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The design orbit of a separated function electron storage ring is usually 

arranged to pass through the quadrupole centers. The interplay between energy 

loss due to synchrotron radiation and energy gain from the radiofrequency system 

then leads to damping of betatron and synchrotron oscillations. However, if the 

synchronous orbit does not correspond to the design orbit, synchrotron radiation 

in the quadrupoles becomes a significant factor, and for sufficiently large 

deviation of the synchronous momentum from that appropriate to the design orbit, 

either the synchrotron oscillations or the radial betatron oscillations will 

become anti-damped.* 

That this will be the case may be seen as follows. For constant synchronous 

energy, Es' the equations of motion for a synchrotron oscillation are 

(1) 

*We are considering only situations in which the damping of the vertical betatron 
oscillations is unperturbed. If there is couoling between the two modes of betatron 
oscillation, or if the ring does not lie in a plane, the effects on the vertical 
motion should also be taken into account. 



-2- TM-566 
1501 

where U(E) is the energy radiated per turn by a particle traversing a closed orbit 

for energy E, the other quantities have their conventional meanings, and the limit 

E>>mc2 has been taken. In the small amplitude approximation, the above relations 

may be combined to give 

d2 (tiE) + 2a Q_ (tiE)+ ri (t,ESE') = 0 
dt2 Es s dt \Es s 

rr,2 -
s 

2 -w s 

as = ~! (~~)E 
s 

(2). 

Here, ns is the angular frequency of synchrotron oscillations. Generally, a~<<Q~, 
and the solution will represent a damped oscillation, i.e., 

-a t tiE _ Ae s r; - cos (nst+o) 

The quantity .6.U - U(Es) - U(E
0

), where E
0 

is the energy corresponding to the 

design orbit, has the character sketched at 

the right. As the synchronous energy is raised 

above E , (dU/dE)E increases and the synchrotron 
0 s 

oscillations become more strongly damped. But 

according to Robinson 1 s theorem, 1 the increased damping 

of the synchrotron oscillations occurs at the expense 

tiU 

of weakened damping of the horizontal betatron oscillations, and ultimately, for 

E -E s 0 

some Es>E
0

, the latter will become anti-damped. Similarly, as Es is lowered below E
0

, 
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the synchrotron oscillations will become less strongly damped, and for Es less than 

that at the minimum of the ~U curve, these oscillations will anti-damp, though the 

horizontal betatron oscillations will be strongly damped. 

Thus there are two limiting values of Es' above and below E
0

, at which anti

damping sets in. It is the purpose of this memorandum to estimate the critical 

values of Es, to identify the manner in which the various lattice parameters 

influence the stable range in energy, and to comment on the variation of equilibrium 

beam size within this range. 

Damping Factors 

In general, the notation and definitions of Sands2 will be followed. The 

partition numbers, Ji, are related to the damping factors, ai, by 

a. = J.a 
l l 0 

(3) 

where a
0 

is the reciprocal of a characteristic time, which is just twice the time 

that a particle of energy Es would radiate an energy Es: 

(w
5
/2n) 

ao = 2Es/U(Es) 
(4) 

The subscript i stands for the three oscillation modes - synchrotron oscillations 

and horizontal and vertical betatron oscillations. Robinson's theorem requires 

that 

(5) 



-4- TM-566 
1501 

Under our assumptions, the vertical betatron oscillations do not participate in the 

interchange of damping, and JV = 1 independent of momentum. For the synchrotron 

and horizontal betatron oscillations respectively, we have 

JE = 2 + D 

(6) 

with 

D .=: 
2 f (nK/p§ )dz 

I 2 
J> {1/ps )dz 

(7) 

The definition (7) for D differs from that used by Sands in that we assume 11 straight 11 

magnets~ rather than wedge magnets. The integrals in (7) are to be evaluated along 

the synchronous orbit, so Dis a function ofmomentum. We will include terms up 

to the second order in (Es-E
0

)/E
0

; path length effects are of higher order, so 

the coordinate z may refer to the design orbit. The radius of curvature p , on the s 

synchronous orbit is always a positive quantity regardless of the sense of the 

curvature. As in Sands' article, n denotes the momentum dispersion function and 

K :=: eB'/p . s 

On the design orbit, D = 0, so JE = 2 and JH = 1. These are the partition 

numbers normally ascribed to a separated function ring .. When the synchronous 

orbit differs from the design orbit, the radius of curvature in a quadrupole becomes 

(8) 
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where K
0 

= eB'/p
0

. In a dipole, ps = p
0

(1+6E/E
0

). The numerator of (7) then 

will become non-zero for Es ~ E
0

, while the denominator will receive contributions 

from the quadrupoles as well as the dipoles. Thus 

(9) 

where the first term in the denominator represents a summation over the various 

dipoles of length 9si in the ring. Since the dispersion function may have a first 

order energy dependence, it does not appear with a 11 011 subscript in the numerator. 

In the order to which this calculation is carried out, it is irrelevant whether or 

not n is so subscripted in the denominator. 

To estimate the integral over the qu~drupoles, let us ignore the variation of 

n within a quad, so that 

2 2 n. K dQ. 
1 01 1 

h . h 1 th f th . th d 1 w ere ~Qi is t e eng o e i qu~ rupo e. 

( 10) 

Now assume that the dominant 

contribution to (10) arises in N simple FODO cells, each half cell containing a 

bend angle of TI/N. Also assume that the value of n at each quad is that appropriate 

to the cell itself - that is n is matched at the ends of interaction region or 

other insertions. Then it is easy to show that (9) becomes 

( 11) 
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(12) 

In (12), µ
0 

is the betatron oscillation phase advance through a normal cell for 

a particle of energy E
0

, and f 8, fQ are the fractions of the cell length occupied 

by dipoles and quads respectively. It is clear that the energy dependence of n 

as reflected in the 6E/E
0 

term in (12) will be unimportant in this case where we 

have peesumed perfect matching. 

As an example, take µ
0 

= ~/3 an~ i 8;i0 = 10. Then F = 170, having dropped 

the energy dependence of n, and 

D = 340 (6E/:0 ) 

1+170 (6E/E )2 
0 

(13) 

Therefore, for 6E/E
0 

~ 0.3%, D = 1 and the radial betatron oscillations would no 

longer damp. And for 6E/E
0 

~ - 0.6%, D = -2 and the synchrotron oscillations would 

be on the verge of anti-damping. Within this region, the second order term in 

6E/E
0 

is unimportant. Interestingly enough, for 6E/E
0 

= + 0.6%, D = 2; the 

partition numbers will be those normally characteristic of a combined function 

lattice. 

The range in energy throughout which both modes of oscillation are stable can 

be increased by using a higher phase advance per cell or longer quadrupoles. On 

the other hand, if the normal cell portion of the lattice contains a free oscillation 

in n, as might arise from a mismatch at the ends of the insertions, then the stable 

range will be reduced, sinGe the intggral contains n2 and so the free oscillation 

contribution will not average to zero. 
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Equilibrium Beam Size 

Th d 2 . . b e mean square energy sprea 0E is given y 

§ l/p~ dz 

§ l/p~ dz 

cq = -2..§__ le= 3.84 x 10-
13 m. 

32/31 
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(14) 

Now that the energy range of interest has been shown to be small (-1%) and the 

terms strongly dependent on energy identified, the integrals in (14) need be 

evaluated only for the design orbit. For the simple lattice of the preceding 

section, 

(15) 

2 and so the mean square physical width due to energy oscillations, 0H,E' is 

(16) 

The mean square width of the distribution of horizontal betatron oscillation 

amplitudes is 

j ( 1/ p~!) Hdz 

j l/p~dz 
(17) 
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H = yn 2 + 2ann 1 + Bn 12 (18) 

In (18), a, B, y are the usual Courant-Snyder parameters. Again, we evaluate the 

integrals in (17) along the design orbit. Actually, Sands gives general estimates 

for them, but since we have been using a particular lattice, we might as well 

continue to do so. It may be of some interest to compare the results with Sands 1 

formulae. 

The contribution from a half-cell to the integral in the numerator of (20) is 

,Q,B 

l _l_ Hdz = J/,B { H(£B)-H(O) 
3 3 2 

Po Po 
0 

(19) 

The sum of the second and third terms in the brackets becomes larger as µ 

increases, but for typical parameters, they amount to only 7% of the first term 

atµ= 135°. We will neglect them below. In the first term, H(i8 ) and H(O) mean 

the values of H at the two ends of the bending region. But outside of the bending 

region, n propagates as a free oscillation and H is an invariant. So we can 

evaluate the H1 s at the quad midpoints, where H = n2;s. Then (19) becomes 

B nmax n m1n )/, [ 2 .2 . J 
= 2p~ 6max + S min 

(20) 



and for (17} we have 

v
0 

::: Nµ/2TI 
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L.:··.· .(µ/2) '··· :1+3 cos (:µ/2 3 ·;sin (J112); 4 cos µ/2 
rf 3 2 ~ 

\) .. ·• .· 

OL\ j 
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(21) 

The quantity in brackets is 1.08 forµ= 60°; for small phase advance, a reasonable 

approximation is to treat it as unity. Atµ= 135°, however, it has grown to 1.9. 

Here again, free oscillations in n do not average to zero in evaluating crH,S' and 

the presence of such oscillations can make expressions such as (21) of little 

value. 

The beam width from both horizontal betatron oscillations and synchrotron 

·1 . . d by~ 2 2 2 osc1 lat1ons is characterize vH = crH,S + crH,E' At a point where n = nmax 

and s = Smax 

Cgys 
2 

2 
2 [1 (l+r) 

+ !_ J (22) crH = ,nmax JH Po 2 JE 

r - (nmin f Bmax 
nmax smin 

For smallµ, r~1 (at µ=TI/2, r=l.33). If we set r=l in (22), then an approximate 

form for crH 2 is 

(23) 

A factor of 2 growth in crH2 will result from D = +0.618 or D = -1.618. For the 

example of the preceding section, where o~340 (6E/E
0
), the corresponding energy 

range would be -0.48% <(6E/E
0

)<0.18%. 
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Conclusion 
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Though the damping factors are sensitive functions of the synchronous energy, 

they do not appear to be exeessively so. A region about 1% wide in synchronous 

energy within which both synchrotron oscillations and horizontal betatron oscillations 

exhibit damping is readily obtained for typical lattice parameters. As indicated 

in equation (12), this energy widtn is not manifestly dependent on the size of the 

storage ring. The corresponding radiofrequency band will shrink roughly as l/v2 

as one considers larger rings, but this is not cause for immediate ~larm. 
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