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A paper by G. Bosi1 provides an exact calculation of a 

quadrupole field in a circular concave pole geometry. His method 

is readily generalized to the case of 2N-poles. 

Fig. 1 z-Plane 

V=O 

The 2N-pole case is shown in Fig. 1 for the case of N = 4 (octupole). 

The complex z-plane is measured in units of the radius of the poles. 

Thus lzl = 1 is the circle on which the concave poles are drawn. 

The problem of finding the complex potential W = U + iV where V 

is the potential function and U the stream function will be solved by 

complex variable transformations of the z-plane to the t-plane 
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where the excitation is relatively clear. 

Transformations 

Transform the z-plane to the w-plane using 

w = R.nz . 

One sector of Fig. 1 will appear as 

w-plane 
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Fig. 2 Map of One Sector of Fig. 1 in w-plane. 

The w-plane can be generated by a Schwarz-Christoffel 

transformation from the t-plane according to 

t-plane 

v=o 
1 

Fig. 3 Map of Fig. 2 Boundary to Real Axis of t-plane 

(1) 

(2) 
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Integration of Eq. (2) gives 

w = c1 fa in(i~~) - tn(i~:~)} + c2 , 

where 
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Putting t = 1 for which w = iy gives c 2 = iy. Also putting t 

equal to a negative real number gives a real positive ~ such that 

1 < ~ < 1 Equation (3) assuming that C, is real gives w = Real a· ~ 

Number+ ia'lfc1 + iy. Hence from Fig. (1) 21TN = arrc
1 

+ y. For It! 

near zero w ~ c 1 ~n t which gives c1 = JN since the imaginary part 

of w for small negative t is 'lf/2N. Thus 

Potential 

2N 
a=l--y 

'If 

Smythe 2 gives the solution of the potentials of a charged 

strip. For the origin shown in Fig. 3 and choosing the imaginary 

part of the complex potential W as the potential function one has 

from Sm 4.22 (3) 

or 

a2 
t - 2 

a 2 v 
. [. rr (W • o)] = - 2 sin i V -12 

_ iV o . -1 2t 
W - --- sin ( 1--) 

1T a 2 

v 
+ . 0 

l-;:;
c. 

0 

Using Pierce3 (644-645) this may be written as 

2V 
W • 0 = l-

'lf 
• 0 . -1 It 2V ( ) l-:;r- Slrl . a- . 

(3) 

( 4 ) 

( 5) 

(6) 

( 7) 

( 8) 
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Multipole Expansion 

One desires to obtain a series of expansions of Eq. (8) 

in powers of z. First obtain an expansion of Eq. (8) in powers 

oft. From Gradsteyn and Ryzhik4 (1.641) and (8.335) one has 

2V 
W • 0 = l--. 

TT 

00 

.L l 
.;-;--- n=o 

-(2n+l) a 
2n+l 

r(n+~) n+1 
---t 2 

n! 

Next one needs t expanded in a power series in w. First obtain 

was a power series int. To this end expand dw/dt from Eq. (2). 

Abramowitz and Stegun5 ( 3. 6. 8) give 

and 

Hence from Eq. (2) and Eq. (5) after juggling indices 

00 n 
a-2m L~J (-: )tn-1 dw 1 l l (-l)n 

dt = 2N n=o m=o 

Abramowitz and Stegun5 (6.1.21) and (6.1.17) also give 

and 

r cl) 
2 

r(n-m+l)f(~-n+m) 
= 

1 1 ( 1 n-m -2r< 2)r n-m-2)(-1) 

(n-m)!TT 

= 
r(~)r(m+~)(-l)m 

f (m+l)f (~ m) m ! TT 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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or 

dw _ 1 
1 1 

~ n -2m r(m+2)r(n-m-2) n-1 
l l a m ! (n-m) ! t . dt - - 4'1fN 

n=o m=o 

Integration yields 

oo n 
w = w1 + 2~ int - 4*N I l 

n=l m=o 
-2m a 

1 1 r (m+2) r (n-m-2) 
m! (n-m) ! 
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-n ' 

where the constant of integration is found by comparing 

Eq. (16) with Eq. (3) for small !ti. Thus 

(JJl = 2~ r a tn(l+a) _ in(~::2)} 1-a 
L 

Since one expects zN to be the first term in the multipole 

expansion of the potential W, first expand ZN in a power series 

int. For !ti small from Eq. (1) and (17) one has 

Z
N Nwl 

= e If . 

Therefore one expects 

oo n+l 
t t 2 
l an = 

n=o 

To find an first define for convenience 

1 1 
1 1 n -2m r (m+2) r (n-m-2) 

Qn = - r.;;;- l a t.tn n m=o m!(n-m)t 

From Eqs. (16) and (20) 

00 

1 l 
N(w-wl) 2 n=l 

e = t e 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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Comparing this with Eq. (19) one has 

00 
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But the coefficients an are given by Cauchy's integral 

formula as 
00 

l Q tk 

f 
k=l k 

e tn+l 
c 

dt' 

where C is any simple contour surrounding the origin. For 

t = o one sees from Eq. (22) that 

(22) 

(23) 

a
0 

= 1. (24) 

n 
To find the other an consider l ja . QJ .. From Eq. (23) n-J j=l 
one has 

f t1 n 1 l jQ.tj-1 
2'1fi j=l J c n 

Again, for convenience let 

Then 

P' ( t) = 
co 

l 

00 

P(t) = l 
j=l 

j=l 

00 

l Q tk 
k n k=l dt = l ja J Qj e 

j=I n-

n . 1 l JQ . t J - + R ( t ) , 
j=:=l J 

. 

n where the expansion of R(t) in powers of t to t as the lowest 

(25) 

(26) 

(27) 
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order terms. Hence Eq. (25) becomes 

n 
l j a. . Qj = 

j=l n-J 
1 

27Ti 

tr1 
1 

j 
c 

~[P'(t)-R(t)]eP(t) dt. 
tn 

The term in R(tJ does not yield a simple pole and the term 

in P
1
(t) yields after integration by parts. 

n 

l j a.n-J· QJ. 
j=l 

The first term on the RHS is zero since the contour is closed. 

After using Eq. (23), one finally has 

1 n 
an = n l 

j=l 
j a. • Q. ' n-J J 

which is the recursion relation from which all the a. may be 
n 

found. 

The next step requires the expansion of t in powers 

of z. From Eq. (18) one sees that the first term is 

1 

t2 = 

However a 2N-pole expansion has terms in the sequence (ZN, 

z3N, z5N, etc.). Hence, one expects 

1 

t2 = 
2kN(w-w1 ) 

e 

n+l 
Since t 2 is desired raise Eq. (32) to the nth power. Thus 

n 

t2 = 

(28) 

(29) 

(30) 

(31) 

(32) 



nN ( w-w1 ) co co 

= e l l 
k =o k =o 1 2 
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co 

l Ak 
k =o 1 n 
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Juggling the indices such that k1 + k 2 + ··kn= m, one may 

write Eq. (33) as 

n 
t2 = 

Since Eq. (31) obtains for small ltl it follows that 

so 1 = 1 . 
' 

1 
2cn+l) 

N~xti notice that the use of Eq. (34) in the identity, t = 

t2'" t'2", gives 

co co 

l l Sk n Si 1 
k=o R.=o ' ' 

Let k+.R. = m and equate coefficients of like powers 

co 

r+l 
Finally Eq. (34) gives for t 2 

r+l 
t 2 = 

(2r+l)N(w-w1 ) co 

e m~o sm,2r+l 

Substituting this into Eq. (19) yields 

co ~ [2(rn+r)+l]N(w-w1 ) 
l srn,2r+l e 

rn=o 
l 

r=o 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 
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Rewriting the sum using rn + r = n gives 

Equating coefficients of like powers on each side gives 

n 
I ar Bn-r., 2r+l = 0 (n = 1,2,3, etc.). 

r=o 

Since a
0 

= 1, Eq. (41) simply confirms Eq. (35). Equation (42) 

may be written as 

or 

n 

Bn,l = - I ar sn-r, 2r+l . 
r=l 

Using Eq. (38) one may substitute into Eq. (9) to give 

2V 00 

w = i~ -1. I 
-(2n+l) a 

7T fi n=o 2n+l 

oo [2(m+n)+l]N(w-w1 ) 

m~o Brn,2n+l e 

Then, setting m + n = p and juggling the indices one has 

2V 00 P 
w = i.--£ __! I I 

7T /TI p=o n=o 

-(2n+l) a 
2n+l 

1 r(n+2) (2p+l)N(w-w1 ) 

n! 8p-n,2n+l e 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 
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or 

+ ...... · l 
Fr om Eq • ( 3 7 ) 

Hence, since from Eq. (35) S01 = 1, one has 

Fr om Eq • ( 4 4 ) 

and 

But, from Eq. (37) 

TM-708 
0420.042 

(47) 

(48) 

(49) 

(50) 

(51) 

(52) 
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Thus 

81,3 = 

and 

82 1 = 
' 

From Eqs. (30) and (20) 

al = Ql 

-3a1 

3a1 
2 

- a2 . 

1 1-a 2 
= 4 7 

1 2 :::::-:zr (4-4a ) 
32a 
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Inserting the various B-coefficients into Eq. (47) gives for 

the multipole expansion 

_2vo 1 
w = l. --:rr- --:-

1 rr 
1 2 I -w1) 
--3 ( 3a -1 H.ze 
12a \ 

5N 
+ 1 ( 1-1Oa2 + 15 a 4 ) ( z e -w 1 ) 

8oa5 

3N 

Note that for all multipoles it is possible to eliminate the next 

higher term in the series by choosing a = 1/./3 or from Eq. (5) 

NY = 38.04° . 
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