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In a periodic focusing system, a stopband appears when 

the phase advance per period of the betatron oscillation is 

nTI (n = 0,1,2, •.• ). The width of this stopband is finite so 

that parameters (field gradient of quadrupoles, for example) 

must be changed by a certain amount to regain the stable beta-

tron oscillation. Within the stopband, the betatron motion is 

unstable, that is, the amplitude grows exponentially. The 

growth factor per period is different for different stopbands 

and, within a stopband, it takes different values depending on 

parameters of the system. In a circular machine like the main 

ring, the beam intensity would decrease more or less exponen-

tially as the beam makes many turns if the focusing system 

happens to be sitting in one of these stopbands. This is true 

even for a perfect machine in which its closed orbit coincides 

with the geometrical axis of the focusing system. Four stopbands 

nearest the design point are shown in Fig. 1 for the main ring 

when the injection energy is 7 GeV. Note that, corresponding 

to a phse advance of nTI, one gets the tune 6nTI/2TI = 3n since 
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there are six periods in the main ring. Uncertainties in the 

average field gradient (B; and B~) are mostly due to remnant 

fields (-2.5 G/cm) which are not necessarily uniform for all 

quadrupoles. In Fig. 1, a small effect of dipoles on vy 

(6vy ~ +0.05 at Vy = 20) is not included. The growth factors 

per turn in these stopbands are given in Fig. 2. For example, 

if the average B~ is 51 G/cm and the average B~ is 46.5 G/cm 

-47 G/cm, the amplitude grows (2.4)n times in n turns. 

(B) 

Courant-Snyder formalism of the betatron oscillation is 

well known when the motion is stable. Since there is no 

detailed presentation of the formalism in their classical 

paper for unstable betatron oscillations, the following sketch 

may be of some interest to non-specialists. 

Consider a linear motion in a periodic system with the 

period L, 

~'(s) = f(s)~(s) + g(s)n(s) 

n' (s) = h(s)~(s) - f(s)n(s) 

with g(s) > O. For example, in a synchrotron, ~ = x or y, 

(1) 

(2) 

ri = dx/ds or dy/ds, f (s) = O, g(s) = 1 and h.(s) specifies the 

focusing action of each element in the synchrotron. For a 

certain application (synchrocyclotrons or cyclotrons with an 

azimuthally varying magnetic field) it is necessary to take 

f (s) ~ O and g(s) 11. The transfer matrix from s to s + L 
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can be written formally 

M(s) ~ M(s+Ljs) 

= ( cos a + a ( s) sin a 

-y(s) sin a 

S (s) sin a 
(3) 

cos a - a(s) sin 

where a is independent of sand o:(s), S(s), and y(s) are all 

periodic with the period L. The value of the quadratic form 

W = y(s)·~ 2 (s) + 2a(s)~(s)n(s) + f3(s)•n 2 (s) (4) 

is independent of s. Two eigensolutions of this system are 

~A {s) = [31/2 (s)eil/J{s)' n = [3 -l/ 2 ( s) [-a ( s) + i] e i 1/J ( s) 
A 

( 5) 

1/2 -i111 (S) -1/2 -i 111 (S) (6) 
~B ( s ) = S ( s ) e 'I' , n B = S ( s ) [ - o: ( s ) - i] e 'I' 

where ij;(s+L) - 1/J(s) =a. Betatron oscillation parameters 

satisfy the following relations 

do:/ds = -h(3 - gy, (7) 

dS/ds = 2(fS~go:), ( 8) 

dy/ds = -2(ha+fy), ( 9) 

dl/J(s)/ds = g/S, {10) 

y [3 = 1 + rJ.2 (11) 

So far, no restriction has been imposed on the trace of 

matrix M(s). If jTrMj < 2, all parameters (a, (3, y, l]J, W, cr) 

are real and the motion is stable. If ITrMI = 2, cos a = ±1 
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so that cr = nTI (n = 0,1,2, ... ). Courant-Snyder £ormalisrn 

"breaks down altogether" {their own words). The primary 

interest here is the case when jTrMI > 2. There are two 

possibilities: 

(a) TrM > 2, cos a > 1 

a = 2nn + iµ (µ = real) 

cos a= cosh(µ), sin a = i sinh (µ) 

(b) TrM < -2, cos a < -1 

a = (2n+l) TI + iµ (µ = real) 

cos a= -cosh(µ), sin a = -i sinh(µ) 

It is necessary to make a convention 

sin a- = pos.itive imaginary 

so that 

V > 0 if TrM > 2 

µ ~ 0 if TrM ~ -2~ 

The opposite convention is equally valid. Whichever convention 

is usedr it should be consi.stent with the relation 

cr ~ ~(s+L) - w(s) = fs+Lg(s)/S(s) ds. 
s 

Since elements of the matrix M{s) are all real quantities, 

o.(s), S(s), and y(s) are pure imaginary, 

o.(s) - i_g_(s), !3(s) - i.@_(s), y(s) - ir,(s). 

From (11), 

y .@. = 0.2 - 1 (o.,.@_,y = real). 

(12) 

(13) 
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It is important to note here that y and~ can be positive, 

negative or zero. (For ITrMI < 2, y and 13 are always positive 

by definition.) Since 

M12 - S sin a= (i~)ilsinh(µ) I = -flsinh(µ) I, 

sign (~) = -sign (M12 ). Also, sign (y) = sign (M21 ). From (5) 

and (6) , 

(~A'nA>s+L = -µ 
e (~A'nA)s for cos (J > 1, µ > 0 

= -µ 
-e <~A ,nA) s for cos (J < -1, µ < 0 

= eµ(~B'nB)s for cos a > 1, µ > 0 

= -eµ(~B'T'lB)s for cos cr < -1, µ < o. 

Since general solutions can be expressed as a linear combination 

of two eigensolutions, their amplitudes grow exponentially. The 

invariant quadratic form (4) represents two pairs of hyperbolas 

i~ 2 + 2ci.~n + ~n 2 = C(= W/i); C > 0 and C < 0. 

Asymptotes of these hyperbolas are 

-a. ±1 
1. n or n = -a ±1 

~ ~. {14) 

If ~ = 0 or 1. = 0, one asymptote coincides with n-axis or ~-axis. 

If both y and ~ are zero, ~- and n-axes become two asymptotes. 

Since S(s) can be zero for some values of s, formal 

expressions like (5), (6) and (12) must be defined more care-

fully. For example, it is necessary to have eigensolutions 
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finite and continuous everywhere in the system. Because of 

the periodicity, S(s+L) = S(s), there are even number of zeros 

of S(s); s = s 1 , s 2 , •.. , s 2N. 

(a) S(s) changes from positive to negative imaginary. 

For s. - o < s < s. + o, o << 1, one can write 
l. l. 

S(s) = -2ig(s) (s-si) 

since g(s) > 0 and S 1 Cs) = -2g(s)ct(s) where a(si) = 

By going above the pole at s = s.' l. 
one can show that 

131/2(5) changes by £actor (-i) : 

with z - s-s. 
l.. 

s. -o :;:: s ~ s. -e:: 
l.. 1 

s. + E ~ S :;:: s. + o: 
1 1 

s-s. = 
1 

lzlei1T 

s-s. = lzl 
1 

61;2(s) = 12Slzll/2e-in/4. 

Similarly, the change in ei~(s) ~s (+i): 

S ~ s.-E, 
l. 

~(s) = ~(si-9) + / 5 g/B ds 
s.-o 

~(s) = 
1 

w(s.-o) + (i/2)~n<lzl/o) 
l. 

i~(~i- 0 > -112 1/2 
= e lzl o 

(15) 

+i. 
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o/(s) = o/(si-o) + (i/2)inclzl/o) + ~12 

e
iip(s) i1/J(si-o) I 

1
-1/2 1/2 . 

=e z cS (1). 

Consequently, ~A= S1/ 2 (s)eiijJ(s) is continuous at s 

Note that the phase ijJ(s) makes an increase of w/2. 

= s .. 

functions are also continuous: 

~B = s 1/2 e-i~ = const. jzj 

=-canst. lzl 

(s = s.-e:) 
J_ 

(x = s.+e:) 
l. 

= (-2i)S-l/Ze-i~ = const. for both s = 
s = s.+e:. 

J_ 

Summary 

s.-e: and 1 -

S(s): positive imaginary to negative imaginary 

a = +i 

By going above the pole, 

a112 + -is112, 

Near s = s., 
J_ 

~A(s) = const., 

1/J + l/J + TI/2, i 111 
• i''' e 'I' -+ ie 'I'. 

nA(s) = const. y(s) 

J_ 

Other 
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(b) ~(s) changes from negative to positive imaginary. 

a = -i 

By going below the pole, 

13 1;2 + iSl/2, 

Near s = s., 
J. 

sB(s) =canst., 

l/J + l/J + 1T/2' i'" . i''' e '. + ie "'. 

n8 (s) = const. y(s). 

TM ... 314 
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Thus a pair of poles contribute rr to the phase 1}J. If 

N = 2n (even number of pairs), a= 2nTI + iµ and for 

N = 2n + l (odd number of pairs), a = (2n+l)1T + iµ: 

a - 1jJ (s+L) - 1jJ (s) 

= P /s+L(g/S)ds + (TI/2)•2N 
s 

= NTI - iP /s+L(g/S)ds = NTI + iµ. 
s 

Since s112 (s) is periodic with the period L, 

-µ = ±sA(s)e . 

A general solution (~ 1 n) with the initial conditions 

~(s=O) = O, n(s=O) = 1, l/J (s=O) = 0 

can be written as 
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n(s) = s112 cs=O)S-l/2 (s) [cos ¢(s) - a(s) sin ¢(s)]. 

At s = L, 

~(s=L) = B(s=O) sin a= -~(s=O) sinh jµj 

so that 

sign (_~) s=O = -sign ( ~) s=L 

thereby defining the sign of ~for all s. 
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