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I. It is_ generally stated that the betatron oscillation 

resonances of the type nx vx + ny Vy = k (nx, ny, k =· 
integers) are due to n-th derivatives of the m~gnetic field 

(a nB/a xn , a nB/a yn, etc.) , where n = In I + In I · - 1,. pro-x y 

vided that the radius of curvature and the betatron period 

are both la~ge compared with m~gnet le~gths. For example, 

a sextupole field (n=2} produces third-integer resonances 

(3v = k, v + 2v = k, etc.) and an octupole field (n=3). x x - y 

. gives rise to quarter-inte. ger resonances (4v = k, 2v + x . x -

2v = k, etc.). It is therefore natural that, when quartery 

integer resonances were detected in the main ring at 8 GeV 

(injection) , the analysis was attempted to understand the 

phenomena in terms of the octupole field which exists in 

1 quadrupoles. However, the magnitude of the octupole field 

necessary to explain ~he resonance was almost an order of 

magnitude larger compared to the result of magnetic field 

measurement. Furthermore, it has been observed that 
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quarter-int~ger resonances are rather sensitive to the 
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setting 0£ correction sextupoles which are used to suppress 

the nearby third-int~ger resonances 3v = 60, 61 and x 

A similar problem was discussed duri~g the recent PEP 

Summer Study in connection with the lo~g-term beam stability 

in PEP and ISABELLE. 2 ·In both cases, superconducti~g magnets 

will be used for the proton ring_ so that a fairly stro~g 

sextupole field is unavoidable. Presumably, correction 

sextupoles will. be installed around the ring to compensate 

for the chromaticity (momentum dependence of tunes) and to 

eliminate harmonic components of the sextupole field that 

can drive nearby third-integer resonances. Numerical studies 

at BNL demonstrated that, under this kind of arrangement, the 

beam size. grows when the tune is near a quarter-integer value. 3 

There is nothing mysterious about sextupole field being a 

cause of quarter-integer resonances. It has been known, at 

4 least theoretically, for many years. The ~tatement on the 

relation between the order of a resonance, I n I + I n 'I , and x y 

the order of the field derivative, n, is valid when one 

· retains only the so-called 11 driving 11 term and the "phase-

independent" term in the Hamiltonian and ~gnores all other 

terms which are of oscillating form. By means of a canonical 

transformation, one can show that these oscillating terms 

not only modify the original resonance but can also drive 

many other resonances as well when the tune satisfies a 
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resonance condition. While the or~_ginal (first-order) 

drivi~g term is proportional to a specific harmonic compo-

nent of the field, drivi~g terms arising from oscillating 

terms in the original Hamiltonian are proportional to the 

product of two (or more) harmonic components so that their 

effects are usually negligible. On the other hand, if the 

first-order resonance is very weak (because of correction 

elements or the tune is too far away from the resonance 

value), second-order resonances can cause a serious_ growth 

in beam size when the tune is just "r~ght 11 for one of these 

resonances. In the main ri~g, the horizontal tune is 

20.2 'V 20.3. One can suppress the resonance 3v- = 61 by 
x 

correction sextupoles with the proper 6lst harmonic compo-

nent. However, the product of n-th and (81 + n)th harmonic 

components can drive the resonance 4v = 81 if the tune is . -- x 

very close to 20.25. A combination like 54th and 27th, 60th 

and 21st, etc. may be especially da~gerous since all {6n)th 

harmonic components of the sextupole field are intrinsic in 

the main ring. 

Unfortunately, the picture is much more complicated in 

reality. There are small but finite amounts of nonlinear 

fields with n ~ 3. For a sufficiently large amplitude of 

the betatron oscillation, many different resonances contri-

bute and their effects may overlap in a complicated manner. 

There is as yet no_ general analytical treatment for this 

11 stochastic11 situation. 5 Second-order effects of sextupole 

field must be partially responsible for driving-the quarter-
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int~ger resonance in the main ri~g but it is unlikely that 

they are the sole cause. 6 

The main purpose of this note is simply to emphasize 

the known fact, that sextupole fields can drive quarter-

integer resonances when the second~order effect is taken 

into account. In section II, relevant formulas are given 

only to the extent that. general characteristics of the 

second-order effects may be seen. The real main ring field 

is not amenable to an analytical treatment since there is 

no simple relation among amplitudes and phases of harmonic 

components. Therefore, in section III, the formalism is 

applied to two simple models with a-function sextupoles. 

Hopefully these models simulate the essential feature of 

the main ring. The prediction based on this analysis is 

then compared with numerical results. 

II .•. Since detailed, step-by-step constructions of the for

malism are available elsewhere4 , a very limited case of a 

linear machine with sextupole fields alone will be discussed 

here. Horizontal-vertical coupling resonances arising from 

the sextupole field are not considered. The betatron oscil-

lation of a particle is described by a Hamiltonian H(w, I;~) 

in which the independent variable ~ is the normalized be-

tatron oscillation phase 

<1> = r8 ds 
Jo \)B(s} 

and the canonical variables (~, I), which are called the 

(1) 
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action-a!lgle variables, .are related to the transverse 

coordinate x of the particle by 

sin (1/J} (2) 

1 
dx/ds = ·11f1 /2r'. <cos (1/J) - a sin (lj>} > (3) 

Other symbols are standard in the treatment of betatron 

motions. With the int~grated field stre~gth of each 

sextupole (B".fl)., the Hamiltonian is 
l. 

H( ,h I ~) = VI+ _(2I) 3/ 2 
'I', ; 'I' 

where k = 1 and 3, m = -oo~oo and 

A ia3 3m e m = . (l/48rr) (l/Bp) 

E 
k 

E 
i 

In the absence of sextupole field (Akm = 0), 

t/J = J(dH/d I) dcjl = vcp 

so that each sextupole term in the Hamiltonian is approxi-

mately given- by 

The term with I kv - ml<< 1 is called the drivi~g term for 

(6) 

the resonance v = m/k and, in the first-order approximation, 

all other oscillatory terms are ignored as their effects 

will not increase with the number of revolutions. In the main 

ring, when the tune is close to 20 1/3, the drivi~g term is 
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the one with k = 3 and m = 61. If the tune is very close 

to 20 1/4, there is no drivi!lg term* in the Hamiltonian so 

that one would expect the beam to behave as if the machine 

were entirely linear. 

One must proceed to the next order of approximation to 

see that this is not the case. This can be done by means of 

a canonical transformation to new variables e and J. The 

generating function is 

and 

I = a S/d iJJ = J + (2J)3/2 E kAkm cos{kip 
m - kV (8) 

e = a s;a J = ip + (2J) 112 E 
3
Akm sin (kip - m¢ + akm). (9) m - kv 

The new Hamiltonian is 

K(G, J; ¢) = H(ip, I;¢)+ as/aq, = 

(10) 
The new Hamiltonian contains, in addition to the linear term 

vJ, an infinite number of terms proportional to Jn/2 , n = 4, 

5, The lowest-order term proportional to J
2 represents 

an octupole-like characteristic. If one started with an 

*One may still regard the term with k=3 and m=61 as the driving 
term since it has the weakest dependence on ¢. However, the · 
stable area in this approximation comes out to be generally 
much larger than the area occupied by the field, clearly a 
meaningless result. 
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octupole field instead of a sextupole field, the or;Lginal 

Hamiltonian H would have (2I) 2 terms in place of (2!) 3 / 2 

terms. In the lowest-order approximation, 

{3/2} (2J} 2 kAk A. 
K(0, J; <P} = vJ + l: l: m Jn x 

k,m j,n m - kv 

x{co~ <(j-k) e - (n-m) cj> + a. - akm >+ Jn 

+ cos. -< (j+k) e - (n+m} ct>.+ a. 
Jn 

+ akm >} (11) 

Since j, k = .1 or 3, possible resonances are of the type 

2v = integer, 4v = integer and 6v = int~ger. The Hamilto

nian also contains phase-independent terms (j=k and n=m), 

another characteristic of octupole field, that are respon-

sible for the dependence of the tune on the oscillation 

amplitude. Phase-independent terms tend to limit the_ growth 

of the amplitude to a finite value creating islands 0£ stable 

r~gions outside the central stable area. On the other hand, 

for a_ given value of v, the central stable area is reduced by 

these terms so that they are not necessarily beneficial. 7 

Keeping only phase-independent terms and driving terms 

for 4v = N when the tune is close to N/4, one finds 

kA2 

K =VJ+ (3/2) (2J)
2 

4 L m ~kv 

(3/2) (2J)2 kAk~jn + E. 4 lil _ kv cos ( 40 - N<P + akrn + a. } 
km Jn 

with j = 4 - k and n = N - m. Aside from the obvious fact 

that driving terms are now proportional to products of two 

harmonic components AkmA. , there is an irnportan.t difference 
Jn 

(12) 
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between the ox::Lginal Hamiltonian Ii and the new Hamiltonian 

K. In K, the amplitude 0£ drivi!lg term (and the ro~gnitude 

of phase-independent term) depends stro!1gly on the value 

of v whereas it is entirely independent of v in H. In terms 

of new variables 8 and J, one can.express x and dx/ds by 

the followi~g relations: 

x = .v'ff l2Y sin (1/J) = /ff'~ (13) 

dx/ds = (l//S) 12f1<cos(l/J) - a sin(l/J)> 

= '(l//S) (n - aO (14) 

3A 
X + E m <2XYcos (a ) + (3Y 2 + x2 ) sin (am)> m - v · m m 

3Am 2 2 
- E <2XYcos(a ) + (Y - X )sin(a )> (15) 

m- 3V · m · m 
Ii1 

m 
<(3x2 + Y2)cos(a ) + 2XYsin(a ) > v. · m m 

3A 
+ E m < (Y 2 - x 2)cos(a) - 2XYsin(a ) > 

m m - 3V · m m (lG) 

where 

x _ 12.Jl sin (0) and Y = ~cos (e). ( 18) 

The Hamiltonian K is still a function of the independent 

variable ~ so that it is not a constant of the motion. This 

~ dependence is eliminated by a transformation from (0, J) 

to a rotati!lg system (01 :: 0 - N ~/4, J) and the correspond

ing Hamiltonian is 
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K2 (8
1 

J) :::: 6- J + (2J) 2 
< 5

0 
+ s 1 cos(40

1 
+a)> 

where 

. t:. - v - N/4, 

kA2 

s (3/2) [ km - , 
0 k,m m k\l -

kAk A. 
{3/2) E. m Jn 

k,m: m - k\l 
cos(4e1 + ak +a. ). 

m Jn 

(j=4-k, n=N-m) 
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(19) 

{20) 

(21) 

(22) 

Note that there is no difference between 0 and 0 1 at ~ = O, 

8n/N, 16n/N, etc. At other locations, the phase space pie-

ture in {X,Y) space can be found by simply rotati~g (clock-

wise) the picture at ¢ = 0 by N¢/4. 

III.Once the Hamiltonian K2 (01 , J) is obtained, the procedure 

of finding stable and unstable fixed points t~gether with 

resulting separatrices is well known. One draws a phase 

* space diagram (K2 = constant) in (X, Y) space, rotates it by 

N¢/4 if necessary and finds the corresponding di~gram in 

(x, dx/ds) space by means of (13) - (16). Unfortunately, this 

is not easy to do for the main ri~g. In principle one must 

know all Akm and akm for the sextupole field in order to 

perform the necessary summations in (15), (16), (21) and (22). 

one might keep only a few dominant terms <Im - kvl small) 
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in the summation but the resulti~g accuracy would be hard 

to estimate. Therefore,. two simple cases have been studied 

to get some feeli!lgs on the importance 0£ the h~gher order 

effects and to compare the analytical prediction with 

numerical results. In both cases, sextupoles are of the 

a-function form and they are arranged at an equal interval 

around the ring. Summations are then possible without 

dropping any term. 

Case A 

Three sextupoles of. stre~gth B"R, each are located at 

~ = n/3, rr, and 5n/3 where $ = $s. Because of the three

fold symmetry, Akm vanishes unless m is a multiple of 3. 

From (5) and (6), 

(23) 

= a - 'IT lm = n/2 for m/3 = even 

= - n/2 for m/3 = odd. (24) 

The tune of the machine is assumed to be near 20.25 and 

the resonance one is interested in is 4v = 81 (N = 81). 

* From (21) and (22), 

1 * L. n ± a n 

2 s0 = (3n/2)A < - cot(£1T) + 3 cot(£ 1 TI) >, (25) 

= + (TI/2} tan (arr/2} for n=positive and n~gative 
odd int~gers, 

= ± (TI/2) cot (an/2} for n=O, positive and 
n~gative even int~gers. 
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(26) 

where E _ . (v - 20) and E' = (21 - v) /3. Note that 

akm + ajn = Tr in (22) so that one can put a = O. From 

(15) and (16), 

~ = X + Tr A< (Y
2.-x2

) /sin (ETI) - (X2+3Y 2 ) /sin (E 'TI)>, 

(27} 

n = Y + 2Tf AXY< l/sin(ETI) + l/sin(E 1 Tf)> • (2 8) 

Both phase-independent terms S
0 

and the amplitude of driv

i~g term s 1 in the Ham~ltonian K2 are a function of the tune. 

In particular, S
0

> s1 -for v> 20.25 while S
0

<S1 for v< 20.25. 

Unstable fixed points are at e1 = O, rr/2, Tr, and 3rr/2 

with 

(2J) = (29) 

They exist qnly for b.. < 0 (v < 20. 25) since J > 0 for real 

values of x and dx/ds. Stable fixed points are located at 

0 = rr/4, 3rr/4, Srr/4 and 7Tr/4 with 
1 

(2J) (30) 

Because of the tune dependence of S
0 

and s1 , these stable 

points do not exist either for v> 20. 25 or for v < 20. 25. 

Therefore, in the second-order approximation, the analytical 

prediction is 

v> 20.25 

.V< 20.25 

no fixed points 

four unstable fixed points which 

coalesce to J = 0 (x=dx/ds=O) at 

\) = 20.25. 
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A computer pr?gram has been used to find fixed points 

for a_ given conf:Lguration of sextupoles. Parameters. chosen 

for this case are: B 11 i = 50 'kG/m, Bp = 296.5 kG-m (injec-

tion) and a = 100 m. s ' With this choice, harmonic compo-

nents form= 6k(k = + 1, + 2, ... ) are approximately 

the same as what exist in the main ring when no harmonic 

correction is applied. The aver'.=1ge term, m = O, is much 

larger than this in the main ring but correction sextupoles 

for the chromaticity reduce it to the same level or less. 

Components with m =.3k (k = + 1, + 3, •.• ) are due to the 

fluctuation in B11 .R. from magnet to magnet and they are 

10 - 15% of what is used in this model. Also,.there should 

be no simple phase relation among harmonics so that the 

choice of B11 .R, = 50 kG/m is clearly an overestimate. There 

are, of course, other harmonic components {m = + 1, + 2, 

+ 4, •.• ) as well in the main ri!lg but . they are n_ot considered 

in this model. The analytical prediction is compared with 

numerically computed values of three unstable fixed points 

in Table 1. Agreements are very_ good when the tune is not 

too far away from 20.25. As predicted analytically, there 

is no fixed point for v> 20.25. For a la~ge value of 

(20.25 - v), fixed points are located at lo~g distances 

from the or~gin (la.:r-ge values of J) and the n~glected h:i-gher 

order terms become important. H~gher order terms are also 

responsible for the appearance of outer stable fixed points 

which are not predicted analytically but are found numeri-

cally for v< 20.25. Altho~gh they too coalesce to the 
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origin at v ;:::::. 20 .25, .the 11 speed" .of the .coalescence is 

much s.lower than that of. unstable .po in ts. As a conse-

quence, while the central stable ·area shrinks as v 

approaches 20.25 from below and disappears beyond 20.25, 

four islands of outer stable area around stable points 

stick out like four petals of a flower and remain that 

way even beyond 20.25. Since there is no fixed point 

beyond 20.25, particle trajectories in (x,dx/ds) space 

are all around the or~gin but they are substantially dis

torted because of the li~gering of these shapes. Numeri-

cally obtained fixed points are plotted in Figure 1 

and sometrajectories near v = 20.25 are shown in F~gure 2. 

Scales in F~gure 2 for x and dx/ds are chosen such that 

trajectories are all circular if B"1 = 0 (or B" = 0 but 

the first-order e,ffect only) . The serious nature of the 

second-order effects is clearly seen here. 

Case B 

In order to make the model somewhat more realistic, six 

sextupol~s are distributed around the ring at an equal 

interval wit~ the strength 

B"Ji == 25. (1 + f)kG/m 

= 25. (1 f)kG/m 

From {5) and (6) 

¢ = n/6, 5n/6, 3rr/2; 

¢ = rr/2, 7n/6, llrr/6. 

A = A /3 = (6
3

/
2

/STI) (25/Bp) ::: .A . 3m · lm · s 

for 1Il == o,· + 6, + 12, ate., 

= £A £or m =· + 3, + 9, etc. , 

= 0 form= .+l, + 2, + 4, etc. (31) 



-14-

a 3 . = -1T/2. for m/6 = 0 or an .even int~ger, . .m 

= .rr /2 for m/6 = _an .odd int~ger, 
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= 0 for (m 

= 1T for (m 

3)/6 - 0 or an even int~ger, 

3)"/6 = an odd int~ger; 

= a
3 

+ IT. . ro (32) 

By taki~g f = 0.15, one simulates the sextupole field in 

the main ring fairly well as far as the amplitude of each 

* harmonic component is concerned. Phase relations are of 

course impossible to simulate. Droppi~g terms of the order 

f 2 , one finds 

S
0 

= {31T A2
/4)-< cot{E1T/2) + 3 tan(E'1T/2)>, (33) 

Sl = (31T fA2 /2) < 3cot(ETr)- cot(E 1 1T)>, (34) 

E - \) - 20 / e:' - {21 - v)/3, 

and 

ti = \) - 81/4. 

Note that, in {22}, akm + ajn = 3Tr/2 and.the drivi~g term 

is proportional to sin{4 e1 ) instead of cos(4 e1 ). From 

(15) and {16), 

~ = x + (1T A/2). < (x
2 - Y2

)/sin(e:rr/2) -

- cx2 + 3Y~)/cos(e:'rr/2}> 

- 1T fAXY. < l/cos (Err/2) + l/sin (e: ,.1T/2) > , (36) 

*Contributions from m 1 3k in the main ri~g are ~gain ~gnored 
here. They are of the order f2. 
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n = .Y + :rrAXY .. -< l/c.os (E' TI/2) _., l/sin (ETI/2) > 

+ (n£A/2).-< (Y
2 

- x 2 }/cos (c.n/2) + 

With £ = 0.15, S
0 

> s1 for v< 20.25 as well as for v> 

20.25. Unstable fixed points are at e
1 

= TI/8, 57f/B, 

9n/8 and 13n/8 with 

(2J) 

These points exist only for /1. > 0 {v > 20. 25).. Stable 

fixed points are at el = 3n/8, 7TI/B, llTI/8 and 15n/8 

with 

(2J) 
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(37) 

(38) 

(39) 

They too exist only for v> 20.25 since S
0 

> s
1

. The ana

lytical prediction is: 

v< 20.25 no fixed points 

V> 20.25 four stable and four unstable fixed 
points, all of wh~ch coalesce to 
J = 0 at v = 20.25. 

The situation is opposite to what happened for Case A. 

This conclusion is independent of the sign of B".Q,. Be-

cause of the small factor f in s1 , distance to unstable 

points and stable points are not much different from each 

other at a_ given value of v and the distortion of particle 

trajectories should be less pronounced for this case. A 

series of stable and unstable fixed points are listed in 
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Table 2.. ~greements. of analyti.cal .values with numerical 

results are ~gain_ generally_ good when the .tune is close 

to 20.25. Nq £ixed point was £ound by the computer 

pr~gram for :v< 20.25. All fixed points are shown in 

Figure 3 and some trajectories for v = 20.2505 are. given 

in Figure 4. 

I am. grateful to A.G. R~9giero for calli~g my attention 

to this problem. 
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Table. 1. Uns.table. fixed points .... for Case A 

~ = 0, 8rr/81, 16rr/81, ..•..•• 

s = x//f3 

n = /f3 (dx/ds) + (a//S) x 

All values are in lo-3 (meter)l/2. For each v, the 

first row is analytical and the second row is numerical 

results. 

(20. 25 - \I) ~l n1 ~2 ~3 

0.3 - .884 5.74 4.72 -6.76 
-1. 090 5.87 5.16 -7.34 

0.02 - .628 4.75 4.06 -5.43 
- .718 4.81 4.30 -5.73 

0.01 - .333 3.395 3.05 -3.74 
- .355 3.416 3.13 -3.84 

0.005 - .171 2.414 2.24 -2.59 
- .177 2. 421 . 2.27 . -2.62 

0.002 -.0695 1. 532 1. 462 -1.602 
-.0704 1. 534 1. 470 -1. 610 

0.0005 -.01752 • 7672 .7496 -.7847 
-.01757 .7674 .7506 -.7858 

n2 ;::::: Tl3 ;::::: o. i s4 = s1 , n4 = - n1 . 

TM,..449 
0402 
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Table 2. Fixed points for Case B. 

<j> = .o,· Brr/81, 161T/81, •••.• 

· ~ == x/./ S 

n = .IS (dx/ds) + (a/IS) .x 
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All values are in io~3 (meter)l/2. For each v, the first 

row is analytical and the second row is nwnerical results. 

Only one series of unstable and stable fixed points out of 

four are. given here. 

unstable stable 

(v - 20.25) ~ n ~ n 

0.03 1. 34 7.93 9.07 . 3~ 83 
1.50 7.81 ·9.54 3.60 

0.02 1.38 6.34 7.37 3.07 
1. 47 6.31 7.67 2.99 

0.01 1.22 4.40 5.18 2.14 
L. 26 4.A3 5.35 2.14 

0.005 0.981 3.08 3.65 1. 50 
1. 00 3.13 3.76 1. 53 

Q.0005 0.373 0.971 1.15 0.474 
0. 380 0.990 1.18 0.488 

0.0001 0.174 0.435 0.514 0.212 
0.178 0.443 0.528 0.219 
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