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In colliding beam storage rings the beam collision regions 

are generally so short that the beam-beam interaction can be con-

sidered as a series of evenly spaced non-linear kicks superimposed 

on otherwise stable linear oscillations. Most of the numerical 

studies on computers were carried out in just this manner. But for 

some reason this model has not been extensively employed in analytical 

studies. This is perhaps because all analytical work has so far been 

done by mathematicians pursuing general transcendental features of 

non-linear mechanics for whom this specific model of the specific 

system of colliding beams is too parochial and too repugnantly 

physical. Be that as it may, this model is of direct interest to 

accelerator physicists and is amenable to (1) further simplification, 

(2) physical approximation, and (3) solution by analogy to known 

phenomena. 

We define the simplified system as follows: 

(A) head-on collisions of 2 beam bunches at regular intervals, 

say, once per revolution. 

(B) the weak/strong case in which the strong beam is not affected 

by collisions with the weak beam. Thus, we have in effect, a single 

* particle colliding with a beam bunch. 

(C) The strong beam bunch is short compared to the betatron 

*Transition to the strong/strong case is similar to the transition from 
single particle dynamics in an accelerator to the dynamics of a high 
intensity beam. 
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wave length of the colliding particle so that it can be approxi-

mated by a a-function in the longitudinal coordinate s. 

(D) Close encounters between particles are negligible, hence 

the beam-beam force is given by a potential. Moreover, since the 

strong beam is not affected by the colliding particle, the potential 

is static. The potential depends on the transverse distribution of 

the beam bunch and can also be approximated by a a-function in s. 

Nature of the Beam-Beam Forces 

(A) Extremely non-linear 

To get a rough idea of the degree of non-linearity 

consider a simple round beam with current I. "Outside" the beam at 

radial location r the magnetic field is 

B = 2I -r 

The conventional non-linear field coefficients are 

b 
n 

1 1 dnB 
- n! Bo drn 

= (-l)n 2I 
B rn+l 

0 

(1) 

(2) 

where B
0 

is the external dipole bending field. For colliding beams 

the electric and the magnetic forces add, and the non-linear force 

coefficients are, therefore, approximately 2bn. Taking normal values: 

one gets 

I ..., amperes 

r - millimeters 

B - teslas 
0 

-n r ( 3) 

-n This shows that when expressed in units of [r] the numerical values 

of b are independent of n, but in bigger uni ts, say cm -n, the numerical 
n 
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values of b increase rapidly with n. This should be compared 
n 

to the non-linearities arising from errors in the external guide 

field. Even for the rather poor superconducting dipoles the error 

non-linear field coefficients fall off rather sharply with increasing 

n when expressed in units of cm-n. 

(B) Non-linear forces are localized to ''surface" of beam. 

The external error non-linear fields are largest at 

the coil aperture boundary and decrease rcapidly toward the center 

where the beam resides. The non-linear beam-beam forces behave, how-

ever, just in the opposite way. They are largest at the "surface" 

of the beam and decrease sharply toward the aperture boundary. 

Hence the beam-beam forces affect the beams much more strongly. 

(C) The force potential is periodic in s but very rich in 

harmonics. 

Indeed, if the potential is truly a 8-function of s 

it will have a "white" harmonic spectrum, i.e. equal harmonic 

content all the way up to infinite order. 

Measure of Beam-Beam Effects 

Although many parameters are required to specify the density 

distribution of the beam bunch and the dynamics of the particle, 

for simple beam bunch distributions the effects of the beam-beam 

forces on the colliding particle can be specified by only a few 

combinations of these parameters. Let us take a bi-Gaussian beam 

distribution. 

p = N 
2rrcr cr 

x y 
8 (s) exp (- x

2 
- L) 

2cr 2 2cr 2 
x y 

(4) 

where s is periodic with the periodicity of the ring circumference. 

The force potential is, then
1 



V(x,y) = 
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0 
y 
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1-exp 2 J - y 

2 (o~+t) 
dt 

i d (-t ) G (-x
2
_ -...,..=-y

2
------,- ; _t 
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= F x ~--,=-y~~-
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( 5) 

where in the last expressions the parametric dependence on er /er is y x 

explictly indicated. The Hamiltonian for the motion of the particle 

is 

( 6) 

The usual canonical transformation to action-angle variables, namely 

x = 

(similar for y) 

and e = ~with 2iTR = circumference, gives the transformed Hamiltonian 

K = v J +v J +___£__ F x x x 
r N (S J cos2 ~ 

x x y y y er (er +er ) x x y 

Defining the scaled action variables 

J y - a (a +a ) 
y x y 

( 7) 
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we can write the canonical equations for K as 

dJ x 
de 

13x 'dK 
= - a (a +a ) acp-

x x y x 

(similar for y) . 

v - 2rrs x x 
'dF 

aJ c; ( e) 
x 

2rrs x 
'dF 

'd¢xo(8). (8) 

Thus, we see that the motion is uniquely characterized by the five 

parameters 

\) 
x sx = 

sy = 

1 
2rr 

1 
2rr 

r 0 Nf3x 

yox(ox+oy) 
, 

and 

r NS 
0 y 

yo (o +a ) , 
y x y 

Furthermore, we can make the following observations 

(J 
_:;[_ 
(J 

x 

(a) To the lowest order in x and y or J and J we have x y 

and hence the first equation of Eqs. (8) becomes 

v -2 rr s < 2 cos 
2 

¢ x) c; < e ) . x x 

( 9) 

(10) 

(11) 

2 Since the average value of 2 cos ¢ is unity we see that to this order 
x 

~ is J'ust the tune shift. 
'""x 

(b) The betatron wave numbers (tunes) v and v enter only to x y 

relate the phases of the kicks given by V(x,y)o(s) in the Hamiltonian 

(6). If the kicks are random (We shall discuss later what random 

means here.) ~x and Vy become irrelevant in so far as the overall 



-6- TM-973 
2040 

characteristics of the motion is concerned. 

(c) If there are more than one collision points around the ring 

and the perturbing kicks at these collision points are random the 

tune advances between collisions are again irrelevant and the beam-

beam effects can be measured by <sx> and <sy> averaged over all the 

collision points. 

<d) The maximum tolerable beam-beam effects are generally reached 

when one of the two tune-shifts sx and sy reaches its limiting value. 

Hence if one is only interested in the beam-beam limits the parameter 

cry/ax is irrelevant and only one of the two values sx and sy is 

crucial. 

Semi-Quantitative Features of the Beam-Beam Effect 

We consider only the equation for one degree-of-freedom x, 

d 2x --2 +K(s)x = 
ds 

dV(x) o(s) 
dx 

where the independent variable s is periodic with a period equal 

(12) 

to the ring circumference. The following observations are important. 

(A) 
dV Unperturbed (dx = 0) oscillation is linear and long-time 

stable. Hence accelerators are built to be "linear". Non-linearity 

can arise from imperfections in design and construction, and from 

beam-beam interactions. As was seen above, the latter is much larger 

and is unavoidable in principle. The beam-beam forces impart "kicks" 

on the colliding particle equal to 

on the ith revolution. 

fix~ = 
l 

(13) 

(B) If the kicks ~x: are random the oscillation amplitude will 
l 

grow. 
2 2 ,,,. .. 2 

The increment of the Courant-Synder invariant W = yx +2axx+Sx 

caused by all the ~x; is 
l 
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6W = E (2 ( ax · + Sx -: ) 6x : + f3 ( 6x : ) 
2].' = 

i l l l l I 
ns ( Llx ... ) 2 

rms 

Where the terms linear in Llx: sum to zero for random Llx: and 
l l 

where n is the total number of kicks received. The corresponding 

increment in amplitude A is given by 

S6W 

The values assumed for Eq. (3) gives a magnetic field on the 

"surface" of the beam of -1 gauss. With a beam bunch length of, 

say, 10-l m and a particle rigidity of 10-6 gaus.s-meter 

(-30 GeV proton) we. get 

-1 
(Llx"') _ (1 gauss) (10 m) = 10-7. 

rms 10 6 gauss-m 

Taking a typical value of S = 10 m = 104 mm we get 

Thus it takes only 5xl0 6 kicks to increase A from 2 mm to 3 mm 

(14) 

(15) 

(16) 

(17) 

which is very rapid indeed. This is why a beam transport line with a 

length equivalent to more than 107 kicks of this magnitude (not very 

long compared to the distance travelled by a particle in a storage 

ring) can not possibly work. 

(C) If the kicks are periodic all evils are concentrated into 

resonances. On resonance, Llxi add coherently and A grows propor

tional ton. Off resonance,Llxi cancell systematically to give zero 

amplitude growth. 

(D) For perturbations arising from external field errors only 

low order non-linearities are sizeable. Therefore only low order 

resonances are excited in appreciable strength. As long as these 
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resonances are avoided the amplitude growth should be negligible. 

The drop-off of high order non-linearity is a general characteristic 

of all fields generated by charges and currents outside the aperture 

and is a consequence of the vacuum Maxwell equations. This dis-

cussion shows also that the resonance expansion is useful only 

when the -resonances excited are limited to low orders. 

(E) When the perturbations arise from the field generated by a 

beam bunch through which the colliding particle travels, the non-

linearity and the harmonics of the forces extend to extremely high 

orders. The tune-space is covered dense (density of rational numbers) 

by resonances and the unperturbed tune v 
0 

sits in a continuum of high 

order resonances even when all strong low order resonances are avoided. 

This means that the part of ~x~ which contributes to the continuum of 
l 

resonances in the neighborhood (within the "line width") of v
0 

appears 

to be random, the corresponding part of the motion is ergodic, and the 

* oscillation amplitude grows. This is similar to the statement that a 

signal which is random in the time domain has a continuous "white" 

spectrum in the frequency domain. The "natural line width" is rather 

small, but since v
0 

is always wobbled by some random noises in the 

external field, with this v
0

-wobble included the "total line width" 

could be substantial. 

*It may be objected that this is contrary to the KAM theorem which 
states that for 1 degree-of-freedom when the non-linear perturbation 
is su.f f iciently small well behaved KAM surfaces exist and prevent the 
growth of the oscillation amplitude. There is indication, however, 
that KAM theorem holds only for extremely small perturbations, much 
smaller than any physically realistic values. In any case we can always 
consider the motion in 1 degree-of-freedom as the projection of a motion 
in 2 degrees-of-freedom for which Arnol'd diffusion does occur and 
cause unrestricted growth in oscillation amplitude. 
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bi-Gaussian potential, Eq. (5), we can derive a semi-quantitative 

formula for the amplitude growth. Putting crx = cry = cr {round beam) 

and y = 0 in Eq. (5) we get 

1 dt 

1-exp[ - x2 2 J r N 
V{x) 0 2(t+cr ) 

= --y 
t+o

2 

r N 00 

{-1/1 I:~ (+l Q L: 1 = y n=O 2n{n+l) ! 2(n+l) {18) 

and 

6.x 
,. 

= 
dV - roN [ f (-l)n+l { x

2 
\ n] 

- dx - ycr 2 n=O 2n{n+l) ! \ cr2 J x. 
{ 19) 

If only resonances of order m {a large integer) and above can fall 

inside the v line-width, the random part of 6.x~ contains only terms 
0 

with n>m. Thus, in the expression for {6.x~)rms the summation should only 

be from rri.- to oo 

dW 
dt 

The amplitude growth is, then, given by Eq. (14) to be 

= fS{6x~) 2 
rms 

{-l)n+l 
{n+l) ! 

{20) 

where we have used the relations 

and 

I x 2 
\ 

\ T} rms 
w 

~2 

= £ = emittance of beam 
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f = dp = rate of collision between particle and beam bunch. dt. 

Generally, the first term in the summation is the largest and we 

have approximately 

dW · 2 I w I)~ m 
dt = kf~ sTf( w, 

Two comments are useful. 

(1) The line-width cannot be derived from this crude 

(21) 

model. Thus, m must be considered an adjustable parameter. Further-

more, depending on how much reliance one puts on the measured beam 

emittance E and on the validity of the approximations, it may be well 

to consider k also as an adjustable parameter. 

(2) Larger line-width corresponds to lower m, hence larger 

k and larger dW/dt. Thus, the effect of external noise in increasing 

dW/dt is magnified by the non-linear beam-beam forces through a 

widening of the line-width. 

Comparison of Different Systems 

(A) According to the beam and collision geometry 

(1) Continuous beams 

(a) Crossing at an angle - Kicks are one dimensional 

(only in direction perpendicular to the crossing plane} , hence the 

motion should be relatively stable. 

(b) Colliding head~on .,.. Kicks are two dimensional, 

hence the motion is expected to be more unstable. 

(2) Long bunched beams - The force potential is identical 

to that of the corresponding case of continuous beams except at the 

ends of the beam bunches which constitute only a negligible part of 

the long bunches. The synchrotron motion of particles in the beam 

bunch will, however, enhance the instability. This can be understood 
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simply by noting that the number of resonances is increased by the 

synchro-betatron side-bands and the continuum of resonances is 

therefore much denser than without the synchro-betatron resonances. 

(3) Short bunched beams - If the length of the beam bunches 

is comparable to their widths the kicks from the beam-beam forces 

are three dimensional whether the beams are crossing at an angle or 

colliding head-on. This plus the synchrotron oscillation will make 

this the most unstable geometry. 

(B) According to the particle type 

(1) Electrons (positrons) 

At the present storage ring energies the synchrotron 

radiation from these particles is sizeable. The synchrotron radiation 

produces two major effects on the particle oscillations: (i) damping 

and (ii) quantum fluctuation which acts as random kicks to blow up 

the oscillation. In terms of the Courant-Snyder invariant W defined 

in Eq. (14) we can write 

dW 
dt = 

w Q--:-
1' 

where Q(>O) is the blowup due to quantum fluctuation and T is the 

(22) 

damping time due to synchrotron radiation. With some modification 

and reinterpretation the beam-beam effect can be obtained from 

Eq. (19). The electron beams are not round but flat ribbons with 

ax>>ay' hence the vertical (y) effect is larger and gives the 

limitations. We first rewrite Eq. (19) as 

{-1) n+ln 
(n+l) ! 

k22) 

( _L)n+~. 2a 2 
y 

(23) 
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Eq. (20) then becomes 

dW 2 
dt 

= fS(6y~) = rms 
2 2 ( ax 

2 
) [ 

00 

( -1) n + 1 (-w ) n +~] 
2 

g TI fl; S n~m (n+l) ! E/TI 
(24) 

where the subscript y is omitted. Again, taking only the largest 

term n = m in,the summation we get 

( 25) 

In addition to the beam-beam effect we can also add an external noise 

term P. Altogether Eq. (22) is ,modi:fied to 

(

0 
2

) 2m+ 1 
dW = P+Q-~ + kfs2 ~ (__!'!._) . 
dt T $ E/TI 

The maximum tune shift s that can be obtained is given by the max 

condition ~: = 0 at a value of W of the order of and proportional 

(26) 

to E/TI, since the two beams are approximately equal in height. This 

gives 

( 
2) 2m+l 

a~ {E~'IT) = ~ - Q - p • 

This leads immediately to the energy (E) dependence of s max 

because we have 

hence W a: E0 ; 
E/TI 

hence ~ a: E5 
'I ' 

Q a: E5 , coupled over from horizontal; 

ox a: E0
, because ox is likely aperture limited, and 

p a: EO. 

(27) 
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The energy dependence of ~max can, thus, be 

1 

5 . 2 
~max = (aE -b) . 

In actuality the measured data from SPEAR3 can be fitted quite 

(28) 

well with b=O, i.e. no external noise,. Fig. 1 shows the fit with 

5 

~max = 0 . 01 E 2 (E in GeV) . ( 2 9) 

The energy dependence of the maximum luminosity L is related to max 

that of c
2 by4 

'='max 

Figure 2 shows the fit to SPEAR data with 

(E in GeV) • (31) 

(2) Protons (antiprotons) 

For present storage rings at energies less than tens 

of TeV the synchrotron radiation for these particles is negligible 

and the amplitude (or W) growth equation is given by Eq. (21) for 

round beams to be 

dW = P+kf~2(~) 2 m W. 
dt E/'IT 

(32) 

Several conclusions can be drawn from this equation. 

(a) With all terms positive on the right-hand-side 

there cannot be any threshold behavior as in the case of electrons. 

The beam growth rate will simply increase with increasing ~. 

(b) If the beam growth rate is measured by the beam 

loss on a collimator aperture, the collimator has to be fitted 
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rather tightly around the beams. As was stated at the beginning, 

the non-linear beam-beam forces are localized to the "surface" of 

the beam and fall off rapidly going away from the beam. 

(c) Unlike electron beams, proton (antiproton) 

beams generally do not have Gaussian transverse density distributions. 

The distribution tends to be more squarish and more truncated. 

Nevertheless, the qualitative or perhaps even the semi-quantitative 

features of the development given above should still be valid. 

(d) Eq. (32) indicates a beam growth rate propor

tional to ~ 2 . The same quadratic dependence in Eq. (27) led to the 

fit shown in Eq. (29). Experiments by Keil 5 and Zotter 6 on the CERN-ISR 

seem, however, to indicate an exponential dependence. This discrepancy 

must be resolved. 
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Figure _l. Maximum vertical tune-shift versus energy in SPEAR. 
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Figure 2. Maximum luminosity versus energy in SPEAR. 
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