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The formula which I propose for fitting vW2 including the 

E98,398 observed scale violations comes from combining aspects of 

one dimensional phase space for the momentum carriers(quarks and 

gluons) as originally derived by Bjerken & Paschosl, generalized 

vector dominance (GVD) as applied by Schildknecht2 to the domain 

of small Q2 inelastic scattering, and a phenomenolo1ical approabh 

to the scaling violation which owes a debt to the QCD formulation 

of Buras & Gaemers3. I have discussed my fits with all of the 

above theorists (except Gaemers) and they were interested and 

intrigued by the connections among their respective works. A 

number of other theorists have seen this work and were interested 

in varying degrees. 

I take as my model a Heisenberg picture in which the 

proton can be viewed as having a probability Pi of being in 

various initial states when it scatters an incident muon (virtual 

photon). The scattering itself is assumed to be only from spin 

1/2 quarks and to be elastic. (Presumably, radiative corrections 

should be applied to the quark lines, but never mind that for 

the moment, since the quarks are never observed anyhow.) The 

quarks have the valence electric charges (-1/3, 2/3, 2/3) plus 

any number of sea quark anti-quark pairs with (±1/3, ±2/3) 

charges taken with equal probability. 

Each of the initial proton states is further taken to be 

a state in which i quarks and j gluons are distributed in 

momentum according to a simple one dimensional phase space 

distribution as first considered by Bjorken and Paschosl. 

I depart from them by including a boson propagator factor for 
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sea quark, anti-quark pairs. This factor can be thought of 

as an expression for the uncertainty principle applied to 

the sea quarks in a virtual state. Schildknecht has justified 

this approach with a proper calculation in which the form 

chosen was derived from the basic principles of GVD and 

dispersion theory. The general expression for the momentum 

carrier particle density and the momentum density as a 

function of x becomes, respectively: 
(Jf) 4IQ ._, ~ :: ~ E Plr1J) e!,n;.; • 

•J< .c. =' ;=o .ax 
~ - d ;;.) .L Sf. =- 2:. 2:.. Pf,, 1> x ~Ill 'i ;e. x -.!1- • 

Po c:lJ( ~· J ;::o )t eHt 
P(i,j) is the probability of the proton being found in a 

state with i quarks and j gluons. Note that the following 

normalizations must hold: 1 

;.u,) I' a clx = ~ z Pa,p{J.v.41 Jx :=: if PC~fii+j)== <..i.+j> 
d )( i.::::J 1·.:o 4'X ,,,_,Id 

o D 

' a,_ - 11 to C10 w)Jx!!a chc = ~ l;T'(i,j) xJ~'f cl>t ::::: ~ J;! P<.t,j) =- i . 0 cfJt. ~:='J 1=0 (,} Jx A=• 1:.0 
The value of iii) must give the average total number cif 

momentum carriers and iv) must express conservation of linear 

momentum. We are interested in the lowest values of i and 

in finding the appropriate values for j. We also determine 

that the average value of j is logarithmically varying with o2 • 

This result is responsible for the scale violation we observe 

in thi~ model, is physically reasonable (the number of gluons 

ovserved should increase as Q2 increases and the interaction 

four-volume shrinks), and is found in a comparable form in the 

QCD formulae derived by Buras and Gaemers3. They find a 

log(log(Q2)) behavior while I find a lg(Q2 )~ behavior. Both 

are extremely slowly varying functions of Q2, of course. 
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Notice that equation xi) integrates to the value (Gi + i) , 

exactly equal to the total number of momentum carriers in the 

state. Also.note that~ I 

?t-••> J'x lilf Jx .. i == J. j£tt d)( .. 
• d)( Po 0 (:I)( 

That is to say, the total momentum carried -by the (Gi + i) 

momentum carr.ie:rs exact'.ly: equals the proton's momentum seen 

in the infinite momentum frame (as is necessary for the 

Feynman picture of x to be reconciled with the Bjerken 

definition. With these observations in mind, we combine 

equations vi), viii) and xi) to obtain: 

«lC'1) -r?~(~Q' = ~ P(~<.1">) x dn· ·,.,, r:> 
'-=J " tJx'' 'f' . 

~) ~ = (G..:+.r)(~.+A:-1X1-x)c;..c:+..c-z 
~~ ~ . . 

.c. 
2J qt 

~q) <;t> = #e:=.J l)lc. 
(r;, + ;:,) 

• 

This is the easy part. Now, we must discover how to 

describe P(i,<j>). Hopefully, we can get away with only a 

few values for i before P+O. We start with the value i=3 

(valence quarks). In this case: 

-- I 
• 

We further guess (!) that P(3,<j>) is constant. This gives: 
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dn Next, we must relate xdx to the nuclear structure function 

vw2 (also known as F2). The relationship as shown by Bjorken & 

Paschos is: --
where <q2> is the average quark charge squared for the scatterers 

measured in units of the charge of the electron. We have, therefore: 

--- t,r) ~ 
.vt} Ii (x) = <ql:>~~ Ptc;1·>x~ = ~ Z: 9 .. ~ P~t,1·>x~'nJf. II• .&S1 , .. 0 dx J.~'J' ;• fT"j )(, 

" ~ l 1) 
It=' J":_ . (re"4e~Wf{J -H..e 1'14.DM. ~ .. ;~ eelltJ. 
C..L+-j) 

problem now is to d·etermine the appropriate description Our 
dnij for a:x--- for various values of i and j. Since j is not directly 

observable, we will average over j for particular values of i: 

N - • -
The average value of j can be expected to increase with 

Q2 on general physical grounds as more and more gluons virtually 

emitted from quark lines are seen as Q2 increases. Experimentally, 

I find that <j> varies approximately as Xlog (Q2 + M 2/M 2). 
0 0 

Buras and Gaemers parameterize the Q2 variation as log 

(log [Q2/A2]/log [Q
0

2/A2 ]). This is unsatisfactory as it 

blows up as Q2 + O. They have no prescription for going to zero. 

I chose a form that goes smoothly to Q2=o, but the functional 

form )\log (Q2 + M
0

2/M
0

2 ) is not determined from theory and 

is therefore not required. I chose it by looking at our 

scale violation data. We get with this ansatz: 

'4c.) <f>• == ~11 + X 1"'J [ Qr:.C,,'!'c.-r] .= G,«a'). 

clearly there are G. gluons accompanying a state of i quarks 
10 

as seen by a real photon (Q2=0). 

Now, we can write the phase space for a state containing 

i quarks and <j> gluons as: 
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The next appropriate value for i is 5, since there can be 

three valence quarks plus one sea quark - antiquark pair due 

to quantum fluctuations (or GVD if you prefer). The probability 

P(S,<j>), however, depends on various kinematic factors since 

the sea quarks appear only as a fluctuation. On the basis of 

special relativity, the Heisenberg Uncertainty Principle and 

dimensional analysis, we guess that: 

• 

We can rewrite equation xviii) as: 

From equation xx) we can find: 

~,.+J 

~) (-alAlz.)s-: Cs-(.!f)C&;.+-+)(1-x) (4.t~~) • 
since, in the symmetric SU4 (or SU6): 

~~U) <ttz>::. y.,+4/,~4/,+Yei~41t.= J±/~ 
os G: ...,. S""" , '"""'7 I fj 

• 

Now, if the proton had unit probabi 1 i ty to .ap~:ear in thi.s 

5<quark state we would demand: 

'l<'t-.W:) 1 == + ~) Jx = <t!..s-.i'> JC~ ~ 
2 2° 

which at Q >> M0 becomes: 

1 ::: ~ (er,- + I) J .. 
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2 2 Thus, for Q >> M0 , we have: 

G,,.+"J ) ?-~) (""OW'Z) ('14) (~,.+12 (1-X.) /_ &! • 
s- 7i7 (.fi.7+ s) \..Q..-z+,..l' 

2 2 For values of Q 5 M0 , the prescription is not clear at all. 

One way to proceed would be to rewrite the propagator factor 

in terms of X and S again and observe that the integral is 

convergent for all, spacelike values of Q2 (including Q2=0). 

This would give: 

-'%'%'~) I ~ c,. ~ .,,.;i. CIS ~ ~ Q?~ 0. 
(~g-+s') 'ZM-r7 

This is equivalent to saying that C5 is constant only for 
Q2 2 

>> Mo . 2 At Q =O, to normalize the momentum to unity, the 

expression would be: 
G-,,t~ 

~~ ttr«.) L..;,._ (-ow. '\ = (!!!.) ( 6'-, t 4)/ Wf I;> "t_' (1-,0 Q r. .. 
Q~O Vs- t:t7 l -z>!-o) ~'t+ INfo"L 

This gives a number which is orders of magnitude smaller than 

the real value of a. 1 (Q 2=0). A much closer estimate is inc 
received by 

Q2 >> Mo2· 

merely letting c5 be constant and evaluating it for 

As R. Wilson and B.Gordan4 have pointed out, this 
2 

gives about 50µb as the extrapolated value of crT at Q =O. The 

true real photon cross section is more like 118µb. They regard 

this as a serious flaw in the model. To me it's a miracle that 

it comes as close as it does given the considerations noted 

above. For this reason, I do not think it is appropriate to 

force the fit to be constrained to the optical point. Clearly 

it is interesting that it comes close and this circumstance 

demands further analysis of why, but it is not a simple question 

and is not a reason to abandon the fit and its interpretation 

for Q2 
>> M0

2 . 

The analysis could be continued for i = 7, 9, ----etc., 

but I prefer to fit only the first two terms as they nearly 

saturate the momentum integral. We get, therefore: 
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"7+-1 "' +, -ow. ~ A ('°'J+i) x (1-x) + '8 (lf)[~-1>(1-Xf Q7. 
'Z. ,, ~.,.$) ~r._,.,,,;: . 

wkeve; 

A = Probability proton is in 3 quark plus 
gluon state. 

B = Probability proton is in 5 quark plus 
gluon state. 

When this form was fitted by me to the data with R=0.19, I found: 

Q2 > 2 Q2 > 0.2 

A= o. tfS5 ~ .(4::/ 

B= f). 'J$' '!: .. ()/"$ 

G
3
= 0.'flJ4;(Q't+/lff..) -1- /.J '1 

.. ,~7 
G5= 0.411 ';i(Q~;::' + :i. tr 

Mo
2= .°7'$"8 r.f6 

X2= "M/ ffJ JJ .. f: 

0.11-'f :!. - OOi 

0.41=1L,./Q"t+.60~ + o. ,s, 
-~\': .. 60"' 

o.•1'f.!l...(~~+- 'oo ..,. z. 4-0 
-, .,Ott' 7 

. 60S- I. . OS'() 

110/?o -P.F. 

When I tried fitting to the combined SLAC (Riordan)/E-398 data, 

I found similar values provided. I let the overall SLAC 

normalization float with E-398. I have not tried varying 

the value or functional form of R so far, but B. Gordan (Harvard) 

has done so and finds rather good fits for the Field & Feynman form: 

'R = ~o (I-XL • 
&L 

R -'\,,/ 1- zo 
f) 

There is no reason to believe R=constant, so I am interested 

in investigating this R question. Meanwhile, I hope the 

basis for the fit has been clarified (and its questionable 

aspects clearly admitted). 
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