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Discussions of slow extraction in the various Energy Doubler 
reports over the years1 have emphasized the third-integer process. 
This preference is not surprising, for the analytical treatment 
of third-integer extraction is quite compact and only a few para
graphs are needed to make estimates of the parameters. One would 
not expect dramatic differences in cost or space allocation to 
hinge on the choice of resonance. 

However, the Doubler design is now at the level of detail 
where a closer look at the process is appropriate. These notes 
present a discussion of the elementary third-integer and half
integer extraction resonances. Insofar as possible, the same 
approach is used in treating the two cases in the hope of making 
differences and relative advantages clear. In this memorandum, 
no attempt is made at refinement of either process. 

Whatever extraction resonance is used, the accelerator im
poses some constraints common to all. The aperture is limited, 
and there is a maximum oscillation amplitude that one would not 
wish to exceed. We will call this limiting amplitude xmax· We 
will assume that the displacerr'1nt at a few places may be allowed 
to exceed xmax by using "special measures" (larger aperture magnets, 
hope, etc.). The positions of the extraction septa are examples 
of such places. 

Throughout this paper, xs will denote the distance by which 
the inner edge of the septum channel (i.e., the wires of the 

(1) 
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electrostatic septum) is offset from the central trajectory, and 

L\ will stand for the septum aperture. Of course, A isn't a con
stant of nature, but given the effort that has been devoted to 
electrostatic septum design over the last ten years, one does not 
change this fugure lightly. 

The same symbol, 6, will also denote the step size. In general, 
there is little benefit to be derived from extensive discussion of 

the cases where the step size and septum aperture are not the same. 
However, if the two need be distinguished, suitable remarks will 
be made. 

The three quantities mentioned above are related by 
k 

Z 5 -1-- Ll ::::: Z'.M.dK (::) ~c:o~ (;!/;> 

where ~ is the amplitude function at the septum, ft> is the amplitude 
function at points consistent with x , and & characterizes the max 
phase of the oscillation at the electrostatic septum. The sketch 
at the right illustrates the phase ~ Ktck du: m>~hl ~ 

,I ,.....-..- I space at the electrostatic septum. 
We use coordinates where x is the 
~placement in the extraction plane 
(assumed to be the horizontal plane) 

(.____.J" I 

' I I 
14-~-+j 
I I 

and y = f3s x' + {)ts x. <%s 

At this writing, it appears that the electrostatic septum 
will be located at the upstream end of the F straight section. 
As in the main ring, a magnetic septum is located in straight sec
tion A. A lattice modification that produces amplitude functions 
favorable to extraction at both septa has been devised by Collins. 2 

The advantages of this modification ofµ have been outlined else
where. 3 We will assume that this lattice modification is adopted, 
and take f's = 225 m, in contrast to (30 = 100 m. 

Comments on the phase angle & will be made below, the toler-
able amplitude x has been examined by Collins4 and by H. Edwards max 
and Harrison5; following their conclusions, we will take xmax=20mm, 
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II. Inefficiency 
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In order to estimate extraction inefficiency, let us 
suppose that extraction proceeds so slowly that it may be 
considered a static process. Then, the particle density dis
tribution along an outgoing separatrix or along the projec
tion of the separatrix onto a coordinate axis varies inversely 
as the rate of change of position along that coordinate. To 
convince oneself of this, let F(x1 ) ~x1 be the number of par
ticles in an interval L\ x1 at x1 • After some time interval T 
has elapsed, the particles find themselves in tJ. x2 at x2 • 

The number of particles is the 
same, so 

From Z z -2"~ 1-/J.,t z. 

I= f(:JtiJ ~ f.k'Jit) 
;r, ~, MZ, 

it follows that 

or 
1:1;· 

I 

A%1 

{cl~/Jt), 

-=-f:j')( I 

So ~x varies directly as dx/dt; therefore F(x) varies inversely 
as dx/dt, It will be more convenient to use the "turn number", 
n, as the independent variable; that is, we take the spatial 
dependence of F to be of the form 

F 

If a septum of thickness w in the x-coordinate is located 
at a distance xs from the central orbit, then the inefficiency, 
c , defined as the fraction of the particles that strike the 
septum is 

G .:: 
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The second form above acknowledges, in the denominator, that 
the particle density distribution cuts off at a distance 
xs+ £1,.6 being the "step-size 11

, the growth in x in the number 
of turns N between successive encounters with the septum at 
the proper phase for exit from the machine, For half-integer 
extraction, N=2; in the third-integer case, N=J. 

The septum thickness, w, is small compared to xs, and the 
integral in the numerator can be replaced by w/(dx/dn) evaluated 
at xs• The integral in the denominator is just N, and some
times it will be convenient to identify it as such, Thus, for 
the inefficiency, we will use either of the following forms: 

= 

Note that the flatter the distribution F, the better the 
efficiency. Other considerations aside for the moment, this 
circumstance favors the choice of low-order multipoles to 
generate the step-size - the lower the multipole order, the 
less steep the dependence of dx/dn on x. As a result, in the 
discussion of half-integer extraction, it should not be surpri
sing that we will concentrate on the situation where the quadru
poles rather than the octupoles dominate in the rate of growth 
of the unstable oscillations. 
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We take up the third-integer case first. As noted in the 
introduction, the equations are simpler and less numerous than in 
the half-integer version. Also, for third-integer, the zero stable 
phase space limit is clear and can be treated before taking up the 
finite stable phase space situation. For both resonances, the 
essentials are illustrated by the zero stable phase space limit, 
but for half-integer that limit is neither apparent at the outset, 
nor particularly helpful when identified. 

The equations of motion will be stated without proof in the 
body of this report. They are reasonably familiar, especially 
for third-integer, and can be obtained in a variety of ways. But, 
for completeness, derivations are presented in the Appendix. 

The design tune of the Energy Doubler isrv19.4 in both planes 
of oscillation. To initiate third-integer extraction, the hori
zontal tune is shifted toward the resonant value of 19+1/J, and a 
Jx(19+1/3) harmonic of sextupole is turned on to produce the 
requisite partition of phase space into stable and unstable regions. 
We need not go into here precisely how this 58th harmonic is set up 
around the ring; numerical integration of the equations of motion 
shows that the process is surprisingly insensitive to ·k, the details 
of the sextupole distribution. In the x,y coordinates defined in 
the introduction, the figure that 
marks the boundary between stable 
and unstable regions - the separa
trix - is an equilateral triangle. 
The flow of particles in phase space 
is shown in the sketch. We will call 
the three extensions of the triangle 
sides along which particles stream with increasing amplitude the 
"outgoing separatrices". 

As the tune is gradually reduced toward 19+1/J, particles are 
squeezed out of the ever-smaller stable region at the corners of 
the triangle; once outside, they proceed along the outgoing separ
atrices. For a tune value arbitrarily close to 19+1/J, the stable 
area becomes infinitesimal and particles flow out from the origin 
on three lines inclined at angles of 120° from one another. We 

treat this case first. 
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A. On Resonance ( v = 19+1/3) 

The equation of motion is 

. ..L £1·v-l 
Lf 
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(1) 

where v is the distance along an outgoing separatrix, and 

g = _ (! f(~:frrJM.Srs--r5'1-f6)dc (2) 

is the driving term due to the sextupole distribution around the 
ring. As usual,g;.=faz/(Yj?); _ff'=O 
at the electrostatic septum. The 
product Bf is the magnetic rigidity. 
If S is produced by sextupoles of 
length L located at p0 in the standard 
cells, then 

~ . 
cY = - A~ ..L >_ (ll::t) CPJ (s--,rco. -1- J' & ) 

,:> A'4. 81 c:-' z. '. J" (J) 

Projected on the x-axis, the equation of motion becomes 

clz = .L ~ :lf J.. 

"" .y C''f6 
(4) 

If, in 3 turns, a particle initially at xs is to progress to 
(xs+~ ), integration of the equation of motion gives 

= 

For the inefficiency, the formula of Section II yields 

€ ::: -ur(-1. I- _j_) 
~ Ll 

Now recall that x8+~ is related to xmax by 

~ 

z, ""A = z,,,.." (f:) ca g 

(5) 

(6) 

(7) 
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and so for fixed values of the quantities on the right hand side 
of ( 7), the value of xs+ A is determined. The minimum inefficiency 

occurs for xs =A : 

(8) 

For best efficiency, one would like GJ to be as small as 
possible; an idea of how small it can be may be obtained by 
rotating the diagram above by 80° to see how the picture looks at 
the magnetic septum, Then the kick from the electrostatic septum 
is almost fully projected on the x-axis regardless of e, but for 
& = o0 the magnetic septum would be in the middle of the aper
ture and even if the stable phase space were truly negligible, 
would shadow one of the other outgoing separatrices shown as 
dotted lines. Probably B can be no smaller than 25-30°: it may 
have to larger due to aperture limitations. 

Then 

As a numerical example, let us take 
x = 20 mm max 
Ps = 225 m 

Po = 100 m 
& = 30° 

w = 0,004" 

x +A= 26 mm s 
€min = 1. 54% 

= 0.1 mm 

€ = 1,63% for ~ = 10 mm, 
Note that the change in the inefficiency between the minimum and 
that which is consistent with the existing electrostatic septum 
design is negligible, 

The step size condition (5) can be used to find s. 
useful form is obtained by evaluating S ·with f1s replaced 
Call the sextupole term so defined S

0
, Also let 

I -= 

Then (5) becomes 

I - I 
;J 

A more 

by ~· 

( 9) 

(10) 
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B. Finite Stable Phase Space 
Let 6 be the difference between 

the tune and 19+1/3; i. e., 

JI= !'If+£ (11) 

The equation of motion along an out
going separatrix may be written 

dt.r = ..1. S {Vi_ y;z) 
dJ"I If (12) 

with 

~ = f31(~) (13) 

"" ' 
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~-tA 
', ~,,., 

'.../)( ., 
' 

~ 

The sextupole term S is defined as in (2), except that & is replaced 
by @: 

In order to preserve the relationship between x +~ and x , s max 
the separatrix has been rotated slightly and is inclined at an 

/ / 

angle & with respect to the x-axis. The angles t9 and & are re-
lated by 

t~" e/- -1--'n& = -z!i/fi7 - v;/J'Y? 
(:rj .f-Ll ) ,i;;,.,)_,.. C~f t9 (14) 

In the last form of (14), v
0 

corresponds to vs evaluated at ~· 
The area of the triangle is determined by the emittance ,£:' 

of the stable beams 

. "7-r 2. 
VO :::: (15) 

In order to integrate the equation of motion to find the 
step size condition, project v on the x-axis using 

(16) 



Then upon integration the step 

,h p-J., 1r1. J ~ = 
I +lb f.- fl.1 z. 

where, as before, f = xs/(xs+ L1 

-9-

size condition 

l{; s; 

) , and 

is 
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(17) 

(18) 

For given f, (15) and (18) are conditions to determine S
0 

and <f. 
In terms of the same parameters, the inefficiency becomes 

(19) 

with ~min given by (8). 
As an example to compare with the vanishing stable phase 

space case, take~= 0.0417" mm-mrad as might be the case in the 
400 GeV range. As before, t7 = 30° and fc, = 100 m. Then 

from (15) v = 2.69 mm 
0 

from (14) ~'= 33.71° 
from (18) f = 0.1792 a 

fb= o. 079 5 
For f = o. 61 

from (17) S = 0.051 mm-1 
0 

from ( 13) cf= o. 0063 
from ( 19) c = 1.10 e . min 

Of course, (1.3) can just as well be written v
0
=f3'(4fld/S

0
), and 

was used in the latter form to obtain d above. 
The transition to finite stable phase space has not resulted 

in any substantial differences from the zero phase space case. The 
inefficiency is a bit higher and the sextupole strength has risen 
by some 15%. 

The behavior of the inefficiency as a function of f is illus
trated for a few cases in Figure 1. 
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IV. Half-Integer Extraction 
The nearest half-integer to the operating tune is at v = 

19!. A J9th quadrupole harmonic will create a stop-band at 19!. 
With quadrupoles alone, however, all particles are either stable 
or unstable; a non-linear element is needed to separate the phase 
space into stable and unstable regions. A zero harmonic octupole 
term yields a dependence of tune on amplitude, and so could 
satisfy the need; the main ring extraction system uses this 
approach, The outgoing separatrices are curved; they are, in 
fact, arcs of circles. A J9th harmonic of octupole can also per
form the separation, and, as will be seen, provides outgoing 
separatrices which become straight for sufficiently large ampli
tude, We will examine the latter option here. 

A. Equations of Motion and Selection of Parameters 
In order to avoid excessive complexity of the expressions 

which follow, we will write them 11' 
/~ 

in terms of axes u, v which are 
related to x, y by a rotation to 
be defined below. As in the third
integer case, the equations of 
motion can be obtained by any of 
the usual techniques, one of which 
is presented in the Appendix. We 

/ 

/ ,, 
/ 

/ 
/ 

---;~/----~----,,....-~u.. 

'\, Jr17P 
\ 

' \~ 

state first the rate of change of amplitude 
2 2 1-.. a = (u +v · ) 2 : 

dq_ -f a q_· r;;, z tf + f a.7 t:: .P;, zst> -dn (1) 

where Q, E - the quadrupole and octupole terms respectively -

are defined by 

Q - -1!3. f (12_M) [l/ cu.r(.?ff?Jdz-
isl' /r 

ff (f1( :7c~Jv/h 
(2) 

€ -
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In (1), we can recognize the relative contribution to amplitude 
growth from the quadrupole and octupole terms 1· 

growth from guadrupole 
growth from octupole = 

From the discussion of inefficiency in Section II, we already 
expect that we want the quadrupoles to dominate in producing 
step size. One way of expressing this dominance is the ratio 
above evaluated at xmax; that is, we define a quantity R by 

R = 2Q /(E x 2) o o max (J) 

where, as before, the subscripts indicate the terms are eval
uated at Po; i.e., replace~ by Po in (2). (Note Q

0
=Q.) 

In u, v coordinates, the equations of motion are 

clu - f ~t.r +2TTcJ v- - f E v-
3 

dY? (4) 

dv- ·- -.L fiu -2.ntT~ - .LE UJ - ~ 
cht z.. (5) 

with, 

6 - v- 19-f_ 
(6) 

Observe that o < O, since we are approaching the resonance "from 

below". 

Look at the small amplitude motion first - we want it to be 

stable. If we neglect the cubic terms and divide (4) by (5), we 

have 
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For the trajectories in u, v phase space to be closed, we must 

have 

or 

(8) 

This inequality is not surprising; Q /4rro is the half-width of 

the stop-band caused by Q, and one would not wish the tune 

difference o to be less in magnitude than the half-width of the 

stop-band. The ratio Q/4~6 thus has physical significance and 

we will use it as a parameter. Let us define k by 

k. -
,,. 

) ( 9) 

where the negative sign is inserted in anticipation of the 

discussion below where we will take Q >o. 

Next, find the fixed points; i.e., the points where du/dn = 
dv/dn = o. 

da :::= CJ > V-=O or- vz. = - (~-Y'17oj 
dn /E 

du- - 0 :> U.:::. C? ui... (cf, -1- ll"IT cT) - -
dr1 CE: 
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The choice u = v = 0 isn't interesting - that's just the central 

trajectory. Nor is the case where both u and v are non-zero. 
For the product of the two expressions on the right above is 

~ t._ ('/17&)? 

which, according to (8), is less than zero, sou and v cannot both 

be real, 

The remaining two choices - U=O, vfo or v=O, ufo - just differ 

in the signs of Q and E; the physical content is the same. (The 
equations of motion are invariant under the changes Q'=-Q, E'=-E, 

v'=-u, u'=v.) We arbitrarily select the case for which Q and E 

are positive. 

V..::.o J. 
z. (~ f-?"rrcT) 

~ = 
E 

z {<fo .r¥17tfj 
(10) 

C)r Uo = 
e 0 

Let U = u/us; v = v/us. In terms of u, V the equations of 

motion become 

_L ....L dV 1-1- Jc V + V
3 

- = (11) /-/< ZJTo dJ11 1-lc 

H= 
.f 

_L _j_ -v-+ u 
1-k. z1rt) t:IY1 (12) 

from which a first integral is 

_ v + v = -t /1'1-i V 1- .JL. -1-~-/~C ~ ¥ J z 7/" y 
z <(/ z. ( /-k fr (13) 

At the fixed point, U=1, V=O, and the value of the constant is -i. 
The equation of the separatrix is then 

l/'1- 2 l/z. I- {1 - 2( 1-rk) V z_ V l/J = 0 
1-Jc (14) 

and, solving the quadratic in u2 

[ ( 
2. J+-k) ~1 ~ u = +- I ± V V f 2 t:::tc (15) 
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So, we can finally exhibit the separatrix. A number of cases for 
various values-of the parameter k are plotted in Figure 2. The 
curves approach V = ± U asymptotically, but the approach is less 
rapid the larger the value of k. Note that v< O on the outgoing 
separatrix for U >o. 

B. Area of Stable Phase Space 
The stable area, A, within the separatrices of Figure 2 is 

The integral can be carried out by transforming to polar coordinates 
with the result 

But 
// z. -
CA./ -

and A =A~ for emittance t::_ • Thus 

2/o ~ /.} 
z = t:/li 

/? Ym,i,r d 
(17) 

where R is the parameter defined in (3). With a choice of R and 
a given emittance, k is determined by (17). If we desire that the 
quadrupoles dominate in developing step size, then k tends to be 
large - for example, if R=1 and~= o.o4tr mm-mrad, then k=0.88. 
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C, The Step Size Condition 
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So 
and 6, 
eter k, 

far, we have not determined any of the quantities Q, E 

We have selected a ratio R and determined a related param
We also know u : 

0 

(18) 

1 

and therefore us = ( (3.s / !c,) 2 u
0 

as well. We need the step size 
condition to complete the process. 

Consider the projection on the V-axis, Remember V < O for the 
outgoing particles, From (12) and (15) 

/', $( [ Y. ,:f 
2

; 6 !; = - [1- v(v 2
+ 2

1
:k)J l.v v.?+ 2/:_~'j " 

where V1 is the projection of the septum position XS, V2 is the 

projection of xs+ A, and the integral on the right has been evalu
ated for two turns. The integral on the left can be performed by 

a change of variable of the form V = -[i.:::J~tan['. The result is 

h p2t~·[]~U-t-[Vlrzt7.:J~ Lt!<)[== [zf:]~l/JTd(/-k) l - V I-It 

~ 

( 19) 

It remains to specify v1 and v2 , The geonetry appears in Figure 
J, The axes X, Y are x, y in units of us. The point x1 corresponds 
to x

8 
and x2 to xs+ ~. The angle b plays the same role as before, 

A bit of algebra yields a closed form for v2 : 

= 

One isn't 

"x )~ (de - I 

[ z ( .:)( t ) l + .< l_t_ k - 2. ] ~ 
C6S6 1-1~ 

so fortunate in relating 

( 20) 

In terms of the 
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angle ct. shown in the figure, we want the intersection of the line 

u= (21) 

with the separatrix. The angle at can be found from 

V:z.. 
Co5 ( & -1- a'.') .:: (22) 

but then one must look for a root of 

( X- ) [ (V-'2 l+I<)~}~ \!cot« ·-r~ - I - V +2 t::Jc = o (23) 

to find vl. 

D, Inefficiency 
To calculate the inefficiency, we use the form 

(24) 

Again, project the motion on the v-axiss 

(25) 

In (25), the geometrical derivative, (dX/dV), is with the aid of 
Figure 31 

(26) 

where (dU/dV) 

(:~ v, 
; U, = V(V,) <27> 

The other derivative in (25) is the equation of motion, evaluated 
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at u1, V1; from (12) 

<:!l, " ZITO {I- le) [ - (1 + V, z] 

So the inefficiency is 

G = I 

( ifl (d%) 
t:fn Iv: av/V'i 

I 

with the derivatives given by (26) and (28). 

E. An Example 
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(28) 

( 29) 

At this point a numerical example may be useful, if only to 
demonstrate that a path can be found through the equations. As 
in the third-integer examples, take 

x = 20 mm max 
~ = 0 • 04 o- mm-mrad 

fls = 225 m, f3o = 100 m 
& = JOO 

w = 0.1 mm 
A = 10 mm 

XS = 16 mm 
Then 

from ( 17) k = 0.932088 
from (18) u = 

0 
5,7731 mm 

u = s B.6597 mm 
and so X1= xs/u8 = 1.8454 

X2= (x +A)/u = J.0002 s s 
from (20) V2= -1.2965 
from (22) Cl. = 38.023° 
from ( 23) V1= -0,5774 
from (19) 6= -0.0440 

from (9) Q = 0.5105 
from ( 3) E

0
= 1.276x10-3/mm2 

from ( 29) e = 1.67% 
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F, The Zero Stable Phase Space Limit 
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The zero phase space limit for half-integer extraction is not 
unique - it depends on how one gets there. However, one would 
like the outgoing separatrices for various stable phase space 
areas to lie near one another. This can be accomplished by vary
ing Q ( or 6 ) so k~ 1. 

From the foregoing, it should not be surprising that the ex
pressions remain complicated in the limit. So we will only set 
down here the infinitesimal stable phase space separatrix and the 
inefficiency associated with it. 

Let k
0 

be the initial value of k at the outset of extraction. 
The coordinates U, V will still be defined in terms of the initial 
value of u

8
• Then the equations of motion become 

2 V +-V.1 
1-ko (JO) 

(J1) 

where the limiting case k=1 appears at the far right. Integrating 
the above, the trajectory through the origin is 

(J2) 

The dotted line in Figure 3 illustrates the zero stable phase 
space separatrix; it indeed lies close to the initial trajectory. 

To calculate the inefficiency, we first need the angle«. 
The expression analogous to (22) is 

M{& 1-r.t) = x /CD>& 

[ Xz)l~ ..!:LJ~ z{c;;6 1-1c6 

(33) 

Having ~. one finds v1 as a root of 

4 
( Vcolr:Y -t- -:1 

)- (v "+- _!L V
2 

) - o ~n1pt' r-k, J 
( 34) 
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Equation (26) is unchanged; (27) is replaced by 

_li [v.z Z. ] .! I + -
{/, l-t0 

and (28) changes to 

/__dV J - zno (1-16) ti, 3 

(dYJ Iv, 

If we continue the example of Section E: 
from (33) 0(. = 36.587° 
from (34) v1 = -0.6669 
from (32) u1 = 2.1977 
from (35) dU/dV = -1. 6617 
from (26) dX/dV = -1. 7934 
from ( 36) dV/dn = -0.2258 
from ( 29) e = 1.43% 
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(35) 

(36) 
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V, Discussion 
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Let us begin this discussion by looking at Figure 4, where 
various quantities associated with half-integer extraction are 
shown as a function of the parameter R, Recall that R expresses 
the degree to which quadrupoles dominate in producing step size. 
After all the involved development of Section IV, Figure 4 is 
something of an anti-climax. Though the tune shift, J, and the 
quadrupole and octupole strengths vary extensively, the ineffic
iency stays close to its minimum value of 1.63% over most of the 
range in R shown. Only for R< 0,5 does the inherent lower 
efficiency of the octupoles begin to appear. 

The half-integer process is a shade more efficient than third
integer for the cases considered here, but the difference - 1,63% 
versus 1.69% for an emittance of 0,0411' mm-mrad - is hardly sig
nificant, However, it is significant that the two extraction 
modes cannot be distinguished on the basis of efficiencies alone, 

In third-integer extraction, zero stable phase space is 
obtained for the tune exactly at the resonant value of 19+1/J. 
In contrast, the stable phase space vanishes in the half-integer 
case for sufficiently large stop-band width - any k )' 1 - as the 
linear motion becomes unstable, That is, the half-integer process 
is better equipped to clear all of the beam out of the accelerator 
in the face of magnet ripple and tune spreads, 

One should take into account the dominant multipole error 
fields in the main magnets, At the time (mid-1972) that the extrac
tion mode for the main ring was chosen, the main ring had rather 
large high-field sextupole terms the distribution of which was un
known. On the other hand, there was a zero harmonic octupole 
term of sign and magnitude suitable for the half-integer method. 
It is too early to make the corresponding analysis for the Doubler, 
though the present sextupole fields of the dipoles are cause for 

concern. 
As mentioned in the introduction, the purpose of this memoran

dum is to present parallel treatments of the two processes. without 
refinement beyond the point reached here. If it were necessary to 
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select a process today, the results thus far would favor the half

integer technique. Fortunately, one needn't choose today; it may 
be possible to go on to the refinements. 

For example, no mention has been made as yet of the tune and 

position spreads of the beam due to momentum width. Chromaticity 

control will be available to adjust the ~ormer, and, in principle 

at least, the momentum dispersion function could be manipulated 

if sustantial benefits were to be found. It would be useful to 

obtain a better insight into the chromaticity adjustment range 

needed than we have at present. 
The emittance of the extracted beam is another subject 

deserving study, Note that the elongation of the stable phase 
space due to the quadrupole harmonic in half-integer suggests 

that a substantial reduction of the outgoing emittance can be 

achieved. It will be interesting to see if this effect survives 

after the inclusion of tune and position spreads. 
Finally, the relative merits of the two extraction techniques 

for fast resonant beam spill must be examined. For removal of 
l 

all the beam in a single burst, the half-integer resonance has 
the advantage noted above that the linear motion is made unstable. 
However, attempts thus far to extract more than one burst from 
the main ring have been only partially successful. Needless to 
say, the capability of extraction several Nl msec pulses on flat

top would be very valuable. 
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outline below one method of obtaining 
Only the lowest order terms in the 
included, 

Before any of the extraction devices are turned on, a beta
tron oscillation in the horizontal plane is described by 

. ~ 
.z = a. I (JCk) I ct75 zr~; 

I iJ{) / (1) 

where x is the displacement from the central trajectory, z, the 
independent variable, is a coordinate along the direction of that 
trajectory, f3 (z) is the amplitude function, {?0 is its value at 
some point of interest, and X ( z) is the phase. The amplitude a 
is an invariant in the unperturbed machine. 

Differentiation of (1) gives the slope x's 

(2) 

Rather than using x' itself, it is convenient to define a vari
able y by 

( 3) 

which, from (2), is 

//?t ·J} ~ I = - a r T,; >J~f (4) 

Assume a magnetic field B(x,z), perpendicular to x and z, 
is introduced at ~ and extends over a length ~z. The sign of B 
is positive if B is directed in the same sense as the guide field. 
For sufficiently small hz, x does not change as the particle 

traverses .1 z, but 

(5) 
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( 6) 

As a result of the perturbation, the amplitude a and phase 
have changed. From 

LIZ -= ( ~~)) ~ {ii a , co.r / - {) t'M_,Y · 11~} = 0 ( 7) 

( 8) 

one has 

(9) 

(10) 

Suppose that we are observing successive passages of the 
particle at some point of the ring where (.?= 4 . If the phase 
at a given passage is °ff', then on the succeeding turn, the unper
turbed phase ,:( would develope according to 

)'f~) = ~ i- t-l!f'{i:) ;.. fjJ(;) E fv~;) (11) 

To obtain the first order equations of motion, we assume that the 
changes in a and 1.f' due to the perturbing fields can be found by 

adding up the contributions (9) and (10) as though the motion were 
unperturbed in evaluating B(x,z) and z over one turn; i.e., 

d'a = .& fd~ (ptiJ J ti B<~ Jo) <SJ;, { cp.;- J/f'CtJ j 
c1J1 c40J f3" I < 12 > 

d (7/J-21TtJn) = ft0fd~ //!!!) J ~ t?4_2) co.sf ~f-Yf(r)} 
c/n (~) f ~o I a 

(1J) 

Now, consider a sextupole perturbation: B(x,z) of the form 



B II z. -z 
2. 
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(14) 

Insertion of (14) into (12) with x expressed as in (1) yields, 
after reduction of the trig functions, 

- f alr#°J / d~ (§') [ ~)>? cp co~Jlr +co-<CJs1>?vy 

+ $ ;,, 31/' "" 3 "Y f Ct>< 3 </ SJ;, :! V!f] ( :~ 1!1. 
(15) 

If the tune were close to an integer, the first two terms in the 
integrand of (15) would be of interest, But for v not near an 
integer, sint.f and cos 'f will change rapidly from turn to turn 
and so the amplitude will not grow steadily. However, if Jv 
were an integer, sin3if and cosJf would have constant values from 
turn to turn, and then the amplitude would change steadily. So 
we can ignore the first two terms and retain the second pair. 
Since we want to study the case where 3V is not exactly an in~ 

teger, let 3 ~ denote the integer of interest, with the difference 
5:= V-11, small compared with unity. Equation ( 15) becomes 

<:a :; if a z [ '5, sJn sl/J +- s; e-o.J .s<P J (16) 

where 

(17) 

In defining s1 and s2 by ( 17), we have used the proximity of Jl to ~ 
so that s1 and s2 are true harmonic amplitudes. 

The equation of motion for ¥-'is found by the same procedure, 
but with one modification. The phase itself advances by 2ffP in 
one turn, and so ~ hardly qualifies as a continuous variable, 
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This circumstance was already recognized in writing the left hand 
side of (13). Now observe that the if-related factors that enter 
the right hand sides of the equations, cos3~ and sin.ii, are insen
sitive to the replacement of 1.f by 1P-211V,,n. We change the variable 
accordingly, and obtain the equation of motion for the new phase: 

(18) 

With the foregoing redefinition, rp becomes a variable continuous 
in n, and can be used as a polar angle in representing phase 
space trajectories. 

The equations of motion were developed in the phase, ampli
tude form because the characteristic of a resonance - amplitude 
growth - is more readily identified thereby. Transformation of 
the equations of motion to x, y coordinates follows from 

( 19) 

(20) 

and are used in the latter form in the body of the text. 
The procedure for the half-integer case is identical, The 

algebra is a bit more lengthy, since both quadrupole and octupole 
terms must be included. 
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rigure 1. The inefficiency for third-integer extraction is showh 
' in (a) relative to the minimum inefficiency for zero stable I 

phase space, and in (b), relative to the inefficiency for zeroi 
stable phase space at the same value of f. I 
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!Figure 2. A few examples of the separatrices for half-integer 
extraction are presented here. Although the outgoing tra
jectories approach the line V=-U (shown dotted), the approach 
for the large values of the parameter k, the cases of interes· 

is auite gradual. 
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Figure 3, The relationship·; between quantities on the X and V 
axes is illustrated, The dotted line is the separatrix for 

vanishing stable phase space. 
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Figure 4. The dependence of various parameters in half-integer 
1 

extraction as a function of the ratio R is illustrated by the I 
plots above. ! 


