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In a series of three talks aimed exclusively at experimentalists, I want 

to discuss high energy hadronic reactions and some aspects of Regge pole theory 

and phenomenology. There will necessarily be some mathematics, but nothing 

very fancy. I'll assume familiarity with collision theory but nothing more than 

can be obtained by reading the book by Watson and me. 

Lets begin by briefly reviewing the general features of high energy elastic 

and quasi-elastic scattering. Geoff Chew will speak next week about multi-

particle production. First as to elastic scattering: differential cross sections 

are sharply peaked in the forward direction; this peak is roughly energy inde-

pendent. Regarded as a function of momentum transfer squared, -t > 0 one finds 

da ~exp (t/10) (GeV /c)
2 

and that the scattering amplitudes are nearly purely 

imaginary. There are essentially no indications of diffraction maxima and 

minima, however, and a number of other fine points to which we'll return that 

one can't take the pure diffraction theory too seriously. For example, the am-

plitudes are not purely imaginary--there are significant polarization effects, 

and backward peaks. For inelastic two body or quasi two body reactions one 

finds similarly roughly exponential forward peaking provided particles exist 

- + -
which can be exchanged (K + p __,.. K + = - no peak), and the same in the 

backward direction. The cross sections for these inelastic 
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processes mostly decrease with energy (like Plab -(I to 4 ))
0 

Before going any further into the experimental results and general 

theoretical framework, lets quickly go through some kinematics and scatter-

ing theory results. 

Q,, P.. 
' c,fc_ 

General 2-body collision. 

All masses different 

a+b-c+d 

Define three scalar variables, s, t, u: 

2 - -2 
s = -(Pa+Pb) = - (Pc +pd} Metric: a.b=a.b-ab 

0 0 

2 2 
t = - {P - p } = - (P - p } 

a c b d 

2 2 
u = - (P - p ) = - (P - p ) 

b c d a 

s is the total energy squared in the center of mass system; t is the negative of 

the square of the momentum transfer from a to c or from b to d; u is another 

kind of mommtum transfer. By direct computation, 

2 2 2 2 
s + t + u = Ma + ~ + Mc + Md - 2:: • 

We shall later need another kinematic relation: 

s - u t ~ 

) 
v = st- - (as v--

-v 
2 - 2 2 

t ~ s - u 
or - v = u + 2 2 
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- -In the center of mass system, p + Pb = 0 = a 

- - - - -1 -and we write p = p = -Pb' p = p = pd 0 a c 

IP I 1 -Vs (W
2

, 
2 1\ 2) = M, 2W a 

l:P I= 2~ -Vs (W2, 
2 2 

M 
c ' 

Md) 

E = w .. E = a b 

1 2 2 2 
2W (W +Ma - ~ ) 

E = w - Ed = c 
1 2 2 2) 

2W (W +Mc - Md 

where s = w2 

- -p + pd c 

We have then 
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2 2 2 2 2 2 2 
eo g. S (W , Ma , ~ ) = [ W - (Ma + ~) ] [ W - (Ma - ~) ) • The 

scattering angle () in the center of mass system may be expressed in terms 

of s, t: 

2 
t = - {P - P ) a c 

2 2 = M + M + 2 pp I cos () - 2 
a c 

E E 
a c 

It is conventional to express the differential cross-section for our 

reaction in terms of a scattering amplitude f cd; ab ( (), <f>, W) such that 

dcr 
dO = E.: 

p 
f 12 
cd;ab 

where in general the amplitude £ will depend on spin labels c dab; in the 

simplest case of no spins, f = f (cos()), independent of <Po Assuming that 

this is the case, or that we have summed and averaged over spins so that 
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there is no <j> dependence to dcr/dn, we have 

dcr dcr ~ 
dO = 2 71' dO = Z 1T p 

Noting dt = 2 pp' cos (} 
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dcr ir 
dt = 2 

p 
I f 1

2 
; note that the factor which distinguishes in-

dcr 
elastic from elastic scattering, p' /p, disappears when we use dt rather than 

dcr/dn. 

Instead of the scattering amplitude, f , it is customary in relativistic 

quantum theory to use an invariant amplitude which I shall normalize as follows: 

so that 

d 
dt = 

= 

~ 

M = 81TW f (note that M is dimensionless if 
1T = c = 1) 

l IM 12 
647rW

2
P

2 

1 IM 12 2 z z 
16irS (W , M, ~ a 

l IM 12 
16ir s2 

Next we recall the important relation 

4ir 
crtot = -k Im f 1 . (cos (} = . 1) e astic 

This result is a truth, independent of any restriction to two-body processes; 

f el is the amplitude for a + b - a + bo In terms of M, 

.1 
M ( (} = 0) -

8
1 

M ab; ab 
s-oo 

er = 
tot 2PW 
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Note also that for elastic scattering t = 2 P
2 

(1 - Cos ()) so () = 0 means 

t = O. Finally I remind you of the partial wave expansion 

f = 
l . 

-yppi-
(U + 1) f cd;ab (11, W) P 1 (cos ()) 

and in particular for elastic scattering 

f ::: 
1 

2iP 
(211 + 1) 

-where 0 .:::; 11
1 

.:::; 1 and 0
11 

is realo This form is a consequence of unitarity 

or conservation of probability, the same thing that gave us the optical theorem, 

and in fact we have 

-J dn l fei 12 
1T 0 (211+1) 

Zio
11 - 1 12 o-el ::: ::: 11 11 e Pz 11 

41T 21T 0 -O" = -Im f e11 (8 = 0) = (211 + 1) (1 - 1111 cos Zo l ) 
tot p Pz 

00 

1T 0 (211+1) (1 
2 

O". = O" - er ::: 
2 -1111) 

lll + el p 1 :::0 

We have heard from Randy Durand about application of another rep-

resentation of the scattering amplitude which has a ~ertain intuitive appeal, the 

so-called impact parameter representation. One very simple way to obtain this 

representation is to imagine that so many 11 's enter that one may replace in our 

partial curve expansions the sum over 1 by an integral 
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i ,, 2i6 
p LJ ( 1 + l / 2) ( e 1 - 1) P

1 
(cos (} ) 

~ i 00 2io 
-r - p J d1 (1 + l / 2) ( e 1 - 1) pl (cos e) 
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and for large 1, P
1 

(cos 8) = J 
0 

2(1+1/2) . e 
sin Z and finally, introduce 

the impact parameter b by 1 + l / 2 = Pb, and regard o 1 (P) as o(b, P), so 

that we have 

where we have used (for elastic scattering) 

J ( 2Pb sin e I 2 ) 
0 

- t = 2P 
2 

( 1 - cos 8 ) = 4P 
2 

sin 
2 e / 2 - A 

2 

The phase 26(bo p) is given the interpretation of the phase change undergone by 

a partial pas sing thru the interaction region at impact parameter b. 

Independent of the "derivation" given above of the impact parameter 

representation, one may write quite generally for the elastic scattering ampli-

2 
tude regarded as a function of s and t (or A ) 

00 

f el (s, t) = P ! dbb H (b, s) J (b M 
0 

00 

= P J0 bdb H (b, s) J (b A) 
0 

er el = 
00 2 J

0 
bdb I Hel (b, s) 1 



crt = 4ir 

-7-

00 

J
0 

bdb Im Hel (b, s) 
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The beauty of the partial wave expansion is that unitarity is easily 

expressible: Im f = 
J. 

f 
inelastic d • 

J. an •• Im 
2 

f 1 > I f1 I 

or There is no correspondingly exact statement about 
...... 

...... 1 2io 
H (b, s) except at very high energies where H (b, s) = 2 [ 11 (b, s) e - 1] o 

With this background lets talk in a little more detail about high 

energy hadron scattering. The total cross-sections lie in the range of about 

15-60 mb. at the highest energies, corresponding to P LAB ...... 25 GeV I c, 

-O" "' 50 CT = CT "' 40, 
PP ' pp pn 

CT "' CT 
1 

"" 25 mb, CT ....., 20 O" ,...., 15 
ir-p ir p K- -p ' K + p 

mb. They seem to be approaching constants or decreasing very slightly. The 

constant behavior is consistent either with the view that the radius of interaction, 

2 r::> -13 
whatever that means, is finite and CT "' to R with R "" 1 /mir = -y /:. x 10 cm. 

or with the idea that the radius increases with energy but the transparency de-

creases in such a way as to maintain a constant cross-sectiono There is no 

terribly convincing argument leading to the constancy of cross-section although 

as we will see there is a natural place for it within the framework of Regge pole 

theory and the following qualitative argument which almost leads to constant 

cross-sections due to Froissart and, independently, Feynman: One imagines 

the probability of interaction between particles at relatively large distances is 

expressed by g e-r/a where g may be a function of kinetic energy and that if r 

-r/a <...<- 1 
is so large that g e there is essentially no interactiono Then for 
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-b/a 2 2 
r :::::b such that g e - 1, b - a ln g, o- - 'IT a (ln g) and if g is at most 

a power of the energy, 

2 z_, 
o- - 'Ira {ln s) 

This result has also been obtained using the finest axioms of quantum field 

theory. 

Another general feature of high energy total cross-sections that 

o- {particle - particle) - o- (particle - anti particle) at very high energies. That 

this should be true was first suggested by Pomeranchuk and whether this relation 

is in fact rigorously true is quite important to theoristso It is not trivial to test 

the Pomeranchuk experimentally as can be seen as follows: 

where the present data up to about P b = 25 BeV I c has been fitted with the 
la 

parameters 

a = 22. 57 mb, b = 24. 51 mb, b = 190 55 mb. 
+ 

P = lBeV/c, m = 1.02 
0 + m = • 664 

+ o- (ir - 1) - o-('IT ) becomes less than present errors for each - • 1 mb at 

Plab = 4000 BeV/c or Pcm - 45 BeV/c. 

It has been suggested that cross-sections go to zero at high energies 

-n -like P lab where n = O. 07 (Bond factor). Serpukov should show this because 

11 a 11 should be down by about 2 mb from 20 to 70 BeV/c. 
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Lets talk a little more about the interaction range in terms of the 

impact parameter representation. We might say that this quantity is such 

that 

H {b, s) = 0 for b > R 

while R of course might depend on s in principle. 

Now the crudest model of scattering is to assume that for all 

b <. R, the scattering is completely inelastic, so that in terms of 

H (b, s) = 

11 (b, s) = 0 and 

1 
i 

-[ 
11 

{b, s) e 2io (b, s) _ 1 ] , 

H (b, s) = + i for b' R 

= o for b ")- R 

Thus 
R 

f el ( s, t) = iP J bdb J (b r.:t) 
0 0 

411' 411' 
R 

= - Im f el = - J bdb 
tot p tot p 0 

= 211' 
2 

R. 

This is an exceedingly crude model and doesn't fit the data very quantitativelyo 

Lets turn now to a discussion of elastic scattering. Within the frame-

work of our black disk model, 

R 
iP f bdb J (bb.) = iP R 

2 

0 0 

J 1 {R.6.) 

R.6. 

1 
2 e provided .6.R <.< 1. 
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4 (J 1 (R~)) 
1T R t R~ 
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4 
ir R 

4 

2 

e 
+(~) t 

- 2 er el = 1T R for large energies. 
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Thus a pure imaginary amplitude which decreases exp,onentially for small t 

with loagrithemic slope (R/2)
2

, er 
1

/crt = 1/2; should show dips and bumps -
e ot 

dip - -t = O. 7 (BeV I c)
2 

bump at - 1 (BeV I c)
2 

if R = 1O-I3 cm. These pre-

dictions of the black disk model are not borne out by experiment except in a 

very crude way. For 1T - N scattering there are indeed dips (t ...... 8) and 

bumps (t ..... - 1o4} at rather low energies (P
1 

..... 2 - 4 BeV I c) but at higher 

energies the structure disappears and for P
1 

> ..... 5 BeV /c, 

d<r el I d<r el 
dt dt 

gives a very good fit for 

(At+ Bt
2

) 

(t= 0) = e 

2 
It I< 1 - LS (BeV/c). 

A and B are approximately energy independent and are both negative. 

cr el = 

-2 2 
A - 10 (BeV/c) , B/A ~ • 03. 

0 

J dt 
-4P 2 

c 

dCT el 

dt 
(t = 0) 0 

1 
A 

If we make the assumotion that the scattering amplitude is pure 

imaginary, from 

( fell 
2 

we find 

= A •CT el 
At 

e 



and thus 

or 

= 

-11-

r;:;;::
iP v-T e 

4ir 

1 
2 At 

(J" = t p 

A = 
(J" 

t 
2 

l 61TO" el 
fel = 4iP A e 
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1/2 At 

In terms of these parameters, the quantity H (b, s) which entered out impact 

paramater representation is 

H (b, s) = 4 i e 

It is clear that the wiggles in the simple diffraction model were caused by the 

sharp edge of our disk and these are quite absent in the present "gaussian'' 

model. 

By comparing the disk model with the parameterization we have 

adopted here, A = 
(J" (J" 

namely el I t ~ 1 

R 
z 

2
, there is now, however, an additional parameter, 

which is 1 /2 for the disk but experimentally ranges 

from about o. 3 to Oo 150 It is larger for those processes which have the 

fewst inelastic channels e. go pp vs. pp. 

There are two important qualifications that must be made in· connec-

tion with the description of elastic scattering we have given so far: the first 

is that the scattering amplitudes are not pure imaginary and the second is that 
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spin effects are important and lead to measurable polarizationo As is well 

known, the real part of scattering amplitudes has been measured by Lindenbaum, 

Yuan and co-workers. 
. Ref (8 = 0) 

The ratio el I Im f el = y < 0. ranging 

from. 3 to .1 for all processes; somewhat smaller for ir N than for NN or NN. 

In the former case the analysis is quite clean and in good agreement with the 

prediction from the forward dispersion relations physical modelo 

Polarization has been measured in ir p and pp scattering; in the 

momentum transfer region I t I< (BeV I c)
2

, they range up to about 20% for 

ir p and to about 00 1 for pp and show considerable structure in the ir p case. 

I shall not discuss at this time the inelastic or quasi-two-body reac-

tions, but a table summarizing some of their important properties is included 

here. 

To swnmarize: important problems to be settled in connection with 

elastic scattering and total cross-sections are: Do cross-sections tend to 

constants? Is Pomeranchuk theorem true? Do diffraction peaks shrink? 

I want now to turn to the so-called Regge pole model of high energy 

processes. This treatment will necessarily be rather brief but will hopefully 

serve as an introduction to Geoff Chew' s lectures of next week and remind you 

of some of the experimental and theoretical problems involved in the modelo 

We begin by recalling the kinematics of the two-body process 

l!,P utb- ctd 

p + n - p + n, say, which we choose 

s - for definiteness. 

This is described by an invariant 

amplitude 
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M (Pc' pd ; pa' p b) = M (s 
2 

= (Pa + p b) ' t = 
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2 
- (P - p ) 

a c 

This is called the s-channel reaction. Now consider the process n + n - p + p 

which we write as d + b - c + u and the momentum conservation is P + Pb -
d 

p + P ; bars refer to anti-particles 0 

c 
This would b~ described by an ampli

Q,.,. a 
tude µ which we would write as cP 

Crossing 

M (Pc P.:_; P_, Pb) 
a a 

'-...- -
" ';i t """) """,, 

'C' 
symmetry says that these two functions are related according to, 

M (P P 
c -

a 
= M (P , - P 

c d 
-P _, 

a 

The process n + n - p + p is called the t~channel reaction. This is a somewhat 

subtle relation and is really defined by an analytic continuation in the following 

way: For the s-channel reaction 

In the t-channel, 

2 
t = - 2 P (1 - Z), 

2 
t = - (Pb - pd) 

- 4P
2 < t < 0 

2 
- - (Pb+ P _) 

d 

2 2 2 = 4 (Pt + m ) / 4 m 

2 
- - (Pb - p _) <... 

s = - (Pc +Pd} - - (P _ 
d 

2 = - 2 Pt c1 - cos et> 

a 

- p )2 
c 
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We have one function M (s, t) that describes both reactions and we can go from 

one to another by analytic continuation along some path. 

Now in the s-channel region, we may imagine expanding M (s, t) as 

M (s, t) = "L; (21 + 1) 
s 

f i. ( s) pi. (cos 8 ) 

or in the t region 

where 

M ( s, t} = ~ ( 2.f + 1) f i. t(t) Pi. (cos e) 

f t = 
i. 

2i e(t) 
1 e -

2i 

In non-relativistic quantum theory it was shown by Regge that the 

f 1 t (t) could be extended to a function of complex i. , f (.£, t), which coincides 

with fi. (t) for integer .£ and which has only poles in the complex J. - plane, 

i. = a. (t), which move with t. 

f (.£, t) 
(3. (t) 

1 + 0 •• = i. - a.. (t) 
1 

In relativistic quantum theory there is good reason to believe that there are 

branch points in the i. - plane as well as poles and we'll return to this point 
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later. Now if we expand Re a near a point t = t , 
0 
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a. (t) = Re a. (t ) + (t - t ) Re a. 1 (0) + i Im a (t ) + ••• 
0 0 0 

f (.f' t) = f3 (t) 
.f - Re a (t ) - Re a 1 (0) 

0 

Now if Re a (t 
0

) = . integer = .f , 

where 

f = @I - Re a' (0) 
t - t + i r/z 

0 

Im a. (t ) 
r/2 -

0 

Re a' (t ) 
0 

Im a (t ) j 
Re a' (~0 ) 

Breit-Wigner shapeo 

If Im a (t ) = o, stable 
0 

particle or bound stateo 

It is an article of faith that all particles and resonances, stable or unstable, 

lie on Regge trajectories J.. = a. (t) o 
1 

Now the trick is to use the t-channel partial wave expansion trans~ 

formed in such a way as to allow us to study, with the aid of the crossing 

relation, the behavior of the amplitude in the s-channel for large s. To do 

this we write 

M (s, t) = 0 (2.f + 1) f (.f, t) P
1 

(cos (} ) 

i 
= 2 

cu + i > £(£, t) P 1 <- cos et> 
sin 1T .f 



Write cos et 

i 
= 2 

= zt 

-1 /2 + i 
J d1 
-1/Z~ioo 

00 
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(2£ + 1) f (£' t) 
sin 'IT£ 

- I) 
'II' (2a.i + 1) (3i (t) Pai (- Zt) 

sin, 'ITa.. (t) i \ 1 

where we recall Zt = 1 + s 

.ZP 2 
t 
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(-1) 1 {1->v) 

The utility of this represenration stems from the fact that the asymptotic 

form of P (Z) is z°'-{-1 + 0 ·1 / Z "" ) provided Re a. ;;::: - l / Zo It is reasonable 
a. 

h h 1. . 1 l"k -1/2 l" -l/2f 1 to assume t at t e ine integra goes 1 e Z or ike s or arge s and 

thus will be smaller than the Regge pole contribution. Needless to say in the 

t channel, I Zt I ~ 1 but we are contemplating an analytic continuation 

from the region s < 0 to s > 4 M
2 

; the poles a.. (t) correspond to resonances 
1 

and bound states in the t channel which thus relate such states to the large s 

regimeo In the physical s-~channel region t < 0 

assumed to be real. 

We write the asymptotic form 

and a..(t) is generally 
1 
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M (s, t) 1T 'B 1 - sin 'It' a..(t) 
1 

where '{ (t) = ~. {t) • ( s 0 2 
) ''i (t) 

0 
1 

2P 
t 

The reduced residue y . {t) shares the analyticity of a.. (t) namely of having 
1 1 

only a right hand cuto 

A (s, t) -
( )

a.. (t) 
~ s 1 

1T LI --s 
0 

s~plane. 

L 

e 
-i 1T a.. (t} 

1 
'Y • (t} 

1 

sin 'lt'a..(t} 
1 

--1·-~ ----'------4--_;;..---- phase decreases by 'It'' hence 

(- s\a. (t}'\ 
teal) 

for s neg 

There is a refinement of these equations necessitated by the inevitable 

presence in relativistic quantum theory of what are essentially exchange 

potentials 0 One must treat even and odd angular momenta differently: 

J p £ ( z) + p £ ( - z) p£ ( z} - p£ ( - z) ~ 
M (s, t) = E (2£ + 1) 1 f (£, t} 2 + f (£, t} --2---{ 

The potentials being different for odd and even£ means that the Regge poles 

associated with them are different and we have for the asymptotic form 



M (s, t) - - 1T I) 
y. + (t) 

l 

sin Tr a.. -
l 
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{ 

-iTra.+ (t) 
e i + 

2 
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We refer to these as positive and negative signature (sig J = (- l) for 

J - 1/2 . 
boson, ( - 1) · for f erm1on)o 

+ If a. - odd integer, no pole in amplitude, hence no particleo 
l 

a.. - even integer, no pole in amplitude, hence no particle. 
l 

Now suppose the highest trajectory, namely the one which has 

the largest Re a. and hence the one which dominates as s - a has 

positive signature: 

M (s, t) - - y (t) " ( :
0 

T (t) 

= 

Im M (s,t) 

O" 
t 

1 
- Im M(s,O) = s 

-iTl'a. 
e + 1 
2 sin 1T a. {t) 

Tl' y ( 0) 

a. ( 0) 
2s 

0 

- i 

tn Tr a. 
T 

a. (0) - 1 

t:J 
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Now to get a total constant cross- section, this highest trajectory must 

pass through 1 at T = o, which implies Re M - O. This is the so-called 

Pomeranchuk trajectory and is assumed to carry the quantum numbers of 

the vacuum. The fact that such a trajectory can be exchanged between 

any two systems will automatically yield constant total cross-sections. 

Iwe had conjectured odd signature, 

-i'll'a 
e - 1 

sin TT a 
= 

TT a 
tan 2 - i 

We would have had Re M (s, o) = oo if n (0) = 1 

which is unacceptableo 

Another argument in favor of the even signature for this highest 

(Pomeranchuk) pole is the following. Consider the two reactions 

a+b - a+b t-channel 

a+b - a+b 

cos () 
t 

- -p • p 
a b 

cos et -a.. = p . p 
a b 
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In the second reaction, cos l\ has the opposite sign from the first; if however the 

Pomeranchuk trajectory has positive signature, the contribution of such a trajectory 

to either process will be the same, so that a b and a b will be the same since we have 

pa. {-cos(\)+ pa. (cos l\), unaffected by cos et - cos et. 

Notice, incidentally, that a negative signature trajectory makes a 

contribution equal in magnitude but opposite in sign to ab - ab and ab - ab. The 

same is true in any two body process: 

a+b- c+d 

c+b -a+d 

If we imagine that the asymptotic region is completely described by 

the exchange of a single Regge pole, then because the residue of a pole must barring 

accident factor which means that in a process like a + b - a + b we may think of it 

as 

aaP 

a a 

b~~: ~DI-p : _.b (3ab;ab = 

11'(3 ab;ab 
-i 'ITQ;. 

( s J (t) described by - (e - 1) 
sin 1T a. z 2Ptqt z t z 

pt = 4 - M 
a 

z t ~z qt ··tia - -4 

a.. it. 

~ 
j 

" a ~aa;aa ( ~~ (t) 
pt! 



b 

b I 

'3aa;aa 

p2 
t 

Now ask about 

do-
= 

1 
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b 

b 

~bb;bb ( ~ 2) (t) 

O'" O'" 
1T1T 1T1T 

do-
el according to the Regge model: 

dt 

IM 12 
dt 

l 61T s 
2 

= g (t) ( .: 1 (a (t) - 1) 

-15 mb 
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where g (t) is made up of constants and the reduced residue. If a. (t) = 1 + a.' (0) t, 

we get the famous shrinkage of the diffraction peak: 

= 

= g (t) 
2a.' (0).tn (s/s ) • t 

e o 

g (0) 
2a ' ( 0) .t n ( s / s ) 

0 

Thus another interesting quantity will be = 1/2 in optical model, 

• 15 to • 3 in practice and should slowly approach zero in Regge theory. 

The final topic we will consider today is that of how one goes about isolating 

the Regge trajectories which can contribute to a given process. These depend upon 



-22-

the quantum numbers which can occur in the t-channel. Examples 

Consider states of definite isotopic spin I r, r 3 > 
+ iirI 

e 2 

Rotation about 11 2 11 axis 

Recall Q = I 
3 

+ ~ \(B + S) 

so if Q = B = S = O, I 3 = O. 

+ 
Consider 1T + p: 

R I, 0 > = 

= ( - 1) I 

I, 0 > 

I, 0 > 

+- I-+ I +-R I 1T 1T '> = 'IT 'IT 7 = (-l) I 1T 1T 7 

TM-128 
2050 

t channel in pp 

s = o, B = o, I= O, 1 

p' w ir p 11 AZ• • • 

t channel has irir 

s = o, B = o, I = o, 1, 2 

G = + 1 I = Z is out for 
pp 

G = + 1 means only p, 
,,, p 



-- - r -{-1) 

~( rr-

From standpoint of s 

i e J 
channel , this channel process is 

M (Tl'+ p) + M (Tl'- ) = ( 1 + ( -1) I ) 

only I = 0 surviveso 

only I = l survives. 

I = (1-(-1) 

- + - a.p - 1 a. p 1 - 1 
o- (ir p- TI'N) "" o- (TI' p) + o- (TI' p) = bp S + bp S 

+ a.p - 1 
O'" (TI' p) O'" (TI' p) = bp s 

'rM-12$ 
2050 

in s-channel. 

o- ('IT± p} have p contribution with opposite sign. Similarly con-

sidering R on the t channel states of 

,\r l-IJ 

t 

= Yf ;.,s 
p 



We find 

Thus 

er (Pn) - er (pp)"' s 

Use G parity. 

Consider p p: 

-24-

..,. -

a.p ( 0) - 1 

R p 

= 
p 

and G = CR = - -n p 
-p 

GR I P P > = G (n n > = f p p > 
& GR I p p > = G (-1) I I p p > 

p 
r 

= G(-1) 

-
' 

TM-128 
2050 

"""'- -:..-_ n 

p 

p 
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:. o- (pp) ± CT {pp) contains (1 ± G (-1)
1

) 

t- channel things. 

Take <r (pp) - CT (pp):. G (-1)
1 

G = - 1 
w 

l = O 

G = + 1 
p 

l = 1 p 

For run G(-1)
1

=+1 

G = + 1, l = 0 pomeron 

G = 1, l = 1 A 2 

Use just G: 

G I -
nn "'= 

= 

TM-128 
2050 

p 
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• ,. cr (n p) - er (p p) has ( 1 - G) - t channel things 

sum has p • 

(doesn't contribute) 

In practice: 

er (p p) - er (p p) = 2 Im w 

Thus forward amplitudes: 

M = p + P' - w - p + A2 
PP 

M - = P + P' + w + p + A2 
PP 

M = P + P' - w + p - A 
pn 2 

M- = p + P' +w-p-A 
pn 2 

- po N 
1T p -

M - np = - 2p + 2A 
pn 2 Cuts. 

M- - pp = 2p + 2A
2 PP 


