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Abstract 

A scaling rule is presented for use in solving 
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hadron shielding problems when the answer for geometrically 
related configurations is known. Extensions to non-hadron 
shielding are indicated. 

Introduction 

When shielding decisions must be made on very short 
notice, an educated guess based on available material 1 

often becomes necessary. This note concerns a simple guiding 
rule which may be helpful for this purpose. In certain 
instances this rule is nearly exact and therefore useful even 
when the design of a shield proceeds at a more leisurely 
pace. For most applications the approximations involved 
will necessarily be rather crude and will not offer an 
effective alternative to specific calculations. The 
emphasis of this note is on estimating hadron dose rates. 
Other applications are briefly discussed. 

The physical bases of the rule are: (1) in the high
energy region (~ 10 GeV) the characteristics of particle
nucleus interactions are not very sensitive to nuclear size, 
(2) shielding calcuations combine effects of many generations 
of the internuclear cascade which tends to further reduce 
nuclear size dependence, (3) above 50-100 MeV the collision 



- 2 -

TM-883 
1100.000 

length of the cascading particles is roughly independent 
of energy and (4) elastic scattering and ionization losses 
are of lesser importance than particle production in 
determining the general characteristics of high energy 
hadron cascades. 

Homogeneous Targets 

The first principle involved is most easily seen 
by considering the archetypical geometry of CASIM2 as 
well as other ·hadron cascade codes, i.e. that of a very 
large homogeneous cylinder into which a pencil beam of 
energetic protons is introduced. Assume that such a 
calculation has been performed for a given material and that 
it is now desired to study an identical situation for the 
same material but in this case having only half the density 
(e.g. liquid vs solid phase). The beam energy must be 
essentially the same in both cases. Because the collision 
length varies inversely with density all distances in the 
second case are twice that of the first and since the collision 
length is the only parameter which differs between the 
calculations it follows that: 

s2(x,y,x) = (l/8)S 1(x/2,y/2,x/2) ( 1 ) 

where s1 , s2 denote star densities for the heavier and 
lighter material and the factor (1/8) comes about because 
space has three dimensions. 

The quantity usually of most interest is the dose rate. 
In regions where the cascade is well developed dose rate 
is proportional to flux or number of particles per unit 
area, ¢, incident on the human body or on a detector: 
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Di(x,y,z) = K<Pi(x,y,z) (i=l,2) 

The flux, in turn, is related to star density via the 

collision length, A., of the shielding material 
1 

<Pi(x,y,z) = AiSi(x,y,z) (i=l,2) 

In the previous example A2 = 2A 1 , and it follows that 

o2(x,y,z) = (l/4)Di(x/2,y/2,z/2) 

Note that except for some reservations about eq. (2) every
thing is exact even if the example is somewhat contrived. 

There is some practical use for the above in deriving 
results for soil from calculations for concrete and vice 
versa. Since their composition is nearly identical the 
11 stretching factor 11 is the ratio of their densities, i.e. 
about 1. 2. Thus 

( 2) 

( 3 ) 

( 4) 

( 5) 

where D , D are dose rates in homogeneous soil and concrete s c 
respectively. 

If one deals with two materials of differing composi
tion then eq. (4) generalizes to 

( 6) 

It is obvious that the Ai refer to distance and not to mass 
per unit area. This is the case throughout this note. Since 
the A; will always appear as quotients either collision 
lengths (including elastic processes) or absorpotion lengths 
may be used, given the approximate nature of the procedure. 
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More Complicated Geometries 

Another typical CASIM geometry is that of a target
in-a-cave. Assume it is desired, while holding target 
material as well as target and inside cave dimensions 
constant, to study the effects of substituting different 
materials in the walls of the cave. Clearly the uniform 
stretching arguments no longer apply. Some insight 
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is provided by drawing rays representing extended trajec
tories of particles produced in the target. Except for 
backscattering into the cave one can argue as before since 
uniform stretching holds inside the walls. This is 
illustrated in Fig. 1 using again a stretching factor of 
two. However, the rule is to be applied ray by ray and 
the information needed for this is not available in Ref. l 
or in a regular CASIM run. For any given location in the 
stretched version it is possible to derive an approximate 
star density only if for all rays which contribute signif
icantly application of eq. (6) involves roughly the same 
location in the reference calculation. The success may 
depend strongly on position as illustrated in Fig. 1 with 
the help of a few selected rays. It is clear that one would 
likely succeed better in estimating the dose rate at loca-
tion E than at A. For a more quantitative treatment one 
needs to take into consideration the contribution of each 
ray was well as the density of rays, i.e. energy and angular 
distribution of the particles produced in the target. However, 
to arrive at a definite algorithm it is perhaps better to 
be guided by a yet more general (and realistic) geometry. 
The present example will emerge as a special case. 
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Assume a proton beam strikes a beryllium target 
placed inside a magnet string surrounded by a cave with 
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iron walls. Again, assume that such a case has been 
calculated and one wishes to estimate the effects of changing 
the walls to concrete. The situation suitably idealized 
and cast into cylindrically symmetric form is shown in 
Fi g . 2 . Spec i f i ca l l y one seeks the do s e rate at 1 o cat i on 
A for the concrete case. 

Homogenizing and Stretching 

To introduce the second principle involved in the 
algorithm an "effective" collision length is introduced. 
This may be defined as the distance along a cascade 
trajectory between the point where the beam enters and 
location A divided by the number of collisions and suitably 
averaged over all such paths. For simplicity, instead of 
averaging over all trajectories the effective collision 
length is conveniently evaluated along one representative 
trajectory. In Fig. 2 some possible trajectories are 
shown. The one labelled E displays the typical random 
walk character of a cascade trajectory. The others, because 
they suffer only a few well placed interactions and because 
of the fortuitous character of the production angles, 
represent more stylized versions. These are however much 
easier to deal with geometrically. The idealization is 
extended to the radial direction where the entire trajectory 
projects onto a radius vector. If one were to pick a 
"typical" trajectory from among the stylized ones the path 
labelled a would be excluded immediately. The others are 
more likely to occur but for sake of definiteness let the 
path y be selected. The effective collision length is 

then 
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A(x,y,z) = fyds/(fyds/A(x,y,z)) 

where f Y denotes the 1ine integra1 along y which is taken 
with respect to distance, s, along the trajectory. Note 
that A, in contrast with A, is a continuous function of 

( 7) 

location in the geometry. This function combines certain 
properties of the geometry, material composition and cascade 
development. 

In addition a direction-dependent effective collision 
length is introduced 

( 8) 

where the line integrals are now with respect to the x-axis. 
There are similar expressions for Ay, Az. 

For a stylized trajectory the line integrals 
appearing in eqs. (7) and (8) reduce to simple, easily 
evaluated algebraic expressions. 

For the purpose of formulating an algorithm the 
effective collision lengths may be viewed as a means to 
"homogenize" the geometry, albeit in anisotropic fashion. 
The assumption is made that the flux at any given point 
(x,y,z) in a given geometry equals the flux at the same 
location (x,y,z) in a homogenized shield characterized by 
constant effective collision lengths Ax,Ay,Az,A as 
given by eqs. (7) and (8). In symbols 

¢(x,y,z) = ¢(x,y,z) ( 9 ) 

where ¢, ¢ denote the fluxes outside the homogenized shield 

and problem geometry, respectively. Eq. (9) translates 
into a relation between star densities 

S(x,y,z) = (A/A)L(x,y,z) ( 1 0) 
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where ~ is the star density in the homogenized shield 
and, as before, \ is the collision length of the material 
at (x,y,z) in the problem geometry (i.e. concrete, in 
the example). There exists a set of relations corresponding 
to eqs. (7) - (11) which relate collision length, flux and 
star density of the reference geometry and its homogenized 
version. 

The connection between homogenized geometries is now 
readily made by introducing stretching factors, T., much like 

1 
the ones which connect homogeneous targets. The basic 
difference is that for the general case the stretching factors 
are no longer isotropic 

T x = Ax/ AR' x ( 11 ) 

where AR,x is the effective collision length of the reference 
geometry with respect to x, taken along a trajectory 
corresponding to that of the problem geometry. There are 
similar definitions for Ty,Tz. For brevity, the dependence 
on location is no longer explitely shown in eq. (11) and in 
most of the sequel. The stretching factors define a one
to-one correspondence between problem and reference geometry, 
e.g. 

and also appear in the Jacobian relating star densities of 
the homogenized geometries: 

( 1 2) 

( 1 3) 
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Algorithm 

The basic formulation of the algorithm can be 
presented diagramatically as follows: 

REFERENCE GEOMETRY 

I 
1 HOMOGENIZE 

'\Y 
HOMOGENIZED REFERENCE GEOMETRY 

(\ 

STRETCH 

'.ii 
HOMOGENIZED PROBLEM GEOMETRY 

Ii\ 
HOMOGENIZE 

PROBLEM GEOMETRY 

The rules for the three steps involved are given by 
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eqs. (9) and (13). By substitution the basic expressions 
of the algorithm are obtained 

from which 

D(x,y,z) = (A/AR)T~ 1 Tj 1 T~ 1 DR(T~ 1 x,Ty 1 y,T~ 1 z) ( l 5) 
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Note that the uncertainty in picking a typical tra
jectory enters only through ratios of effective collision 
lengths. This justifies the convenience of a stylized 
trajectory. 

It is perhaps worthwhile to apply this explicitely 
to the example of Fig. 2. For the radial coordinate eqs. 
(11) and (12) lead to 

with reference to Fig. 2 and the y trajectory. 

- - -1 
= r _r 1 I>. Be + ( r 3 - r 2 ) I>. M + ( r - r 4 ) /),j 

where Ar=Ax=Ay, because of symmetry and >.M is an 
averaged collision length for the magnet materials. There 
i s a s i m i l a r e x p r e·s s i o n f o r A z . 

Likewise, 

and it follows from eqs. (16) that 

and 

By application of eqs. (19) and (20) it is easily 
shown that 

( l 6) 

( l 7) 

( l 9) 

(20) 

( 21 ) 
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where s,sR are the total length of the typical trajectory 
in problem and reference geometry, respectively. 

In this example, rR is readily found from eq. (19) 
since r 4 is the tunnel radius, independent of the choice 
of typical trajectory. The value of z

4
, on the other hand, 

varies with this choice and it (or zR directly) must be 
evaluated e.g. by graphical means. The same is true for 
s and sR. The final result is then 

This equation holds generally, with obvious extension to 
the non-cylindrically symmetric case. The same is not 

true for eqs. (17) - (20) which relate (rR,zR) to (r,z). 

(22) 

It is obvious that results will be more reliable the 
closer problem and reference geometry are related. No 
scaling should be attempted between geometries so disparate 
as to make evaluation of the stretching factors questionable. 

It is clear that the procedure hinges strongly on the 
existence of a rather unambiguous typical trajectory and on 
one's ability to identify it. Where two or more such 
pathways are thought to compete the procedure would become 
at best more cumbersome. It is also clear that, since the 
typical trajectory will depend upon location, in those 
instances where eq. (22) must be evaluated many times the 
burden of this will quickly outpace that of recoding the 
geometry routine in CASIM. It is, however, possible 
to avoid computational labor by coding eq. (22) into CASIM 
and applying it to the results at the end of the Monte 
Carlo stage of the program. 
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Test Cases 
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Sufficient experience with the algorithm needed to 
make general, quantitative statements about its reliability 
is lacking. This would be a difficult matter in any case 
in view of the diversity of applications, separation of the 
statistical component of the discrepancies, uncertainty 
of the representative trajectory, etc. Three tests have 
been run which offer a good indication as to the validity 
of the algorithm. 

The first case is the example of Fig. 2 discussed at 
some length, above. The beryllium target is 40 cm long and 
4 cm in radial extent. The magnet string is assumed to be 
of iron with 10 cm inner radius and 40 cm outer radius. 
The cave has an inner radius of 100 cm and outer radius of 
200 cm. The total length of the configuration is 1000 cm. 
Two calculations were performed one using iron (reference) 
and the other concrete (problem) as cave wall materials. 
To minimize statistical fluctuations the calculations were 
run with correlated random numbers 3

• The ratios of results 
obtained from the calculation for the iron shield via scaling 
to those computed directly for concrete are shown in Table I 
at four depths and three radii. The results are quite close 
particularly since a large portion of the discrepancy is 
likely of a non-scaling origin. The average of all twelve 
predicted to observed star densities is 0.99. The standard 
deviation of the distribution of the ratios is 0.21. The 
principal source of error is expected from the fact that the 
finite volume bins which serve to estimate star density do not 
conform to the scaling rule, either in size or location, 
as would be desirable for this test. The results of Table I 
are based on interpolation between four neighboring bins 
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both for iron and concrete. The random inter-bin variations 
encountered in each case are at least as large as the 
discrepancies of the scaling test shown in Table I. 

The second case relates a multimedia geometry to a 
homogeneous target used as reference. The example of 
Fig. 2, slightly modified, serves again as the problem 
geometry. The only difference is that the target has been 
extended the full length of the configuration. Otherwise 
the scaling from a homogeneous target could not be readily 
made. The representative trajectory resembles the y-trajectory 
of Fig. 2 except that the initial leg now extends 42.5 cm 
(=Ase) instead of 20 cm (=half the target length). The 
rest of the procedure is the same as before. Results are 
shown in Table II. Not surprisingly the agreement here is 
poorer than for the first case. This is not only because 
scaling is less valid here but also because the use of 
correlated random number is less effective. The average 
of the set of ratios of Table II is 1.26 and the standard 
deviation is 0.56. For many applications this is still 
acceptable. 

The third case is entirely similar to the second except 
that the reference geometry is a homogeneous iron cylinder. 
Results are shown in Table III. They are comparable to 
the second case. The average and standard deviation of 
the ratios is l .22 and 0.66, respectively. 

Comparing Tables II and III one learns in a round-
about way something about scaling between homogeneous 
concrete and iron targets. From the strong correlation 
between corresponding entries in the tables it is clear 
that the scaling between the two homogeneous targets holds 
better than between disparate geometries (though this also 
reflects the differences in effectiveness of correlated random 
numbers). 
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Overall, the comparisons, though limited in scope, are 
quite gratifying. Aside from the expected correlations 
between Tables II and III there is no general trend 
discernible. A test of the sensitivity of these results 
to various choices of trajectories has not been attempted at 
this time. 

Other Applications 

The algorithm presented in this note has been 
explicitely formulated to calculate star densities and 
dose rates. There are obvious extensions to such problems 
as activation, detector response, etc. In general the rule 
cannot be applied to estimate energy deposition densities 
in hadron showers. Because of the electromagnetic component, 
such a calculation involves both the collision length and 
radiation length while the present procedure rests on the 
existence of a single scaling parameter. For the same 
reason care must be taken in estimating dose rates in regions 
where the electromagnetic component is important. However, the 
algorithm is valid for relating targets of identical composition 
but of different densities. Presumably scaling between 
materials close in atomic number will still yield fairly 
reliable results. 

The scaling rule could be applied to pure electromagnetic 
cascades using the radiation length (and effective radiation 
length, etc.) in lieu of the collision length. The rule 
would roughly amount to application of the so-called 

Approximation A, which neglects ionization losses of the 
shower electrons 4 • In general the rule would be of a very 
approximate character. In muon shielding collision losses 
are virtually always a dominant mode of energy transfer. This 
appears to rule out scaling rules of this type. 

I wish to thank M. Awschalom and L. Coulson for their 
comments. 
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Table Captions 

Ratio of star densities obtained by 
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using the scaling rule and by direct calculation. 
The geometry of Fig. 2 is used with iron cave 
walls in the reference geometry and concrete 
in the problem geometry. The discrepancy 
is expected to contain a large component of non
scal ing origin. 

Ratio of star densities obtained by using 
the scaling rule and by direct calculation. 
The geometry of Fig. 2 with the target length 
extending over the entire configuration is 
the problem geometry. The reference geometry 
is a homogeneous concrete cylinder. The 
discrepancy is expected to contain a large 
component of non-scaling origin. 

Ratio of star densities obtained by using 
the scaling rule and by direct calculation. 
The long-target geometry of Fig. 2 is the 
problem geometry·. The reference geometry 
is a homogeneous iron cylinder. The 
discrepancy is expected to contain a large 
component of non-scaling origin. 
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Table I 

~m , 100 400 

120 0.88 0. 77 

160 1.27 1.01 

196 0.97 0.73 

Table II 

~ m 100 400 

120 0. 72 1.09 

160 1.00 1.15 

196 0.60 0.91 

Table III 

~ , 100 400 

120 0.67 1.12 

160 0.85 1.04 

196 0.63 0.80 

700 

1.00 

1.16 

0. 72 

700 

2.43 

1.47 

1.47 

700 

1.73 

1.48 

1.89 

980 

1.37 

1.10 

0.88 

980 

1.04 

1.05 

2.20 

980 

0.75 

0.78 

2.88 
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Fig. 1 

Fig. 2 
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Figure Captions 
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Target-in-a-cave geometry where only the 
material in the walls is being changed. The 
homogeneous scaling rules are applied inside 
the cave walls for various rays. It is expected 
that star densities vary more strongly among 
locations B, C, and D than among F, G, and H. 
This would make it more difficult to estimate 
the star density at A in the stretched version 
than at E. 

Beam line geometry with beam striking a target 
located in a magnet string placed in a cave. 
The change in material of the walls is studied. 
The paths a-E represent trajectories of the inter
nuclear cascade which contribute to the star 
density at location A. 


