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1. INTRODUCTION

The purpose of this note is to record the effects of a sequence of
Moser transformations used in analysis of single-particle nonlinear
resonances. ! The calculations are carried out here in action-angle
variables and the work is restricted to one dimension. (For resonance
calculations in complex variables and in two dimensions, see Ref. 2.)
Higher -order terms are calculated, both terms in which the (n+ 1)St
order gives corrections to nth -order resonances and terms in which a
nonlinear term in the nth order gives a new resonance in the (n+1 )st
order; this last can be referred to as a "higher-order resonance'' and
has apparenﬂy not been previously examined.

I began this work at LRL when P. F. Meads found higher -order
resonances in digital computation for the Omnitron design work. I have
also carried out some computational work and hope to be able to discuss
the agreement between computational and analytical work in a later re-
port. The cases of impulsive (§-function) nonlinear forces treated here
are aimed at this numerical work. it should also be remarked that the

treatment of these §-function terms is the main difference between this

work and earlier work of Laslett in action-angle variables.
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The equation of motion treated in this report is

q”+K(S)q+M(S)qZ+N(S)q3 = 0. (1.1)

Here s, the independent variable, is the arc length along the eqﬁilibrium
orbit. Derivatives with respect to the independent variable are de-

noted by primes. The coefficients K, M, and N are periodic functions

of s with period L. The dependent variable q is the transverse displace-
ment from the equilibrium orbit. The equation of motion (1.1) is derivable

from the Hamiltonian

2 1. 2 1
P +-2-'Kq + =

3 41 4
T Ma~ +7Ng . (1.2)

DN =

H =H(p,q) =

The momentum p canonically conjugate to q is thus q', the tangent of
the angle of the particle orbit with the equilibrium orbit.

" The "order" of a term will be used throughout this report to mean
the power of q or p in the Hamiltonian (1.2).

The Moser method is a sequence of canonical transformations,
each of which removes the dependence on the independent variable s from
one order to higher orders. The result is a Hamiltonian independent of
s and therefore invariant. At any step in the sequence of transforma-
tions, a resonance term may be recognized because of its small denom-
inator. These resonance terms are treated by a special canonical
transformation to remove their dependence on s. In the one-dimensional

case discussed in this report, the method will treat only one resonance
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and cannot give information on the combined effects of two or more

different resonances.

2. TRANSFORMATION OF THE LINEARIZED MOTION

The dependence on s of the linear -motion terms (terms of second

order in the Hamiltonian) can be removed by transformation to action-
angle variables. In the linearized motion [M(s) = N(s) = 0], the qua-

dratic form

1 2 1 2 2
J = g(yq +2aqp+f3p2) =ﬁ[q T(aq+PBp) ],

is an invariant; that is, J' = 0, Here «, B, and y are the Courant-
Snyder parameters of the linear -motion transformation matrix. 4 We
take J as a new canonical momentum. The canonically conjugate co-
ordinate is Y, the polar angle in the (q,p) phase space. The transfor-

mation from (q,p) to (L|JO, JO) is

q = - '\IZBJO COSLJJO,
p = '\IZJO;ﬁ (sin kIJO+ozcos¢o).

The inverse transformation is
1 2 2
= + +
Jo “3g @ *(eq+Pp) ],

tan LIJO = a+Bp/q.

This canonical transformation is derivable from a generating function
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G=Gla,y ,s) = - = L (tand_+a) 2.4
q: O: 2 B O a ( A )
by the rules
_9G
P = -é_CT
G
JO = W (2.5)
H - H+32,

ds
which reproduce the transformation equations. The new Hamiltonian is

J
-~ 1
H-2-3 @) * 15 > cos”u_ + B°Ne) 1% costy . (2.6)

In the linear approximation, Hamilton's equations are

s |
J T e = O
o} 8410
(2.7)
oH 1
g = 2o L
o 3] B

The first equation reproduces the constancy of Jo in the linear approxi-
mation; the second shows a method for eliminating the s -dependence of
the linear term Jo/ﬁ in I:I The phase change of the linear oscillation

in one revolution of arc length C = NL is, from this equation,

: Cd
bo(C) =4 (0) = [T =2 = 2y, (2.8)
O

(6] O

The independent variable
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S ds
@fovﬁ, (2.9)

advances by 2w in one revolution. The transformation from s to ¢ is

canonical; the new Hamiltonian is

~ d 3/2 3 2 4
Ho= Ha% = vJo +A3(¢)Jo / cos LPO +A4(qS)Jo cos LLJO, (2.10)
where
3/2
2 5/2
A@) = -3 v f M(¢),
(2.11)
3
A4 l9) = v B N(4).

The linear -motion part of HO is v Jo,' independent of ¢. In the linear

approximation, trajectories in phase space are now circles. Curves of
constant HO are also curves of constant Jo. The total Hamiltonian is a
periodic function of ¢. The nJCh order term, which came from the term

proportional to qn in the original Hamiltonian, now has the form

. 2 n
An(@)JO cos LIJO- (2.12)

It may be remarked that this tranformation differs from that of

Snowdon, which introduces a coordinate

VS ds
E =4 -F" B

(0]

in place of Lpo. Neither of these transformations is applicable to two-

dimensional nonlinear cases, because either involves use of the
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amplitude -function B (in the linear transformation in our case, in the

nonlinear parts in Snowdon's), which is different for the two dimensions.

3. NONLINEAR TRANSFORMATIONS

The Transformation

The purpose of the nonlinear transformations is to remove the
¢ -dependence from the nth order and transform it to higher order. We

take as the general form of the Hamiltonian

2
H_ - vJo+mAn@)Jon/ cosnwo, (3.1)

The transformation from (4J0, Jo) to the new variables is taken to

be a function of Lbo, Ji’ and s. The transformation rules are

Lo

1 3J1

J :.aG_1 (3.2)
e} BLLJO

H —H+?Ei

1~ o 8s

We choose a generating function

n/2
G, = ¢OJ1+W(¢O,¢)J1 (3.3)

so that
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n-2
n 2
Yy =¥, T Wy
n
ow 2
= 4 ——
Hy=H,* 55 91

We require that the transformation be a periodic function of ¢, in order
to keep the transformed Hamiltonian periodic.

The new Hamiltonian in mixed old and new variables is
n n

ow ow 2 n
—_— —_— |+ .
5% + vallJo :’ Jo Ancos ¢o+. . e

2
Hi— in+J1 [

the old variables must be expressed in terms of the new in Hi' We

write first

= = n-1
2 2 ow
= - — +
Jo =91 Y250
o]
-and
n
2 ow aw n n w n-1 n
= —_—t y—— + + = —
H1 vJ1+Ji [8¢) VBLPO Ancos LPO] > 3L|JOJ1 Ancos LIJO+. ..
We then write Lpo in terms of qu as
n-2
2

n
U =¥y T AV =y —swd,

and write the Hamiltonian in new variables as
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N 2 n _n-iraw ) _ aQ
H = vl +7,°Qu,.6)+3J, [—84)1 A cos g, -w —"anJ”L .., (3.5)
where
ow ow n
QY,d) = 55 + v ap— +AnCOS P (3.6)

The last term of the Hamiltonian is the correction term, showing the
effect of the transformation of the nth order on higher orders. In the
correction term, we have neglected the difference between Lpi_and Lpo,

because we shall not carry the calculation to still higher orders,

Analysis of the nth Order Term

n
Let us investigate the conditions under which the term QJ 12
can be transformed to zero. Then
ow ow n
= - F — = O'

The analysis can be carried out in complex exponentials, in real
trigonometric functions, or by expanding Ancos V in Fourier series.

We shall use complex exponentials; we set

n iz
cos Y= Z: anﬂ e qJ, (3.8)
where ! takes the integral values *n, #(n -2), etc., down to +1 for n

odd and 0 for n even. In the third order,

©jw |~
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and in the fourth order,
_ -
%44 T%4-4 T 106
a = a -1
42 ~ “4-2 4
_ 3
%40 " 8
We then seek a solution of Eq. (3.7) of the form
M -
W, §) = Z w,(9)e Ve, (3.9)

Then (with primes now denoting derivatives with respect to ¢)

v Uvo
Wy = A Ap@le
or
~ _ ) v
W, = W, me, ‘/; Ah(d))e do,

where Yo is a constant of integration.

We now impose the condition that Wﬂ be periodic in ¢, that is, that

2w\ _
wo (v 045 2w 0

From this condition it follows that
2milv

. N _ _— ivo
W 1 -e = a, j‘N An(¢)e do. (3.10)
o

fo
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If the coefficient of Wzo on the left is different from zero, we can solve

for the W0 that gives a periodic solution. Then we have transformed to

zero all nJCh order terms and the new Hamiltonian is still periodic in ¢.
If, on the other hand, the coefficient of W£O vanishes, we cannot

find a non-trivial periodic solution unless the right-hand side also van-

ishes. The coefficient of Yo vanishes when £v/N is an integer, or when

fv = mN, (3.11)

with m an integer. Eq. (3.11) is a resonance relation and the terms for
which it is satisfied are called 'resonant' terms. What we have shown
is that all terms in a given order except the resonant ones can be trans-
formed to higher order, leaving the resonant terms for the special treat-
ment discussed in the next section.

Even if the resonance relation (3.41) is not exactly satisfied, but if
(Zv -mN) is small, the corresponding term in Wz will be large, which will
give large terms in higher orders. It is not even necessary that the
resonant term be that for which (fv -mN) is smallest, because the
change of v with amplitude may drive the motion away from this reso-

nance. We therefore choose the resonant term and transform all other

terms to higher order by the method above.

Resonant Terms

th
Only those terms for which fv = mN are left in the n  order of the

Hamiltonian. Furthermore, from Eq. (3.10), the integral
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27
LN Ay,

must be different from zero. We shall call the particular values of ¢
and m for which resonance is possible er and m . In the integral above,
we can replace £rv by mrN because they are approximately equal, thus

expanding An(qS) in Fourier series:

_ -imN¢
A_(9) = Z A_e ’
Ir
A
2 (3.12)
_ N N imN¢
A= 5 /c') A_(9)e dé .
(Because An(¢) is real, A;m =A _.) Thus the term that drives the

th .
resonance zrv = mrN is identified as the m harmonic of An(cb).
If the relation 2 v=mNis satisfied, so is the relation
—frv = - mrN, since fand m come in positive and negative pairs. There

are thus two resonant terms and the Hamiltonian is

eiuqu1 B mrN(b)

which can be written as

(3.13)
= - +
H, = vJ, +2a r]An r[cos(£r¢1 m N¢ + & r) I+

B

1 1
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where £ and m_are now to be taken as non-negative numbers and §
r r nmr
is a phase angle. We have neglected here the higher -order terms, to
which we shall return in Sec. 4.
There are two kinds of resonant terms, those with ﬁr = 0 and

2 # 0, that require separate treatment.

(i) Terms with ;Zr = 0, These terms occur only in even order be-

cause £ has only odd values in odd orders. Furthermore, mr = 0 when

lr = 0 and the term is therefore independent of both ¢ and ¢ and has the
form

n

2

2a (n even)

no ]AnoI Ji

These terms change v as a function of J, or equivalently, with amplitude.
If there were never any resonant terms with !r # 0, the Hamiltonian

could be transformed to
3 2 5 3
H=vd+ 7 [AglT + glagldy +- oo

and the equations of motion would be

d¢ oy '
¢ _ 8H _ 3 15 2
T 57 - vtz At g lagy

so that J would be a constant of the motion and the effective v value would

depend on J or, equivalently; on amplitude.
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(ii) Terms with ﬂr # 0. These are the terms that can give rise to

unstable motion. In them, the dependence on ¢ is contained in the argu-
ment of the cosine in the form erIJi - mrNd). A transformation from 4:1
toy, =4, -m N¢ /£r, that is, to a rotating coordinate system in phase
space, will remove this dependence. This transformation can be derived

from the generating function

mrNgb
G2=G2(¢1J2,¢)=J2 411— fr . (3.14)
Then
oG
2
J, = — = J_,
1 a¢1 2
b = ?_G_g_ = —mrN¢>
2 a8 IERE | [} ’
2 r
oG mrN
H2= H1+-5?¢-—‘H1-J2£ ’

and the new Hamiltonian is

(3.15)

+. ..
g,+2 A 13,7 cos (zrq» + 6nm)
r r r r

viB

m N
r
2 i

If terms of higher order are neglected, this Hamiltonian is independent
of ¢ and is therefore a constant of the motion. The stability of the motion

can be predicted from this invariant.
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4, HIGHER-ORDER TERMS
There are two reasons for interest in higher-order terms. First,
when there is a resonance in the nth order, the stability limits will be
affected by those terms that change v with amplitude (terms independent
of Yyand ¢). Even when there is no resonance in nth order, but one exists
in (n+ 1)St order, its stability limits will be affected by such change-of-

)st order.

-v terms transformed from the nJCh to the (n+1

Second, the higher-order terms can give new resonances. The
cases of the preceding section, in which ]lr! has the form [n - Zt[ (t an
integer), are not the only possible resonances that can arise from a given
term in the original Hamiltonian of Eq. (1.2).

The next higher -order term is given in Eq. (3.5) as

3 {8—“1-}\ (9)cos™ y, - @-]

w
1 8, “n Bl
(4.1)
ow aw n
I ev— + e— + .
Q 84}1 v %% An cos \111

Let us consider the two terms separately. We must also distin-
t
guish between the cases when there is or is not a resonance in the n

order. We can use Eqgs. (3.8) and (3.9) to write the first term as

aw i[(£«1+£2)¢-£1v¢]".

R(b,.4) = 55
1

n, .
A_($)cos™y, _1An(¢)[Zq t,w, (d))amze
145

This term is periodic in both yand ¢ and can therefore be expanded in a
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R(U,¢) = Z leei(“"mNd’), (4.2a)
7, m
and we find that
iN s
Bom = 20 IZ “1%n@-2,) £N A_(8)w, )et BN~ LvI0as (4 2p)
) _ 1

If there is a resonance f‘rv = mrN in the nth order, then the terms

containing Wﬂr and W_ﬁr are missing from Rﬁm

Consider now the second term of Eq. (4.1). If there is no reso-
nance in nth order, then Q is identically zero and the second term makes

. _th
no contribution to higher orders. If there is a resonance inn  order,

then
Q = 2_,|A_lcos (zr¢1 -m No + 6§ )
r Ir
and
1
_ U, - ve)
w o= Z; wi(¢)e 1 )

where the prime on the summation is to remind us that the terms with

L= ijzr are not included. Then

S,,8) =w 2% = -2 2a

' Wy, - veé)_.
X w (d)e 1 sin{f ¢ -m N¢é+§ s
; (r 1 r nmr)
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can make a contribution of interest only in certain cases. A contribution
of interest would be to a) the change -of-y -with-amplitude term (the term
independent of Land ¢), b) a different higher -order resonance, or c)
another term of the same (ﬁrv = mrN)_ resonance.

In order to make a contribution in case a), there must be an £ such
that !:tzr = 0. But these terms of w are specifically excluded from the
sum. The second term therefore makes no contribution to case a).

Case b) is beyond the reach of the theory. If we have made a
transformation to rotating coordinates to remove the ¢ -dependence from
the resonant term with lrv = mrN, we cannot treat a different resonance
without reintroducing ¢ into the original resonant term. We therefore
cannot treat case b).

Only the terms of w with £ = Oor [£] = 24 can make a contribu-
tion in case c¢), since we must have {+ ﬂr = ﬂr. Terms with £ = 0 occur
only in even order. Thus, if there is a resonant term proportional to
JZ, there will be a higher -order term of the same resonance propor -
tional to J 3. This kind of correction is the only contribution that the
second term of Eq. (4.1) can make to the theory.

In order to derive more specific results for higher -order terms,
we need to specify An((b). In the next section, we shall treat two such

particular cases.



-17- TM-179

2040
5. APPLICATIONS
An(¢>) a Fourier Series
We write
An(qb) = Z Cnmcos mN¢ +Dnm sinmN¢ , (5.1a)
mz0
in real representation. We can also write
_ -imN¢
A= > A e , (5.1b)
m
and
1 .
A = —(c +iD ) (m > 0),
nm 2 nm nm
A = C ., (5.1c)
no no
A = =[c . -iD (m < 0)
nm 2( nmj ' niml) )

The constant of integration of the transformation function w can be

calculated. For the case in which £v/N is not integral,

2 A
a il
_ nf N v . Z ‘ nm
Yoo © 2y N f Aplee 7dé =iz, R
1 -e o
The transformation function is then
a A
o n nm i(Ly+ mNg)
W)= iy > e . (5.2)

2 m

t
When there is a resonance in n h order, say Jer = mrN, the term with

L = er, m = mr and the term with £ = —!r, m = -m are to be dropped

from the double sum of Eq. (5.2).
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Substitution into Eq. (4.2b) gives

A
nm n(m-mi)

o 1
Rim Z Z Y- Pt Ty cm N
; Oy A 1

1 ™

where the same resonant terms are to be dropped when there is an nth-

order resonance.

00

(i) Resonance in nth order —Change -of -y -with ~amplitude term.

We combine terms of £fand +m to find

2 2
2 2 2 C +D
2C : +
v n? ' 2.2 22 2
nﬁmN-fv 2rn£r£v+m.N
>0 S0 r re o (5.3)
m>0

For example, for the resonance 3v = mrN in the third order, the

correction term in the Hamiltonian is

2 2 3 2 1
33—2 J §C30+ g C3’2m * D,y - 6vz 2
r/lm N+ 3y (m N) -v
r r
~2 ( 2 2 ) 1 1
v C +D +
4 3m 3m mZN _9v2 mZNz _ v2
m+ 0
mEm, (5.4)

Laslett has calculated3 this term in the special case with

Hamiltonian

2
1 2 1 (v 2 1 3 Ns
etz (F) %0 rgx [bg roy o T

Both his direct calculation and our method give for the invariant near

3y =N
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3/2 3/2
vd 1 2
H——R—"2—4' (—v-—) J bicOS3L|J +
, 2
1 r* 2 2[ 6y 1 40D
“95 37 3b, 2 2 )
v N -v N + 3v v

(ii) No resonance in nth order — Change -of -v with amplitude term.

This is the same as the preceding problem, except that is simplified

because there are no resonant terms requiring special treatment. Then

ZCZ ﬁzaz (CZ +D2
_ "“no 2 E nd nm nm
R = a -y

. (5.5)
00 v nf mZNZ _ £2v2
>0 >0

m>0
For n = 3, the correction term in the Hamiltonian is

3 2) 5 2 9y Z 2 2 1 1
329 { 5 C307 3 (C3m+D3m) 5 2 3 T332 2
mN® - 9v°  meN%w

m#0
(5.6)
(iii) No resonance in nlCh order—- Newresonance in higher order.
As an example, let us calculate the 4th order term with £ = 4 arising
fromrn = 3. The result is
-:_4 JZ Z 3y -3m1N +u-1niN A3miA3(m—mi)el(‘m_nrll\w)dIr
! -i(4y-mN¢)
* A3(m ) 3(-mrm,)° (5.7)

Thus a Hamiltonian with only sextupole (n = 3) terms will give

rise to fourth-order resonances through this correction process. In
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physical terms, one can say that the sextupole term distorts the wave-
form of the oscillation so that the first and second harmonics combine

to make an equivalent third harmonic.

An(¢‘):a §6- function

We choose ¢ = 0 to be at the location of the §-function. Thus

A (@) = As(4). (5.8)
Then
. - amA
Lo 2mity
1-e N
and

wb,¢)

[}
IE‘)J
[\%)
Zg, b
[p]
=
=
<
&
=
N

As in the Fourier -series case, the equations for w must take into ac -
count the effects of resonances in the ﬁth order. We shall omit those

terms for which & /N is an integer, denoting this by a prime on the sum.

Then
2
v £ a a A
N _ ﬁ 1 nl,l n(f -£1)
tm ~ 2= “2milv : (5.10)
Ji
1 e Ny

Note that Rﬁm is independent of m, because the §-function contains all

harmonics equally.
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(i) Resonance in nth

order —Change -of-v -with - amplitude term.

2
R . INA 1 2% cot £ym
00 27 1% ©

. (5.11)
1 N

? 1> 0
Thus for the third-order resonance 3v ='mN, the correction term in the
Hamiltonian is

_ 27 2 NA®
256

mV
cot T+ - (5.12)
(ii) No resonance in nth'order —Change -of-v -with amplitude term.
The result is just Eq. (5.11) without the prime,

For n = 3, the correction
term is

2
9 NA 2 Vv 311'1)]
" 556 - J [3cot-ﬁ—+cotN .

(5.13)
. _th . .
(iii) No resonance inn order—New resonance in higher order. As

we did in the Fourier-series example, we shall calculate the £ = 4 terms

in fourth order arising from n

= 3, The result is

~ 9 na%S
256

™

{ (3 cot T;’l+ cot ENL) cos (4 - mN¢)—sin(4¢—mN¢)}

(5.14)
We have explored numerically the effects of this term and shall

report the results in a later report.
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