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The effect of a general orbit bump ~B(z) on the closed 

orbit and the effect of a general focusing bump ~B' (z) on the 

S-function were given by Courant and Snyder (Ann. of Phys. 3, 

1-48, 1958, hereafter referred to as C & S.) Here, we put 

their formulas into easy-to-apply forms and apply them to the 

main ring. For completeness, we will outline the derivations 

of the formulas given in C & s. 

I. ORBIT BUMP 

With an orbit bump ~B(z) the orbit equation is 

2 
d x + K(z)x = 
dz 2 

~B 
-Bp" 

After the Floquet transformation 

x= v'V"Su dz = vS d6 

we get 

-~B(vS)3/2 F(6). 
Bp -

(1) 

(2) 

( 3) 
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The periodic solution (closed orbit) is 

l u = ...,..__...,.. __ 
4vsin1TV J 

8+21T 
F(8')e-ive'ae• 

e 

t8+21T . e• J ! F(S')e
1

v de . 
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rexcept for difference in notation this is identical to Eq. 

(4.7) of C & SJ. It is useful to calculate the "invariant" 

W [Eq. (3.22) of C & S], except now, W = W(8) is a function 

of e. 

w (8) = [ 2 l /au\
2
] v u + v2 \aej 

(4) 

\) = -----
4 2 . 2 v sin 1TV (

. Je+21T ) (f e+21T ") ~ F(S'Jeive'ae• 

8 

F(S'Je-ivS'ae~ 

where 

= l 

4 
. 2 sin TIV 

rL = orbit length all around 

~¢ - f d~ = phase of betatron oscillation. 

If the bumps are all localized a-functions we have 

4si~2 nv (l vs~ eHn)( l- 0n~ e-i$n) I 
'----~"~-~'-""_"_ ·- --- . J 

w c e > = 

(5) 

( 6) 



where 

on -

-J ... 

(Lrn£ > 
~,.,..._._n_ = kick angle of the nth bump. 

Bp 
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In between two bumps W is constant and the upper-bound of the 

orbit displacement in that region is given by x = /ws. 

Case 1 

If we have only one bump (n = 0) 

w = 
(3 cS 2 

0 0 
2 • 

4sin TIV 

For the main ring if one bending magnet (o = 0.0081) at 
0 

S
0 

= 90m is missing we have, since sin TIV = 1/12 

W = ! (90 m) (0.0081)
2 = 2950 mm-mrad. 

The maximum S is S = 100 m. This value of W gives for the max 

maximum upper-bound of the closed-orbit displacement 

~max = lwsmax = 540 mm 

which is, of course, much too large. 

Case 2 

If we have two bumps W{9) has only two values Wa and Wb 

in region (a) (from bump 1 

to bump 2) and region (b) 

{from bump 2 to bump 1) , 

respectively. They are 
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w = a 

-, 
\ 

= 

1 
2 4sin 'ITV 

1 

4sin 2 
'ITV 

1 

4 
. 2 sin 'ITV 

(s 21B; e 
i¢2 

+ i¢1) a 1 .v'i3'i e x 

" .I -i<P • ct> \ 

(o 2~ e 
2 + cS l ISi° 

-1 111 
e / 

\ 

(8) 
f 2 
\cS1S1 + 2o 1o21s1s2 cos Acpb + 2 '\ 

cS2S2) 

This corresponds to the formulas given in TM-294-Eq. (2). For 

example, if Acpa = 1T and cS 1/Bl = cS 2 /fS" we have Wb = O. This is 

the case of a local orbit bump formed by two magnets TI-phase 

advance apart. 

II. FOCUSING BUMP 

With a focusing bump AB' (z) the S-deviation equation 

after the Floquet transformation is 

d
2 

(AS'\ + 4 2 {AS 
d82 \ s J \) \. s = -2AB' (vS) 2 G(8). Bp -

The periodic solution is 

AS = 1 [e2iv {8+1T) 
S 8vsin21TV J

8+21T 
G(8')e-2ive'de' 

e 

(9) 

-2iv{8+1T) f. G(8')e iv d8' . (10) 
, a+ 21T 2 . 8 , ] 

+ e j 
e 
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(Except for difference in notation this is identical to Eq. 

(4.50) of C & S). We can define a similar "invariant" U = U(8) 

by 

u (8) = (fi~) 2 
+ 1 (·~ fiS) 2 

µ 4v2 de S 

1 = 
16v2sin2 2TIV (J

e+2TI ) 

6 

G(S')eZive'ae• x 

( G(6')e-21ve'ae' 
If 8+2TI ) 

' e 

1 

( f 
z+L \ ( {z+L 2 · cp ) 

z (~~ ') Se-21
$az '; ! (~~ ')se - 1 

dz' _<11) = 

If the bumps are localized a-functions we have 

(fiB'.R-) 
n -,,,..--- = focusing "kink" of the nth bump. 

Bp 

(12) 

In between two bumps U is a constant and the upper-bound of fiS 
,,,,..... 

in that region is fiS = SIU. 

Case 1 

If we have only one bump (n = 0) 

s2e:2 
0 0 u = 2 . 

4sin 2TIV 
(13) 
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For the main ring if one focusing quadrupole (E
0 

= 0.040 m- 1 ) 

at, say, S
0

x = 99m and S
0

Y = 27 rn is missing, we have, since 

sin 2rrv = 1 

Ux - ! (99rn)
2

(0.040 m-1 ) 2 = 3.92 

Uy - ~ (27rn) 2 (0.040 m~1 ) 2 = 0.29. 

A 
The upper-bounds of the increased (3-functions, namely, B + ~S 

are, then 

r < s A 
+ ~(3) = (1 + lux) Sx - 3.0 (3x { x 

/'.. (14) 
L < s + ~(3) = (1 + Ivy> SY - 1.5 (3y. y 

Since the main ring aperture is rather large these increases 

in (3 may well be tolerable. 

Case 2 

With two bumps U(e) has two values Ua and ub in regions 

(a) and {b), respectively. 

In this case we have 



u l = a 4sin2 2rrv 

1 = 
4sin2 2rrv 

ub 
1 

= 
4sin2 2rrv 

-7-

( 2i•2 2i•1) 
\t: 2 S2e + t: 1 S1e x 

™"""313 
0402 

t:2B2e 2 + 
( -2i. -2i. ) 

t:1B1e 1 

f 

2 2\ { 2B2 + 2t: 1 t: 2 B1 B2 cos 6¢b + 1 El 1 

\ t:2
6
2; 

( 2 2 E1B1 + 2t:1 t: 2s1 s2 cos ~~a+ t: 2S2 . 2 2) (15) 

Suppose we ask the question whether it is possible to at least 

partially compensate for a missing quadrupole by turning off a 

second quadrupole. 

U is zero only when t: 1 S1 = t: 2S2 and cos 6¢ = -1. For a 

quadrupole lt:I has the same value in the x and they planes. 

To compensate equally for both planes we should have s
2 

= s
1

, 

namely if a focusing quadrupole is missing we should turn off 

also a focusing quadrupole. Furthermore, since 

6¢a + 6¢b = 2rrv ~ 2rr(20i) to get cos 6¢a and cos 6¢b equally 

negative so that U and ub are equally small we should have 
a 

6¢ = 2TI(k + ~) and 6¢ = 2TI(l9 5 with k integer. - k + -) = a 8 b 8 

Then cos 6¢ 6¢ - TI 1 And we have = cos -cos - = - 12· a b - 4 

u ~ 2-12 2 2 0.146 2 2 u = t:1B1 = t:1B1 a b 4 

f 2.30 x-plane 
= 

lo .17 y-plane 
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i£ the first missing quadrupole is a focusing quadrupole. Thus 

the increase in B is reduced to 

r(B 
/'-

+ ti B) - 2.5 Bx x 

l A us + ti B) - 1.4 By. y 

(16) 

Comparing these values with those in Eq. (14) we see that the 

effect of a missing quadrupole can indeed be partially compen-

sated by turning off another quadrupole, but the amount of 

compensation is not very large. Here we considered only a 

compromised compensation in both the x and the y planes and 

in both regions (a) and (b). It is possible to improve the 

compensation if for some reason only one of the planes or one 

of the regions is considered important. 
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Both Eqs. (1) and (9) are approximate equations. For Eq. 

(1) the approximation assumes that ~ << 1 and terms of the 

second and higher orders in ~ are neglected. These conditions 

are satisfied for the example cases given on pp. 3 and 4. 

For Eq. (9) the approximation assumes that 8 ~ << 1 and 

8B' 8S ]fl << 1, and terms of the second and higher orders in S and 

8B' 13' are neglected. These conditions are not satisfied for the 

example cases given on pp. 6 and 7. The results are, therefore, 

invalid. 

Eq. (10) shows that 8 ~ (if << 1) is a sinusoidal function 

of e with amplitude ID. For ID > 1, then, at some 8-locations 

M3 < -1 and the modified s = s + 8S < 0 which is certainly not s 
meaningful. This is another indication that Eq. (9) and its 

solution Eq. (10) are invalid when 
8 ~ = ru > 1. 

For the case of one a-function focusing bump the exact 

solution can be obtained using the transfer matrix. The transfer 

matrix around the entire closed orbit plus the bump (E
0

) is 
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= l 
\-e: 
\ 0 
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COS 21TV + \/ a;O 

-y 
0 

O )· go,s 21TV + ( ao 
1 -(y +e: a ) 

0 0 0 

(30 ) 

-(a +e: (3 ) 
0 0 0 
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sin 21TV 

where, as before, e:
0 

-
Bp 

The modified "tune" v and 

(3-function at the bump S
0 

are, therefore, given by 

{

cos 

(3 sin 21TV = 
- 0 

0 sin 21TV • µo 
(lA) 

As e:
0 

varies from zero to either positive or negative values 

stability limits cos 21TV = ±1 will be encountered at certain 

values of e:
0

• Beyond these values of e:
0

, !cos 21Tvl > 1 and 

the motion is unstable. At the stability limits the modified 

(3-function S is 00 everywhere except at discrete 6-locations 

where (3 = O, namely ~~ = (3Sf3 is 00 everywhere except at these 

discrete 6-locations where ~~ = -1. Although at the stability 

limit this exact ~~ is hardly sinusoidal, one may expect that 

the stability limits correspond roughly to ru = 1 when the 

"approximate" S as given by Eg. (10) also goes to zero at 

these discrete 6-locations. Eg. (13) gives, then, for the 

stability limits 

"approximate" (2A) 
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while the exact conditions are given by Eq. (lA) as 

= COS 27TV .~ 1 
sin 27TV 

= cos 2 7TV ± 1 sin 2 7TV. exact 
1 
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(3A) 

The exact and the "approximate'' conditions are identical when 

\) = (integer) + 1 - 4• 

For the main ring v 1 Both - 204. 

for the stability limits 

or, for S
0 

- 100 m 

E
0 

= ±~ ~ ±0.02 m-l 
0 

Eqs. (2A) and (3A) give 

Missing one quadrupole (E 
0 

-1 = ±0.04 m ) will take us beyond the 

stability limit. The most we can tolerate is missing ~ of a 

quadrupole. 

The "invariant" U is clearly also an approximate invariant 

valid only when ~S << 1. We can put U in a more conventional s 
form. 

(~~) 
2 

1 [ d (~S)] 2 

= f.I + 4 S dz S 
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d s I 
where prime means dz and a = -2, ~a = {Llf3) I 

2 

TM-31-3-A 
0402 

(4A) 

D. A. Edwards gave the exact form of this invariant as 

u ,_ = .... ( Ll-'~'-)"-
2

_+_a._2_...;(......,Ll_,~,__-_Ll_~ .... )_
2 

1 + L'.lS s 
(SA) 

His derivation is given below: Consider two locations 1 and 2 

around the closed orbit with no focusing bump in between. The 

transfer matrices from locations 1 and 2 all the way around 

the closed orbit are respectively 

and 

Writing the transfer matrix from location 1 to location 2 as 

M12 (there is no need for a bar on top because there is no bump 

- -1 
between locations 1 and 2) the relation M2 = M12M1M12 leads to 

Remembering that J 2 
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which shows that the determinant of ~J is invariant within a 

bump-free region. We can, thus, write 

U = -l~JI = (~a.) 2 - (~S) (~y) = invariant. 

Substituting 

~y = l+(a.+~a.)2 
S+~'.6 

= 

l+a.2 
-f3-

we get directly the expression (SA). 

I am grateful to Dr. S. Ohnuma for pointing out the error 

in TM-313 and to Dr. D. Edwards for the derivation of the exact 

expression of the invariant U, and to both of them for several 

illuminating discussions. 


