’ C;‘.\ 17.1.71- N g ~ [
{mzﬂ A [*’- h el = sieh ’m‘c%‘('i’)] * %} 250 (k2

k

— € r\Z;dJ B [ cosh T ( 0; = X3 — @5 ) — cosh X (q ﬁ)] 25 (kZs5)
k
=S_3wh[ EDED'T wn
mn (- b mMw CﬂS-——(“ +4,+%;) — Cos %5(-%—03 -f—xb)] 28 (255 D,
I

Similarly, the tangential magnetic field (Hx) are continuous across the slot
boundary between the coaxial line and beam Buide. Note that, for TEM coaxial

line

=[€ &, F
‘/;;Z"E (56)

Thus, combining Eq. (56), (22c), (36) and (37), we have

o ‘
VE [0 5 o) 0, [ e sy )

- -ipz
2 Tt [ )] I e
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Values (x,#) are evaluated in the slot only.

Integrating equation (57) over the slot area as we did above and taking

the ratio of this result to (55), it is found that

F k w\)]Jo w\//uf’eoér (58)

which is not a surprising result. Two waves propagating in separated regions
with common~hole coupling must have the same phase velocity. Otherwise, they

will cancel each other and there will be no field at all.

Substituting Eq. (58) back into Eq. (53 , we obtain

{ Toor n(—l)nﬂ»

2 [E [t (om0 -t aon]

)-

"’% 2 Am CDSh hm_ﬁ -—Odfl B [chouh/ (a, ‘Q) cosh %(OZ Xz '-03)

- cosln (02 s — 03 ) }

substituting A and B_ from Eqgs. (478) and (47b) into Eq. (59), we obtain an

(59)

equation involves V alone,
_ -G T (i) n
\/D e z n%(kmﬂ r‘ ) )’_)\[H; [Cﬁsmm(’z— +a5+nx3) w,s\’”n(‘- 03+X7)]

- { | N-1 2 (2b2 VU4 ()Y
Z < Ceslx(mz)z% secl,’l’_g _%/9 (_om 2 22 [” cz_) JAF (Cz)

=]

anm—-

o D@ Ing nost(zd) co 1 (4 {2

- G 7@21 ,_V E n <2bz>‘][2w511 Cal_‘Q) Cf’"“?ﬂ;,_(az"‘xa‘a_a) CGSA h7T (az"xs "a‘g)

—

Tz .
i N (sz Sin (’WC’I){Q coff, C%) CGS‘\C%(Q-QB.{— _2-%" Smh[—%(al»e)]}
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or

HE O () B [ (3t m) s (St
ARG (ge
1+ H

o

m 2 2b2
H=% Cz_@_)(i—ZNﬂ [h°- )]4( )\
AT 1 m h%dd [nz (y_b?) m ]N [Yl C(""H1(T&)C"+t" mt )(a ,)o (21:2)]

- 3_7%—0)4_ g—’}f{;(zazf-xfaj-f)_ [_ A (s % f) (ia -Xg -Gy~

ébz A )
— Cz 2N-2 [F‘L'(z )){2 FC’,+ e (aa—~0) ]‘L -+ e’“x(“a“e) ]} (62
motd N (22) 5in (50 Y] it coh(ZL) + (2 ) fnk (2 (-] }

£q. (60) gives the voltage on the center conductor of the coaxial line for a given

geometry of main beam guide and a given beam current. Thus, it corresponds to a power
coupling factor, in fact, it is a square root of the power coupling factor that

Faltin [3] was looking for, It is interesting to note that this coupling value

does not depend on the width’ 23’of the slot. However, this apparent paradox can
be easily explained as follows: In the course of this derivation, our assumption
was that a small coupling prevailed and the boundary condition was matched in

such a fashion that all the electric fluxes going out of main beam guide through
the slots into TEM line were completely gone into the coax. Thus, it is
plausible that this tightly coupled power is completely coupled through and does
not matter what size the hole is. It is shown in Eq. (55) that waves in these

two systems are coupled with eXactly the same velocity, thus the z dependent factor,
or the width of the slot, is cancelled out on both sides of the equation. This

is certainly not true in real cases. Proton (or electron) beam with high energy
entering a cavity will interact with such system, protons will slow down,

bunch up, give up energy in the form of wave radiation into the system, and in some
cases will create an instability problemEk},li],In fact, this interaction is the
basic operating principle between electrons and its surrounding (helix) circuits

in Travelling Wave Tubes,
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In order to investigate the power coupling and its transfer function between the

beam guide and the TEM line, we shall use a classical approximation methodﬁ_.ﬂ. If
the dimgnsions of the slots are small compared with wavelength, the effect of the
slots to:gystem is equivalent to an ideal electric and a magnetic dipole moment

located at the center of the slot with the slot closed, hence

? e O(C €o (ﬁ '—éb) ﬁ
- . (62a)
‘Y} = - O‘vn Ht

where n is the unit normal to the plane containing the slot and o and o, are
polarizabilities for the electric and magnetic dipole moment in the slot and E and
-

Ht are EM fields at the center of the slot. It was shown [lB,J_chat for a rect-

angular slot with dimensions shown

- : 2 4
Le= g a:% 2 L ]
(62b) 20—
P
C[m = 0, é’éq ﬂz Zy+ 0,352 G; ﬁa,‘], Dimensions of the slst

\

The fields at the aperture of the slot due to the beam guide are, (see Eq. (22))

. k U-nm n7w 3
& (x,b) = e, Z T ()lz

S n(_”"_g_")

\ Hx(“ b) = Z J;M nK()E S{n(".’_gl?i)

Thus, the equivalent dipole moments for radiation into the TEM line are

\we,

) n (K- )b a (63)

- 44
(P =-L)(Fa 5)e T o D)) 4

| M

I\

n
—(o. 264 43 Zs + 0,352 ag)z (J-k"”‘ n:'%’g gm[mrc(—— "'Xa)] A

Let the fields in the coax radiated by the electric dipole be
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. S Ei? 6,-;r; v Z 20
Er = T={
“leg . Flap o
2 e fo 7 <0
and that radiated by the magnetic dipole be
—o S
- € E, € He f« 23>0
Emc = — HI:C - N
€4k, ” “a e b oz<p (648)

Since there is only one mecde in a TEM line, which is the transverse mode, it can
be shown that [12]

e = £ z—i‘i”“,é"’
1 2 ZPE -

=_3w k = 2 Trn H_’(-_(‘On . (ﬁ %
2-?—5 —Jga 5_0‘325 602 (‘;_ —uz Slﬂ[_mwa‘{' 5)]

mn

2 mﬁx_a,
% AH’I ¢ CO""" Co -+ \/; 'F‘Y X’B <Q

©s)
% Smlq[_n/ (az—x3)] Lr X320

N>

-5
where P = (E xH_ )

o c ds = power flow in a cross sectional region of the coax
S

S = cross sectional region in question and the subscript g, c are referred to the
beam guide and the coaxial line,respectively.
The field radiated by the magnetic dipole is
‘w — —
€ =—6, = WM. - M
2P ¢
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= WA Tnn N7 ( D a
= 252 4 ] g
2P \/" (6 &by ay 7+ 0.352 )2 T73b Si fﬂgﬁ]
E Am mr cosh (%C_},)_‘_ \/,,/(\1 for % < (66)
m=|
’ ZN-1 1 '
deB oo Sinh[ 2T (6 -%)]  for %224
n=o

Thus, the total EM fields in the TEM line under this dipole moment consideration is

N (e+e) Bl (e +e;,) B
+
ET’g = — (67D
©, + €) ES (e —eB)E‘
and (& 83) -}:E (e+ €3> T{):
H';'tc = . = —_ (68)

(67 _’-e‘i)HC (e\ - e}) HC

where

He = (£, - g + 7 e ik

then the term involves e, + e, = 0, or there will be no power flow in the -2
direction. In order for Eq. (69) to be true, it is easy to see that, if
Ve & = 0,2 = e (096407 + 035205 )
(70)

or A, = 0.39Z3
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which violates our assumption which stated that the length of the slot is larger
than its width [13]. Hence, there will be some power flow in the —-2 direction in
the coax and, it is a matter of question how to minimize it. For this unwanted
reverse power can only take away useful information from the forward direction

power.

It is also of interest to consider the power transfer from the beam current to the
coax. From Eq. (67) and (68), the total + Z direction power is

D = 2 TIVERTE A

JT S ET( e ‘

2 . . A (71)
E: X ﬂf Z ds

= 2—} &+ &

A factor of 2 is present in Eq. (71) because there are two halves in the coax,
(see Figure 4)namely, region I and IT in Figure 4 is one-half, regions TII and

IV is the other.

However
P = —E»C x T—{:’- 2 dd
S /
,2 C2 a l"'z
¥ H*
:'Z{fdxfﬂlg + dx Ja E‘.ng "EW Hx
\"o ¢ f+a ‘o

b,

7 Cz a2z
—_ 2 2 €
= 24 |4 [y & iy 0| 5] 15 %
| © (o] £+a "o

4 ST e , : © _
MENE . 2 e .z 2 2 2 =
— 2\//; f"ﬁ Z A; (-E; Sinh % Sm—m%f— ‘{‘mZ:’ A (%)CDSL l”_’ciz’-"(‘as%"?

m=j

+~¥§]*2 fjfa > B (e[ - (0, =) | sin( 455

n=o
f—m 0

+ B g (Y s [ (4 0] ’sl]

n=cdd
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= ' /u, Z A m'ISmh(‘mrp)-*r 2\/-—»\/f

-‘2-\/572 B, 17 sinh[ 2 = (0. -0) ] (72)

n=pdd
A factor of 2 in the second step in Eq.(72) is because the slot
involves 2 regions, namely, regionI and IL in Figure 4. A small
positive value has been instroduced in the lower limit of the .
integrations., This is done so that slow convergence in the summation

is avoided. Combining Eqs.(65) and (71), we obtain

.E-rz'- ;a!e|+e3)zf

z n 2
2k Jamn N EDT
= B alz,+ 0.2244 0 75 + 0.176 a2 :”; " . MEca ]
0432 &2 * .(k-r' 35S a (£ 4% (73)
mx mZ X3
2N .
Z., B &, sinh [3F (0 *‘@] Po X 24
n=edd
Eq. (73) gives us the power in the coax for a given value of beam current in the
beam chamber. This power is increased by a factor of 2 if two TEM lines, one on
each broadside wall, are coupled with the beam guide. This power couple relation-
ship can also be used to calculate the transfer function of the system, in this
instance, it is a coupling resistance
2R
RT = -J-Z
Z0
2 n : 2
4k Tma 7 (-1)
o.us2d, 2z, +0.2244 G F 407605 [}'_ " Sin =9 Ly ]
fIz[' ‘fé.a ]mn(h‘ )‘o a(: *'3)
® 2
Z Am(l“c}t—) cosh2e 4+ Nofe, ' for X5 €4 .

)Srnh[nx (ﬂz -X 3)] For e > £
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VII. MULTI-SLOT COUPLING IN THE PICKUP.

So far we have limited ourselves in the case one slot coupling in the pick-up.
However, we are more interested in a pick-up with more than one hole, or a larger
coupling resistance. To this end, we want to explore the effect of

multihole coupling in the following. Fig. 8 gives the

geometry of this coupling. A unit amplitude wave propa- Ab AH§?&5 -38d
T AE

gates in the lower guide is scattered through the slot ), “Jt

and a very small part of the power is transmitted 1vwmu—l e | A

through the hole to become a forward and backward g"’d"’l

wave in the upper guide. The coupling coefficients

Af and A.b are referred to forward and backward F‘j 8 mqu-Slo-{' COUf’l.mg_ ‘

coupling coefficients. They were found in the

previous sertions. If the coupling is small enough, the amplitude of the incident

wave at the .second slot down the line is essentially the same as the first slot.

However, due to the difference in path length, a phase delay of e-jkd/is resulted.

By virtual of Eq. (58), waves in the upper and lower guides are propagating with

the same speed, wave amplitude at the second slot in the upper guide due to the

first slot scattering is also delayed by e_Jkd. Hence, the total amplitude at the
. -jkd

second slot is ZAfe JX¢ . In other words forward waves always add in phase. Thus,

for NS slot coupling, the coupling resistance is increased by a factor of N 1i.e,
S,

Rey =
T = Ng Rt (752)

For the backward propagating power, it is easy to see that the total value for

two slots is A (1 + e-JZBd), or for N_ slots, this becomes
Total backward wave = A Ne -328nd 7
b1+ > e ] (75b)
h=2

Therefore, the backward power is zero only if d = (555—)AX, wherem =1, 3,5, -
This is impossible for our operating frequence. In other words, there will be

some backward power in the coax.

Let us now consider the ratio of power coupled into the TEM line
to the total power generated by the beam current. For the case in
wvhich TM;; modes was excited in the beam guide, from Eq.(24), the
total power generated by the beam current is

p kx| Tal@el)
8 T fweab [ha_ C","z ]2 (76)
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and the power coupled into the TEM line, from Eq.(73), is

? af ﬂicos'(m)iﬁ‘ fot "’?_wmrv)ﬂ’
(k, P,,.Inz ) 1 z B s nl,,['n/( (& -')f_;

2K
F—f— : |_0q32(?3).,.02244( )--0176 (—;

Therefore,

fwesab a_f‘

S AE (M) + :
]Qr - zk[é.w::(%)mazw(%) anéj cos™(Zx2) g—_ua Bn—s;sm"‘[——a(az K.)] }

-2

% P B (a+8)

2N-4

bk we alo#32(T5)+o ”‘“(-gl)*o”é] as cos* (%P {*oald Bn‘f‘“"'“[—r (92-%)]

= @78
P b (a s b5) )

gAerjCDSL\M +Vo }2

It is shown in Section IX that, for any reasonable dimensions
in a,b,ag,x3 and operating frequency, Eq.(78) gives a value less
than 10~
coupling between the power in the beam guide and that of the TEM line.

. This thus verifies our earlier assumption that weak

VIII. THE KICKER

In the kicker, we want to determine a change of momentum in the

current carriers(protons) for a given input voltage V, in the center
conductor of the TEM line, assuming a similar physical structure in
the kicker as in the pick-ﬁp. In this analysis, we shall assume that
the presence of the beam has no effect on the field configuration in
the chamber, This assumption is justifiable if the signal fed tatieam
is much greater than thatféenerated by the beam and,the beam chamber
is made in such a way that only dorminant modes are excited. For a
given feed-forwardsignal V o the fields in the TEM line are given in
Egs.(51) and (52), with coeff1c1ents A and B given in Eq. (4 ). Thus,
the field in the slot on the TEM line 31de are'

, o
_ZAm rgz hmgx - \C/O 'For 0$x<£
M:] 2 2
Eye (%, 0) =< (792)
d¢ ’ 2N-1

Z Bn Smh[ (az"X)] for £< X<a,

N
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/ = - __G_ X, 0
Hae (%,0) = =€ By (%0) o
Thus, the equivalent dipole moments are
— A ) A
[P=—o<ee°E”c(x,D>‘j = Py
_ . (80).
1‘M'="0<m HxC(XlO>Q=d“‘\/;;EJC(X’O)X-——MX

where and X are given in Eq.(62) and x3 is the center of the slot
from the center toward the right hand side of the broad side wall of
the TEM line or the beam chamber as we discussed in Section VI,

The waveguide fields in the beam chamber are given in Eqs. (8),
(4) and (2).

]
mm

)
M9y = = o () cos (MTX) sin (1EL)

nyc

E«;-M(x, e () sin(MZX) cas(“’”’

{

' 12_ 2 .
E;—M(x,y)z 1(&:)@&) sin (MZX Y sin (T4

H, §) = (BT Sin (MTX) cos (L)

(81)

HTM
\ My (x,4)= ——(L"‘{E) Cos(MZ’f)Sin(.f‘.g—'a—)

where

2
- (- ()

whereas for TE waves, we have{12]:
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(W (x9) = cos () cos(AEE)

B (s 9) = s () gin () cos (TEL)

P o N

H:j (r4y) = (:;3”1",—.)2 (”E') cos (—L_) Sin (ﬁl‘i.)

T |
BT (04> = gy (B2) cos (B) sin (D)
L E} (x l’) ‘?W/L‘ =5 ( )Sm HITX) CO‘(——J‘)

l win

TM—1002

(82)

Fields generated by these electric and magnetic dipoles in the beanm chamber can b
e

expressed as:

{ —-é’TM > ATM =ATM s BTM 'E';:M

m1 m” Wwin  n
1™ TM 'rM - Th
H™ = A B+ = e H

~-TE
ET=S AL ET + 280 Emn

n

- TE
— TE
HTE => ATE H+TE En B HW‘
mn
where -
Amn ) ™ = xS
w uu —_ '
"o =22l M B P)
B | 2w
similarly

A jw [ T m _ EEFE
" SZPE@"H .M~ Epp P)
6 hi

"n

If only dominant TE or TM modes are to be excited in the beam chamber, i.e. TE

and 'I'M11 modes only, the corresponding field equations are

(83a)

(83b)

(84a)

(84b)

10
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(f E;M = — I'_L (71') Cos(""'x) Sin (__E‘L)
g oy
CT T (B sin (BY cos (4 )
< E:M::: e E;e’ i Sin (—7—5—5-) Sl'n(lgi)
o (853.)
= (F) sin (%) cos (5L
C M= ) cos (22510
while for TE10 case
]( H;E = Cos(ZX)
TE e L.
ﬁj n __:ﬂ%a_ cin (71) (85b)
pTE_ .a

Thus, from Eq. (8la), we have

™
117

Ty TS4%) _ . (L%
ZPTM [/uo("b“)sn a M @(%)Sm (€ e <3 'P—J

—

) W 7 )
EEM (TJ COS(’%@) ['ﬂoM "’E"E’ P]

________, 7T Cos 70(3)
) ( f/ue _- —’a(' é ] Eb(;(xs, O)

= (7T o ,
2?!»1( 5)e S(%})E“mm“!%}gf-] Eye (%5, 0)
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where

a ~b
o =y (7 - )
(@) o]

' a b
i >
—oe, f dx f dy R_})zcasl( sy Sihzl_bi) ﬁ—(%-)ising(zgi)tos ( ‘7%’)]

I’

— I <+ b
- 4 WE, [ ab (86)
A o - m'
A;r‘l: = 23W6 (aﬂa’ cog(l%’fé)[a(m\/ﬂoé -—-\o(E —-LJ—-’:’ I—_TUC(XE,,O) (87a)
similarly
+x)
/-PTM[’U .% 2 M+ || (7'5)5“17(:( %) F]

$f29,00 €: (Q+L’) cos L2 \'dmm + ‘ Ao T:‘*‘: ] Eéc (X3}O> (87b)

M 7
and
T qw JT .
Ao = 25, [ 1. _/ELQ smL%‘a*ﬁl ‘M -+ B_E_f‘_cia_ cin (& 15 2]
LU/U.v
Fe T e[ — wp ]
a X
2f'rc ( )cos( Zx) [P a(m/E ‘f’(e}wejggc(’fs,o>
with

a b
Bre = [ [0y €77
a} o

= - upr(of gk
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or
TE
o = ',:Zra,b cos T [Wéa(m(% ~ w]o(e)eoj Eye (xs,0) (88a)
Similarly,

Hence the total electric and magnetic fields inside the beam
chamber that are affecting the beam current are:

B =AT B BV E ™+ AEE T+ g
2 gwe.
I_,‘l, 7 Qz“"b’) COS(——J) [dm ucé - la(e‘,_ﬂ———j Eg (x5 O) X E:;T‘\’w Ea:ll +ZE?51] Jpz
- Zijw€, 2 % Eqy i
r\f'n 8 cos (T )[O(MJZ‘_‘_‘O(e\HI:]E"(an)[Q +3E;:11—ZE;11 et
7T
T Cos (X3 :
[ b ( a )[—rl\o dm/'%‘: - wkelevj Ec(xs,o)[y gw] eér'o
+ T TX3 0o
e (EZ3 xmé tulde| €] Belr,0)[§ €T | 2% (890

similarly, from Eq. (80)

Hy,z) = A;JTMH?TM-«— B_IM o A Heo T 5 Ht:)

_ 2§we g n T
= B ) o (I [t - 1l B J et o T+ 950 ]
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in=

—

L2 Ao (a: €- +IO(e ]ch(xalo)[QH” Hb“i e

b‘l

7

_ 7 TE ] -INE
__'_L__;_l; COS( 3) [r -/T - w|0(e| éo] Evc(\(;IO)I:X HXio Zio ]9

+ ’:,—TC’;; cos (sz) [EOIO(MJ%; + w,o(eléo:} E}jc (XS -‘D>[—QH’<|0 ¥z HZW] 9'0

™ ™ TE TE
where i1, 1, Elo and Hyp gre given in Eq.(82a) and (82b)

In fact in the case of a beam chamber with a = 15,5 ecm and b = 7.5 cm, and
operating at 1 GHz frequency, only TElO mode can propagate in this waveguide.

Thus, only TE waves are involved 1n Eq. (86). 'In that case, we can also determine

10
the size of the slot such that A = 0, or

[ &, fj:{ — W|le| €, =0 (90)

In view of Eq. (62b), we see that

F,OJ% (0,864 0,2, + 0.352 a;‘) - we, T 2y =o

or
a3 = 3Z3z (91}

For this special case, we have

F::(x, — TE""'—TE'= -__2__7_t__ X3 P’ - nls o«
$2)= BB = oo (R )m"("‘J%‘_pEgc(x;,O) au;éi L gz yeth g

lo

_ —23w{pe oy cos
ab

(T2 Eye 06,0) Sin(Z2) €8 (92a)

#9b
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and

o TE T$-TE
(x4 2) =
y xy.2) = By 10

27T
— s ‘7<m € _7[_)(_
Tk \//L_ ces( )Eéc ()‘3)031_ Xa.__sm(?EX)_f_zCO((ﬁ)] (92b)

The momentum of the carriers under the influence of these electromagnetic fields is

dF - e
S5 = 9CE + )

or a change of momentum

—t— —4—-

AP = 3] (€ + TxpH ) dt (93)

Although Eq. (93) can be solved exactly for the given expressions for E and ﬁ

in Eq. (92)[]'_5], we shall make a simple assumption that the position of the particles
does not change siginificantly after each kick, thus the integral in Eq. (93) is
assumed to be constant. The time t, is the time interval particles under
active influence by a slot.

t ‘
AP = ?f [Egg +,u,,ﬂ)‘§><(‘2Hx + 2 H, )] % dt

~ 9‘@ [Ey +/uoaer].(e;)ut1_ 1)

= ‘QQ%W o alb—— COS(Z%)S;) EHC (Ya,O)Sl’n(?%L)

. 3 f

(1+%5)(e b 1)e? (94)
It is seen in Eq. (91) that this slot type kicker creats only a change in momentum
in the verticle direction of the tramsverse plane. This result was derived based
on the fact that TElO waves were predominately excited in the kicker waveguide.
It is obvious that if the beam guide dimensions were made in such a way that higher
order modes such as TMll’ TH%O ————— etc. were excited, the interaction between
the pickup and the kicker 2: more than just affecting the transverse direction of

current carriers, which are flowing in the center of beam chamber.
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NUMERICAL RESULTS.

(A) Values for the pickup, ‘{
(1) Values for. the beam chamber, £ fb“ﬂ”€mvfd
As seen in Eq. (9) that in order for | / ﬂﬁ@e;
nt
waveguide modes to exist in the beam |1 Chawler
chamber, Fén must be real, i.e, fe——— A —a
=209, em= 9"
= mr T ,
mn \/F (b (¢) b=20.32em=8"
or
Ficc; . 9. Crose — Sectiona |
2 (95)
(6 = wi.e, > (DL + (B ) dimensiors of the beam

Cha mber for  the p.‘ck-up.

If the operating frequency 1S set at £ =1,0 MHz and dimension a and b are
so chosen that only fundamental modes can propagate i.e. m = n = 1. It is found

that one set of parameters for a and b to satisfy Eq. (95) is

1
Q= 22.5¢cm = (|

(96)

L= 20.32 cm = g,

(2) Values for the TEM Line.

The characteristic impendance and its inherent capacitance associated with a shield

TEM line are well known ['7], In fact we could have calculated their values in
Section V of this report by applying Gauss law. However, for experimental purposes,
an approximated formula is sufficient. It is shown that the characterisic imped-

ance of a TEM line (shown in Fig.l0) is [8]

4
(2
j_I-—ZZ-"i
2b - Center
Z = 1415 (97) l ! conduchor
‘/—_:[-1-[63-4!8 2] Mo €266
ot 20—
In order to match the speed of 200-MeV proton beam, Fig.lQ.,Dimensions of the TEM line
it is easy to see that the dielectric constant 2a2 =18. cm
e =3,123, and ifZ = 50f. 2b2 =6, cm
Y )
then c, =2.75 cm
22, = 18, cm '
9 . 20 =2,74cm
2b, = 6, cm
2
= 2
20 = 2,74cm
e, = 3,123
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(2)Numerical Results

it is seen throughout this analysis that, the Fourier current density, Jmn' of
Eq. (16) plays an improtant role in all parts, thus it is of interest to consider
its expressions for various cases, Since this current density expression enters
mostly as Jyj; form, we shall repeat its expression for the case of square cross-

sectional current here,

T MoTzp oo 7 o omay i L g b
11 = Sin Sin Su1_B—-3m Lo
Tlaibi Ta I z2a

+ 16 Tzo cos ywk Sm’rxi gin X% 7m, co _‘4_1_9(1 cosrb")

nzaibj
= Jiic + Jup (99)
It is seen that this current consists of two parts, the one involved with IVE and
, . jnwt ,
the other involved with cos vwt eJ . These two currents have different character-

istics, in that Jjj, is maximum when the center of this current density coincides
with the center of the beam chamber, while J11p is minimum in magnitude, These

two currents are identificable because of their difference in frequence, Plots of
these currents are shown in Figure 11 and 12, 1In Figure 11, a three-dimensional
representation of Jjj;. is plotted. Parameters used for this figure are: Beam chamber
dimensions a= 22.86 cm, b= 20,32 cm, and beam size aj= 4 cm, by= 3 cm, In
Figure 11, the magnitude of this beam current with cross-section area mentioned above
is plotted against the location of the center of beam normalized to the sides of the
beam chamber. It is seen that this current density is indeed maximum at the center
of the chamber, Figure 12 is a similar plot with the same dimensiomng as shown in
Figure 11 except that it is plotted for Jllp' Again, it is seen that the magnitude
of this current density is zero at the center of the chamber and are maximum on

the edges.

When m=n=1, the voltage in the center conductor of the TEM line is

shown to be

G 7. ()2 [sin F (%= a) - Sin F(5+a,)]
(1+ H)[(M) (e- )+ (Fy+ (¥ )J

V,

(100)
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Fig. 12, Three dimensional representation of the push-pull
part of the Fourler current Jy1 @s a function of X§
and Y1s the position of the center of the rectangular
beam current in the beam chamber. Values of this current
are seen to have opposite sign on the opposite edge in
the ¥ direction and its value is zero when (xl,yl)=(a/2,b/2)
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where f is in giga Hertz and

r9ba

/—D{—— = 4 L= ST (Z)m
et N»mr MJ [ﬁ (%%) b)]

] N [_I’L Cu‘fh( ) Co%( (Q -2)+

G

Z ";' Elime rn (Zb%z) J[—ZCDSI’\ 20?(“; QJ-CDSJ’) (az +Xa3 = ag)"COS“'I (QZ'}&fasj
,_g

N"m e N(zbz) Sm(”rcl) E” ca'H—\(WP)i— sz +an \,, (a, ,P)j (101

—

A plot of [VO/IZOI versus x, is shown in Figure 13, 1In this figure, parameters
used are: a = 22,32 cm, a, = 9. cm, b2 = 3 cm, c, = 2,75 cm and & = 1,371 cm, b=20.72cw

a, = 8.5 cm and x, varies from zero (center of the slot and the beam chamber in

3
x— direction) to (a2 - a3) = 0.5 em and its valve is normalized to a. It is seen
that !Vo/IZOl increases as the center of the slot is moved away from the center

of TEM line or the beam chamber in the z- direction, The effect of this increment
is believed to be due to a increase in the forward power flow in the TEM line.

Further computer simulation shows that lV /IZOI changes as x, approaches
the value of { . These flutuations in [ v, /Izof are believed to be

caused by a change in power flow in the TEM line and the power coupling between

the beam guide and the TEM line.

Variation of IVo/Izo| as a function of 2y, the length of the slot is shown in
Figure 14, 1In this figure, parameters in Figure 13 were used, except that at this
time, we used Xy = q, and ag is varied from 2 cm, to 8,5 cm,:%ormalized to a, It
is seen that [Vo/Izol increases as aq increases, This effect is easy to visualize,
For as 4, increases, more power is coupled through the hole from the beam chamber

to the TEM line.

It is instructive to consider the field configurations in the TEM line for a coupled
power from the beam chamber. This is shown in Figures 15 and 16. 1In these figures,
electric field intensity Ex and Ey in the TEM line were plotted, Expressions in

Eg. (51) were plotted in a 3 -dimensional representation fashion, in that field
intensity normalized to VO were plotted as a function of position x and y in one-
quarter of TEM line. One-quarter of the cross-section is plotted because thqfields
are symmetric in theﬂﬁiree quarters, Parameters in these figures are the

same as we used in the previous figures, It is seen that these field intensities
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Fig. 13. Voltage induced on the center conductor of
TEM line, Vo’ normalized to the magnitude of the
beam current, Izo’ as a function of the center

position of the slot relative to the broad side wall
of the beam chamber.
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Fig. 14, Voltage, Vs induced on the center conductor
of the TEM line, normalized to the magnitude of
the beam current, I ,» as a function of the size
of the slot, aq, normalized to a.
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peak at various locations throughout the cross-sectional area of the TEM line.
These scattered multiple peak values are believed to be caused by multi-mode
fields in the TEM line., However, no matter how these fields behave in the cross-
section, their electric field intensities are zero on the conducting boundaries,
as they are required, Plots for the magnetic fields are unnecessary, because they

differ from the electric fields by a constant __ indicated in Eq, (52).

Last, but not least, the equivalent transfer resistance (Eq, 74) RT-is plotted as

a function of xq and as. These are shown in Figures 17, 18 and 19, In Figure 17,

transfer resistance due to one slot was plotted as a function of x Parameters

3.
used in this figure are the same as that used in Figure 13. It is seen in Figure 17

that this resistance is fairly constant as Xq varies, This is so because X, varied
in a relatively small range. In Figure 18, similar plot is shown, In this case,

a, is enlarged to 20.cm while the characteristicbimpedance of the TEM line still

2
maintained at 50 Ohms. Thus, in this case, values of X4 varied in a larger range
(from zero to 1.233 cm). It is seen that in this case Ry changes rather rapidly
as X, approaches the value of & (= 1,37 ecm) and peaks at some points Thus, this

allows us to pick an optimum value of x, such that maximum power transfer is

obtained, Figure 19 is a similar plot 2xcept that this transfer resistance is plot-~

ted against the size of the slot in the transverse direction (a3). It is clear from

Eq. (73) that this value increases at a rate that corresponds to the 6th power of

aq. This effect is obvious for the larger the slot, the higher the power will trans-
fer so long as the small power coupling assumption is not violated. It is interest-

ing to note that maximum power coupling corresponds to a slot opening located onba

spot where maximum field exists in the beam chamber,

Values for the Kicker

Since we are interested in the lowest possible waveguide mode in the kicker, we
could make the beam chamber as small as possible. In the previous analysis (Section
VIII), we assumed TE;g mode prevailed in the beam guide. Thus, for an operating
frequency of 1 GHZ, dimension for the beam guide can be made as follows: (See

Figure 20)
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Fig, 18, Equivalent transfer resistance R, as a function of
the slot center x, away from the center line of the
beam chamber, Parameters used in this figure is the
same as that used in Fig., 17 except that a, is
increased to 10 cm so that the value of x4 can vary
in a larger range,
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As for the TEM line associated with the

f— o —

kicker, in view of Eq, (97), one can make fo————  —————=}
it with the following dimensions while a G=1S.5em, b= (0 om
characteristic impedance of 50Q is still
maintained: (Figure 21) Fﬁ?- 20. Beam Chavnker
Dimensions for the Ki
a,= 10 cm T @Cﬂgﬁ“d’” € Kicker.
2 b,
b2= 4 cm }_
2 =1.96 cm D —

F"g.'l!, TEM Line dimensipns for the Kicker.

Numerical results for the kicker can be inferred from previous sections,

Summary and Discussion.

Theory and numerical dimensions for a design of a slot type pick-up and kicker for
stochastic cooling experiment have been presented in this report. Waveguide field

in the beam chamber and TEM waves in the TEM-coupled 1line were derived in detail.

It is shown that when dimensioms are properly designed, TMjq is excited in the beam
chamber. Longitudinal component, as well as other transverse components, of the
electric field were shown to be present in the beam chamber, It was also shown

that this longitudinal component was still non-zero even when the velocity of the
beam particles approached the velocity of light. .For this corresponds to a case

in which the beam possesses an infinitely large energy and a slj ght modification

of the beam velocity will contribute enough energy (or power) to coupling. Because
of this longitudinal component of the electric field, signals will be induced on

any conductor, which is oriented in the longitudinal direction with respect to the
beam-flow direction, This énalysis can be generalized to all types of waveguide

type pick-ups and kickers, It is interesting to observe, at this juncture, that

the longitudinal and vertical pick-up and kicker, built by the Berkeley people[lj‘vere
built on the same principle — a Traveling Wave Tube type (or a helix) conductor
within a circular beam chamber, Thus, cylindrical waves in the waveguide were induced
on the conductor of the helix. On the other hand, this structure will encounter
mechanical difficulties when the beam velocity approaches the velocity of light, in

that case, a helix becomes a straight line,

Fields in the TEM line were derived in detail in this report, Exact field config-

urations for these fields were also found. Power coupling factor between the beam
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chamber and the TEM line were derived in detail. It was shown in Figure 13 that

a voltage coupling of value ranging from 1 to 10 was obtained. Single slot coupling
as well as multi-slot coupling was also derived. It was shown that a power coupling
(or an equivalent transfer resistance) coefficients for the single slot coupling

can obtain a modest value of 5 ohms, and as high as 100 ohms. This power coupling
is shown to be linear in the system, hence, if 30 slots are used in each electrode,
a 150-ohm transfer resistance is obtained for the system, If the slots are sepa-
rated by 3 cm apart, the total active coupling region corresponds to about 1 meter.,
This, thus, corresponds to a 150-ohm/meter pick-up or kicker system, a considerable

promising result.

Values for the kicker were also derived in this report. It was shown that vertical
momentum of the beam carrier was affected if the beam chamber was so designed that

only TE;y mode was allowed to be excited.

Numerical values as well as configurations, dimensions, of each component of the

system were given in details in the report.

The bandwidth associated with this slot type pickup or kicker depends on the
conducting losses associated with the waveguide and the TEM line walls [12], the
size of the slots, and the electrical connectors to the system. For copper walls
and dimensions of the system we were using, tens or hundreds of megahertz bandwidth

is mnot unusual.

One other problem we have not addressed is reflections of the waveguide fields at
the ends of the beam chamber. This problem can be overcome by extending the beam
chamber fora certain length beyond the active region and by coating these extended
surfaces by lossy materials to dissipate the current. It was shown by Faltin [3]
that 20 dB/mn lossy coating is sufficient to suppress the unwanted reflected wave.
As far as higher order waveguide mode damping is concerned, filter type damping

material is needed.
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APPENDIX A

As shown in Eq. (33), we want to evaluate the integral

X5 + '5
T = . .
(RS S e e Y

X+ &
= Lo rnzy
S 1 4 1Ths | '
L’%’_Q['m(b ba a2 (yx,_)-!—_.—fl-—-)
(A1)

— Sl.ﬂ ( nxu, nz EL WJI"X)
"5‘5 -+ ——__ba;_ - (x- x‘z — dx

with U =X - X then du = dx, X =u=x4 and
p
I = J‘? ! b
- —{ Sin ["7( 2 2 MU ntYy WRX
. Q: 2 ka, a-—u + a + b ol i

— Sin[ 5 E'mtbz e — M (T — L)) [ du

a,
W
2'[0. Sin [(e /af-u‘ — ,Fu) &+ ,ﬂ_] du (A2)

2
where
(e = N7 by £ =-ME n7ys M7 Xy
Gy b 1 a ' 9=Tp ot T«
¢
% — nxY, _ Mx xq (A3)
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Thus

q,
I=-—’:/; {5'”[@\/01 v+ fu] cosg -g«CO‘[e)a —u? +-{3u]$mg}du

2

s/
- Zf { an[e laf,u’- - -PU] cosh + CUS[&/Q? -u* - )cLlijn% }du

- Au/g (A%)
If we let u = ai-sin@ s then du = alcosO do and
Q1/2 ,
4 =’fa/ COS[_-e,/q;—u2+ Fu] du
Lay s,
f Cesre Ay €SP + A1 fs5in 9] A, coso de
uy
‘_[-_ 005[511_\/824-{”‘ (—%-———cose r £ s{ne)] ascosp do
yer+f* Ve 2
g
2
bf_,_r_ coS[ 'z cos( B — ¢)] Q, cos p do (AS5)
where 2
_ _ 5 z ey —
- afEmp =an/EE L w @ =F (16)
now, let Y =06- 9, t’nen e=vyv+49 and de =4y and

z-P
Il =
f’t-cp cos[zeosy] g, cos(Y+¢] dyr

S-¢
_I§—¢ sl zeosy]a; Leospreasp - singrsing | oy



54 TM—1002

f~~¢
a, co'gi»__—c5 Cos [ 2 cos -] cos ¢ dr
— 01 ;H’lqb./‘a ¢ COS[ZCOS(#‘] s;n/qrd/(lr-

o &33 S"th ¢

3-9
> Sm[_z Cos Y- ]' -+ a,_cvsqﬁ[ Cos[Zeosifjeosdrd ¢
=-Z-¢

- T

z-¢
— 24 Smd) S
in[ 2 sing] + 4, casd cosfzcogﬂ cosfp d -
~Z-¢
= 2202 i z6ng] + 20, cosp T, ()

(A7)

where J (Z) is the Bessel function of the first kind and zero order. The second
term is derived in Appendix B

Similarly, with © substituted by -8, we have

o

i

1 =_‘;— cos[efaz (2 ——Fu] du

2

I

2
2d; sind “e
‘ZS'” sm Zsing] + 204 cos? T, (2)

Similarly, it can be shown that

Qy
I3 = j Sm[e’ - +_Pu] du
Tz
x

|y G5t sin[Zeosp] cosp dyr
g F
15“1?/.'3—:;5 Sin f?ws‘#"] Sin ¢ dyb'

(A9)
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ai COSC'_') S!'ﬂ [ ZCOS(/T] ens "b— d@b’

=0 (A9)

Result for Eq. (A9) is derived in Appendix B in details.

and
a,

I.= * sin[efai-w — fu] du=0

N r9

Thus, Eq. (A-4) becomes

_ . L a, si .
I = (Smg - Smﬁ\ ){ ——%ﬁ Sin [-Z Sw'nQ‘)J-f- 0160526}6 -‘-TC;CZ)}

(A10)
t Zreose T (2) [eosy - cos f7)
with g, h, z and © are defined in (A-3) and (A-5)
The integration
x +%
1. ='/>;~%4 Sin (XZ) cos[ BE(cy %j@ ~(%-%45 )] dx (A11)

is the same as given in Eq.(Al) except that now e is negative,
or # is replaced by (T-¢), i.e.

gr=T- ¢
Thus,

I, = (S?na— St'nﬁ\) {—QL-;Q—— Sin(Zsin@) + Qq Cos*@ J-o(z)}

—

a
_2_1 o5 3.1(2)[0053 -~ cos%] (A12)
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APPENDIX B

In this appendix, we would like to evaluate the integration:

4
Z (B1)
1= Cos (= cosy) cos i d4fr

7T
5 ~¢

*
Before we do that, let us review the following formulas

-
z-¢ T
_ cosmB cosNedB =/ cosmp cocng d8

- g”¢> (5
0 F m# (2)
7( +
5 f m=h

and it can be shown

o0 k (B3)
Cos(zcos¢r) = T(2)+ 2) 1) T, (2D cos (2k4)
k=1
where Jk are Bessel functions of the first kind, order k.
T-¢
Thus, _‘Il = j;cz) COS¢ d'}é'
__Z_C___¢
2
B4
= 2 T,(2) cosgh o
Similarly, it can be shown that
, &k (B5)
Sin(Z cosp) =2) €1) Jokr1 (Z) cos[( 2k+1)0 |
k=0
Thus 7T (B6)
-9
Sin[ Z cosy] cosyr dy =T (z)
-7
Z-¢

* TFor example, see ""Tables of Integrals and Other Mathematical Data" by H.B. Dwight,
MacMillan, Inc. (1961).

+ M. Abramowitz and I.A. Stegun, "Handbook of Mathematical Functions". Dover Pub. Inc.
p. 361, (1965).
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