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About 1940, Fermi found the distribution function for 

the lateral and angular displacements of charged particles 

which undergo multiple elastic scattering in passing through 

a layer of matter. In his treatment, the energy loss which 

the particles suffer due to ionizing collisions is neglected. 

Rossi and Greisen1 worked the theory out in detail and Rossi's 

book2 discusses it. One result which is commonly used is the 

prediction of the mean scattering angle: 

<02> = (Es )
2 

av --S cp 

or in more standard rotation 

<0> rms = 15 (MeV) ~ 
PV (MeV) "'V ~ 

where x
0 

= radiation length. 

(la) 

(lb) 

The form of the angular scattering.was Gaussian with this 

being the "half-width". Moliere3 improved the theory by 

introducing a different angular distribution, but for small 

angle scattering the Gaussian is still a good approximation. 
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Eyges took the theory and modified it to include the 

energy loss for ionizing collisions. In Rossi and Greisen's 

notation the diffusion equation for the distribution function 

F(t, y, 8) is: 

( 2) 

where t is the thickness traversed in units of radiation lengths, 

y is the lateral drift, 8 is the angular scattering, and 

W = 2pS/Es. He assumed that p and S are functions of t -

this is where the energy loss dE/dx is used. W is assumed to 

be a known function of t, although not necessarily one for 

which there is an analytic expression. Neglected is the fact 

that a particle at t has traveled a somewhat greater distance 

than t due to the deviations caused by scattering. For 

multiple scattering of high energy particles these deviations 

are small and the approximation will be a good one. 

The solution is: 

1 (-82A2-2y8Ai+.·y 2A8 
F(t, y, S) = 2TI(B(t))2 exp 4AoB 

where 

B(t) = AoA2 - A1 2' 

Ao (t) =J: dn 
w2(n) 

A1 (t) =lo: (t-n)dn 
w2 (n) 

A2 (t) =la (t-n) 2dn 
w2 (n) 

(3) 

( 4a) 

(4b) 

( 4c) 

( 4d) 

where W has the same definition as earlier and n is a dummy 

variable of thickness. If W2 is a constant; this solution 

reduces to the Fermi solution as given by Rossi and Greisen. 



-3- TM-261 
1100.4 

lf you integrate over y, you get the angular distribution 

irrespective of displacement: 

(5) 

Similarily, the lateral distribution independent of angle is 

[F(t, y, 0)d0 = Z(tt!,J';, exp (-4r:)· (6) 

Some insight can be gained into formulas 5 and 6 by comparing 

them. The angular distribution (5) depends on t through A0 , 

i.e., through (a.n/W 2 (n) whereas the lateral distribution 

(6) depends on t through A2 or f[ (t-n) 2 /W 2 (n)] dn. Because 
0 

of the factor (t-n) 2 large values of (t-n) are weighted more 

heavily in the last integral than in the preceding one. This 

is caused by the fact that a given angular scattering produces 

a larger lateral drift at t the farther from t that it occurs, 

whereas all angular deflections at any intermediate thickness 

contribute equally to the total angular scattering at t. 

In general, the integrals A0 , A1 , and A2 which determine 

these distributions can be obtained by simple numerical inte-

gration using the range versus momentum tables which have 

5 already been published for the case of muons • For a few 

special cases the A's can be found by direct integration. For 

example, for a high energy particle one can assume a constant 

dE/dx. Then, the momentum p of a particle at depth t radiation 

lengths is p -st where E is the constant momentum loss per 
0 . 

radiation length. Then W2 (t)= [4(p 0 -st) 2 /Es 2
], hence, the A's 

become: 



Ao (t) = 

A1 (t) = 

A (t) = 
2 

-4-

E 2. 

s t 
4P lP -e::t) 

0 0 

E 2 

[in 
p 

- ~:] s 0 
4 E: 2 p -e::t 
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E 2 [2t s t2 E: 
-2 . (p il -e::t) 

4 E: ! 
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(7 a) 

(7b) 

(7c) 

A direct comparison can now be made with the Fermi theory of 

multiple scattering. Under these approximations (i.e.,S=l), 

Eq. la becomes 

<82> = 
av 

E 2 
s 

PT 
0 

t (8) 

The Gaussian half-width of the angular distribution function 

in the Eyges theory is 

<8 2 > = 4A = av o 
E 2 

s 
p (p -e::t) t 

0 0 

(9) 

If the constant momentum loss e:: = O, the two theories have 

identical angular distributions. Such a trivial comparison 

is not possible between the lateral distributions . 

In designing muon shields one is interested in the lateral 

displacement function, Eq. 6. For cylindrical geometry this 

equation becomes 

I (ti r) = (10) 

where the A is the same function of t as given in Eq. 7c, 
2 

and r is the displacement from the original direction. 

Equation 10 can be interpreted as the solution for a case of a 

narrow beam of particles of a given incident energy normally 
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incident on a semi-infinite slab of material. I is the 

current density in a plane at t normal to the direction of 

the incident particle. By calculating this function at 

various depths and many radii, one can plot the diffusion of 

a particle of given incident energy in a block of material. 

Shown in figure 1 are the isocurrent density lines for muons 

of various energies in iron. The choice of 10- 7 is arbitrary, 

but has the meaning that for 1 muon/cm 2 incident on an infinite 

block of iron, the current density along this line is 10- 7 

muons/cm 2
• For the 200 GeV case other isocurrent density 

curves are also shown. The predominate shape of the isocurrent 

density lines is that of a slightly flared horn. A similar 

set of curves for soil is shown in figure 2. A muon shield 

is simply made up of a superposition of many of these horns 

chosen correctly and added in accordance with the incident muon 

flux as a function of energy and angle. 

In designing the muon shield for the production target 

in an experimental area this superposition is a rather compli-

cated process which take account of the muon flux as a 

function of energy and angle for a given production model. 

Results on muon shields for such an area have been reported 

. . M6 in a previous T 

The design of a muon shield at the end of an experimental 

secondary beam line is much simpler. Here the angular dependence 

of the muons has been suppressed since all muons emerge more 
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or less parallel from the end of the beam line. Then, 

knowing the muon flux as a function of energy the appropriate 

horns could be superimposed to provide shielding. A crude 

example of how this would work can be shown with the aid of 

figure 2. Suppose that emerging from a given beam line are 

the following fluxes: 

Eµ 
(GeV) 

0 - 60 

60 - 100 

100 - 140 

140 - 180 

Flux 
(Muons/sec/proton) 

10- 6 

10- 6 

10- 6 

The desired flux at the surface of a muon shield is 10- 13 

muons/cm2 /sec/proton. Therefore, the necessary attenuation 

The shield could be crudely designed by superim-

posing the 10- 7 muon horns for the energies of 40, 80, 120, 

and 160 GeV and taking the envelope out of these horns as the 

required shield shape. In actual practice the energy bins 

would be taken much smaller and the shield would have a smooth 

outer edge. 

Similarly, the design of a lateral muon shield for a 

bending magnet can be envisioned as superimposing the various 

horns fanned out to account for the muon fluxes and the 

angles at which each muon momentum emerges from the magnet. 
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