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Each magnet (dipole or quadrupole) or power supply is 

represented by a 4-terminal network. The steady-state behavior 

of such a network for a given frequency component (w) is most 

easily studied using 3x3 matrices. The voltage-current vector 

is written as 

tV' i \ 
A - : I! 

\ f 

( 1) 

where V and I are, in general, complex. A general propagation-

source matrix is written as 

ra b' i 

G 
b e' M - i l = propagation 

~) ~ 
\c d/ 

d (MID) (2) 

0 re 
D I = source - \f 

where we have adopted the notation introduced in FN-232. In 

this notation 

(MjD)A := MA+D 

(M
2

jn2 ) (M1 jn1 ) := (M2M1 jM2n 1+n2 ). 

The 2x2 propagation matrix M is unimodular and, in general, 

complex. For a magnet the source vector D = 0 and for a power 
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supply D = (~~) where ~V and ~I are the voltage and the current 

(including phases) produced by the supply. 

The propagation matrix all the way around the ring (say, N 

element) is, therefore, 

where 

M - ~~-1 ••••• M2Ml 

D - DN + ~DN-1 + ~~-lDN-2 + ••• + ~~-1 ... M2Dl. 

The voltage-current vector at the entrance to element 1 is, then, 

given by 

A = (MID)A
0 

= MA +D 
0 0 

or 

A (1-M) -lD M- 1-1 
D. = = 

0 TrM-2 

For a dissipative ring 

TrM = Q(w)+ir(w) = complex 

and 

= (M- 1-l)D 
(Q-2)+ir 

(4) 

(5) 

which has the standard form of a Breit-Wigner resonance. Reso-

nances occur when Q = 2 and lrl gives the width (and strength) 

of the resonance. The voltage-current vector at the entrance 

to element n+l is, then, given by 

The formulation is entirely analogous to that for the off-

momentum (dispersed) closed-orbit given in FN-232, except here 
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all quantities are~ in general, complex. The resonance modes 

here are equivalent to integral resonances for orbits. 

The analogy of the formulation can be carried further if 

the ring is electrically divided into N identical sectors each 

having the propagation-source matrix (MID). All around the 

ring we, then, have 

(MID) = CMliS}N = (~1 (1-~) (l-M)-
1 o) 

and from Eq. ( 4) 

--1- (M-1-l)D = (1-M) D = 
crii-2)+ir 

( 7) 

(8) 

where TrM _ IT+ir. As in the case of particle orbit the number 

of (intrinsic) resonances is greatly reduced by sectorizing the 

ring. With identical sectors symmetry requires the ring to 

behave like a much smaller ring one sector in circumference 

and the resonance condition is applied to each sector instead 

of to the entire ring. 

To proceed we shall parametrize the 2x2 unimodular matrix 

M in the usual manner 

M = cos µ + J sin µ. 

Then 

M = ~ = cos Nµ + J sin Nµ. 

So defined µ is the "propagation constant" (phase advance 

sector) and J is the "impedance matrix." When a= 0, J = 

(9) 

(10) 

per 

r o 
' 1 
\-s 
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i3 is the "characteristic impedance." Eg:. (8), then gives 

and 

--1 
= 1-M D 

2-TrM 

= 1 
. ~in i + J cos i)n 

2sinH. \ 
2 

(11) 

A 
n _ MnA = ~ [-sin 1\1 n-~)µ + J cos ( n-

1
2 )µ]n. (12) 

0 2sinµ ' I 
2 

The effects of the power-supply source vectors can be linearly 

superposed. It is, therefore, instructive to look at the 

effect of one source vector D. In this case {MjD) = {MNjD) 

and Eq. (4) gives 

and 

-N 
1-M 

2-Tr(:gN) 
D 

= 1 ( · N µ + J cos N µ l D 
2 

. N sin 2 2 ; 
sin2µ 

1 [ . { N \ J (N .) ] D sin \ 2-n; µ + cos 2-n
1 

JJ_ • = 

In general, µ - a-ib is complex and resonances occur at 

Re (sin !':!. µ) = 0 
\ 2 I 

with the width 

or 

Na = krr 
2 

k = integer 

(13) 

(14) 

(15) 
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( 16) 

For the 2x2 propagation matrix the basic elements are 

a. "Drift Space" 

0 fZl--o 

o--------n 

For this 

M = (~ -~) ( 17) 

b. "Thin Lens" 

0,---.....------n 

CfJ 
I 

0--------0 

For this 

( 

1 0 \ 

M = -i 1) ( 18) 

Both the magnet and the power supply can be represented 

by either the 

a. Symmetric TI 
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for which 

p ~) ti -Zl\ I i ~) M = (a 1 I I 1 
z2 J \-z-2 

i 

/ 1+ zl -z \ I 

\_L(:/1) 
1 I cos µ 

= -

\ 1 ' l+z1) 
z2 z2 z2 

-13 sin µ 

where 

( z 
I cos µ = l+-1. 
I z2 
I 

i 1 

1 [ ii z r zl l 1' 

la = iz 2 - 12+-l z 2 l z 2 , 
\ I 

or the 

b. Symmetric T 

o-------"------o 

for which 
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S sin µ)\ 

cos µ 

(19) 

( 2 0) 
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/1 ' 
-~1) -z1;! ( 1 o\ l 

M = \ 0 
1 _Lil i I 0 

\ I z2 I , 

[ 1/1 I z ) .f 
-z fa+_!_ . (3 sin 

z2 1 \ z 2 
I cos µ µ 

= '• 

\ * 
( 21) 

zl 
-

1 sin -- l+- .1 µ cos µ 
\ z2 z2 l ) 

'• 

where 

( 22) 

In both cases if µ = a-ib we have 

fos a= 
zl zl 

l+~ 2Z 2 2 

lcosh b = 
zl zl 

l+~ + 2Z
2 2 

(23) 

where I denotes the magnitude of a complex number. 

CRUDE APPROXIMATION FOR MAIN .RING 

The frequency dependencies of z 1 and z 2 for a magnet are 

rather complicated but for a given frequency a main ring bending 

magnet can be approximated by the network 
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where 2C is the capacitance-to-ground of the coil, L is the 

inductance of the coil (resistance of the coil is neglected) , 

and R represents the dissipation by eddy currents in the magnet 

laminations and the vacuum chamber plus the 10~ damping resistor 

(see TM-325 by S. C. Snowdon). We shall assume that all magnets 

(Bl and B2) are identical with average circuit-parameter values 

and all power supplies have 2x2 propagation matrices equal to 

unit (short-circuit). Thus, each magnet is a sector and we have 

N = 774. This crude approximation will not properly describe 

the structure-dependent features such as the resonances. But 

it should be a fairly good approximation for structure-insensitive 

characteristics away from resonances such as the propagation con-

stant µ and the characteristic impedance S, provided the average 

values of the circuit parameters are chosen properly. 

We investigate only the effect of one power supply producing 

a peak-to-peak voltage jump of 2V
0

• In this case Eq. (14) gives 

I = n 

v 
0 . lN \ 

sin ·\--n i µ 2 I 

cos 
N \ 
--nlµ 
2 j 

with µ and S given by Eqs. (20) and (23) and 

(24) 
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( 25) 

For main-ring bending magnets the crude approximate numbers at 

720 Hz (w = 4.52xlo 3 sec-1 ) are 

L = 6xl0-3 H 

R = 8Q (lOQ and 40Q in parallel) . 

These values give 

and 

µ = a-ib = .0365 - .0273i 

(3 = (168Q) -0. 642 i 
e 

N 
2= 387 

For ~ - n > 100 (within about 300 magnets on either side 

of the power supply) we have 

sin 

lN ') cos ~--n µ 
~2 I 

and we also have 

. {N_ µ 
1 

1·- n \2 - 2 e . 

.N 

S1
. n N µ 1 e12µ 

2 - 2i 

Eq. (24) then gives 

,,.. iwt r V e = V ei(wt-µn) = V ebn ei(wt-an) 
0 0 n 

I 

./ 
1 I eiwt 
I n 

I 

V -0.0273n i(4524t-0.0365n) = 
0

e e 

= _
1
. Vo i(wt-µn) re 

v = _
1
. o ebn i(wt-an) S e 

( 26) 

l = 
v 

o e-0.0273n i(4524t-0.0365n) e . 
(l 6SQ)e0.928i 
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We see that both V and I are attenuated waves propagating away 

from the supply with the phase velocity 

(Jj 5 - = l.24xl0 magnets/sec = 160 turns/sec a 

and the attenuation rate 

!-folding in o.ii273 = 36.6 magnets, 

and that the characteristic impedance of the ring is (168Q)e 0 • 928 i. 

To study in detail the resonance characteristics of the main 

ring, first one has to obtain the "circuit parameters" individ-

ually for different types of magnets and power supplies and for 

all frequencies. One can then compute the voltage-current vectors 

around the ring as given by Eqs. (5) and (6) using a computer. 


