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PROPOSAL TO STUDY ~ - P ~ ~ 0 n and ~ - p ~ nn 
AT HIGH ENERGY 

The asymptotic behavior of hadronic cross sections is one of the important 

questions that NAL may be able to answer. We propose here a simple experiment 

to measure the ~-p charge exchange cross section up to the highest energies 

available at NAL. This cross section is sensitive to small differences between 

the total cross section for ~ - p and ~ +p. If these cross sections persist in 

staying apart as is perhaps indicated by the Serpukhov data, then the charge 

exchange cross section will stay large. 

In addition a measurement of ~-p ~ nOn will be made. The ~o reaction is 

a classic example in Regge theory of essentially pure p exchange and the nO 

reaction of pure A2 exchange. Thus this experiment will also test the predic­

tions of this theory at high energies. 

The experiment utilizes very simple equipment, but uses a new scheme to 

accurately determine the ~o or nO direction. This is done by using a wire 

chamber to measure the y-ray conversion points and a proportional wire chamber 

to identify which of the showers is most energetic. This knowledge allows one 

to uniquely solve for the direction of the ~o or nO 

The experiment is planned to run at eight different energies between 20 

and 200 GeV. The lower end will tie in to existing measurements. The time 

required is 400 hours including data taking and test time, in a ~- beam with 

Ap/p < ± 0.5%, with intensity between 105 and 5 x 105 ~-/pulse and with energy 

adjustable over the aforementioned range. 

All of the necessary equipment, excluding the beam, but including the 

target, Cerenkov counters, shower counter, and fast electronics can be supplied 

by Caltech. 

EXPERIMENTERS: 	 A.V. Tollestrup, R. L. Walker 
Caltech 

CORRESPONDENT: 	 A.V. Tollestrup 
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I. PHYSICS JUSTIFICATION 

We propose to measure the two reactions: 1) ~ P + ~on and 2) ~-p + nOn 

in the energy region 	between 20 GeV and 200 GeV and for momentum transfers 


2
between 0 and 2 GeV/c . The physics to be studied includes: 

A. Asymptotics 

The recent results on meson-nucleon total cross sections at high energies( I ) 

±surprisingly show the measured ~ cross sections constant above 30 BeV. The 

implications of these results are among the most exciting initial physics problems 

. + ­to pursue at NAL energies. The d~fference between the ~ p and ~ p total cross 

sections does not appear to be asymptotically approaching zero. 

o .
The charge exchange cross section ~ p + ~ n at t = 0 is sensitive to 

this difference in the ~ - p and ~ +p total cross sections. We can write through 

the use of the optical theorem and charge independence the following equation: 

This means that a measurement of the charge exchange cross section is a sensitive 

way, in a single experiment, to obtain information on the asymptotic behavior of 

+the difference of the ~ and ~ cross sections. 

Appendix A of this proposal is a preprint of a paper by D. Horn and A. 

Yahil that explores in detail, by means of dispersion relations, what would 

happen if the ~- and ~ + cross sections asymptotically approach a constant differ­

~nce at high energies. It is seen from their Figure 4, which is reproduced on 

the next page, that the charge exchange cross section deviates from its l/p 

._---_...._--_.... -- ­
------------~---- ---_.... 



.. , 

r ~ .. ~ • 

-3­

~ (t:: 0)
dt 

(B:~2) 0.4 

0 .. 3 

0.2 

OJ 

0.04 

0.02 

0.01 

.. 

..... 

.'. 

n 
c=0.35. 

-;; ," 

, ...' 

'. ~. 

.. 
r------·· f ~o "'" . 0 . \{o Q,f\J 

I. FIG. 4 i 1\. '< f'lI.\\'~ 
.--'---~ 

.. . S F-EL ~ ~ V~~\}.~;\ t\ 

,......--~---------~-----~..-~------...... ~~~ 



y' 

" 

dependence at low energies, to a flattening-off and subsequently an actual 

increase with rising energy. 

B. Reggeizm. 

The reactions to be measured in this experiment are dominated by a single 

exchange. 

(p exchange) 

(A exchange)
2 

They therefore represent an excellent place to study Regge theory as the energy 

of the process is increased. The highest energy measurements at present have 

only been made at 18 GeV. (~/S') The qualitative features of the data are a 

. 2 
relatively sharp forward peak and a dip at It I ~ 0.6 (GeV/c) for ~-p ~ ~on. 

Will this behavior continue at higher energies? The dip is interpreted as resul­

ting from the Regge trajectory a 
p 
(t) going through zero near -t ~ .6. The 

~-p ~ ~on cross section has been the classic example for Regge theory. Excellent 

fits have been obtained from 2 GeV to 18 GeV. Originally pure p exchange was 

tried and the complications of cuts in the angular momentum plane were ignored. 

However, the appearance of a small amount of polarization requires the presence 

of some other trajectory or cuts. Nevertheless, the fit to this reaction over 

such a wide energy range suggests this reaction as one to test the predictions 

of the Regge pole model as the energy is increased. Similar remarks can be 

.made about the ~-p ~ nn cross section. Here the data has been fit by means 

of pure A exchange. Again, the comparison of these fits at higher energy to
2 

actual measurements will provide an interesting test of Regge theory. 

These two reactions in combination can be used to test certain predictions 

---~.........----.... .. 
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of exchange degeneracy. KOp + K+n, which is a combination of p and A2 exchange, 

must be exchange degenerate since it is an exotic channel and resonances are 

absent. The amplitude for this reaction, up to a phase, is identical to the line 

reversed reaction K- p + K-0n. 

The assumptions of exact SU(3) vertices plus exchange degeneracy leads to 

the sum rule 

da - -0 1 da - 0) 3 da - (K p + K n) = - - (~ p + ~ n + 2 dtdt 2 dt 

At 5.9 GeV/c, the data is consistent(b) with this sum rule for a(t) = 0.55 ± 0.95t. 

This experiment viII yield some information on this sum rule at very different 

energies. 
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II. EXPERIMENTAL DETAILS 

A. 	 Introduction 

This experiment is designed to measure the ~o and nO cross sections in 

the range between 20 and 200 GeV. (I) The rough shape of the differential cross 

sections are shown below. 

-du-' 
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We have designed the equipment and selected the running time to give 104 counts 

for ~o production in the region of t less than 0.1 GeV2 at each energy. This 

means that in the region of the second maximum the counting rate will be about 

10 counts for a At of 0.1. The resolution in t has been selected so that our 

minimum detectable t will be of the order of .002 and the accuracy on t in the 

whole range is better than .04. The experimental arrangement to accomplish this 

is fairly modest and is shown schematically in Figure 1. The ~ enter the target, 

which is surrounded by a veto house to eliminate multi-pion reactions, and the 

W
O is detected in the shower counter downstream. This technique has worked well 

at the lower energies at which this reaction has been measured and it will 

continue to work at these higher energies. (S,~ 

In order to measure the value of t, one needs to know the incoming ~ 
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direction and the outgoing rro direction very accurately, i.e., to less than 

0.2 mr. Hence, there are proportional chambers in front of the target to measure 

the incoming rr- direction and we describe in the section on the shower detector, 

how the angle of the rr
o 

is obtained to the required accuracy. The details of 

this equipment are described in the following sections. 

B. Beam 

The beam arrangement is shown in the following figure on a much exaggerated 

scale. 

~ t I 
! 

--0 
i 

,..l9_"1.___ ...--.. ----.-------.... 4­.----------- -t>~ ...:..- -.--- ... --- .. -. -.- .-'9..hI_ 

"The parameters of the beam have been assumed to be those detailed by Reeder and 

MacLachlan. ( 4 ) The momentum resolution is not important and can be 1% or less. 

We have assumed the beam emittance to be 2 mr. x mm. As will be seen in the 

counting rate section, we can use an intensity of 105 particles per pulse. As 

a rather large magnet would be required to deflect the beam off the detector, 

and as the intensity of the beam is rather low we have allowed the beam to hit the 

downstream detector. As shown in the drawing, the beam should be focussed at 

the detector where it will fall in a spot less than a millimeter in diameter. The 

detector can be deadened in this region if necessary. The size of the beam at 
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the target then becomes about 2 cm. and a target 2 feet long with a diameter 

of 2" would be an appropriate size for the experiment. To measure the incoming 

beam angle to an accuracy of 0.2 mr., we place a proportional chamber 3 cm. in 

diameter just in front of the target and a second proportional chamber 5 cm. 

in diameter 10 meters in front of the target. It is assumed that the beam 

particle position can be measured to 1 mm. in each one of these chambers giving 

an error on the incoming angle of .14 mr. A gas CereDkov counter in front of 

the first proportional chamber identifies the incoming beam particle as a pion. 

C. Target and Veto House 

The target is a conventional hydrogen target 2 feet long with a cell about 

2 in. in diameter. The surrounding jacket to the target should be kept as small 

as possible as it is necessary to build a veto house around the target. This 

veto house must be built carefully in order to veto efficiently multi-body 

reactions that occur within the target. It would consist of a layer of scintil ­

lator counters backed up by lead for converting gamma rays and an additional 

layer of scintillation counters. 

The main source of background for a high energy forward pion will come from 

the diffractive processes which remain roughly constant with energy 

'If-p.;. 	(3'1f) 

(51T) + p • 


etc. 


For instance 

'If-p .;. 	A~ p 

. --- - ..•.- ...~----------
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has a cross section roughly equal to 0.1 mb. and it is roughly independent of 

energy. If we assume 1 mb. cross section for all such processes, then the veto 

house must have a rejection of 500 to 1. We obtain this rejection by: 

a) Demanding the ~o have an energy Eo> 0.90 E _ • (Rejection 
~ ~-

assumed 1/10.) 

b) Veto house efficiency for charged particles rejection 99%. 

c) Single y veto efficiency ~ 0.8 . 

These requirements taken together will provide sufficient rejection of the 

diffractive processes. 

Non-diffractive processes all fall at least as fast as the charge exchange 

cross section with increasing energy and the requirements for good veto efficiency 

are easily met. 

D. 	 Detector 

The forward ~o detector is shown schematically below. 

~ 
1.t...)()\c.,..\a~ 

'P'o. S<.\..~-l._ 
S 1\ t.) 'P (.>\.<... \\ 

."-. ~'l"O ~ O'n."'\" I 0 J..) Po. ' ­ uJ \ '(" 'C.. C. "'Q..."W- ~...ev-
6..-l S v-.ow~"" ¥l\~ 

The veto counter insures that charged particles do not trigger the apparatus. 

oThe 2-y rays. from the ~ convert in the Pb-scintillator converter that is several 
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radiation lengths thick depending on the energy at which the experiment is being 

run. The wire plane measures the position of the two showers. This is then 

followed by a second Pb-scintillator sandwich whose pulse height when added 

to the converter section will determine the total y-energy to AE/E < 5%. The 

wire chambers are triggered on the basis of this energy measurement provided 

none of the veto counters was triggered. The relative energy of the 2 showers 

is sampled by the proportional wire chamber which is located near shower maximum. 

This is used in a manner to be described shortly. 

To get some idea of the problems involved, let's consider a 100 BeV ~o 

generated in the target that decays symmetrically into two 50 BeV gamma rays 

which then strike the detector. The expression for half the opening angle is 

given by the following expression: 

which is a small angle approximation. Two additional equations that are useful 

are the following: 

where the meaning of the symbols is shown on the following figure: 
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·04 That means that at the detector,We see that for a 100 BeV ~ that aS =1. mr. 

the two showers in the symmetrical case are separated by 2.8 cm. In the case of 

asymmetrical decay the separation is greater and the energies are no longer equal, 

as can be seen in the above figure. Now it is clear that if we measure the 

distance between the two showers, that this does not allow us to uniquely define 

the ~o direction. In fact,we have 

where 6 is the opening angle of the pair. We can combine this equation with the 

following one: 

and we see that there is a two-fold ambiguity in the direction of the ~o 

e1.. 

/e,e1 " e~ 

9. 
This leads to an uncertainty in the t of the reaction that is unacceptable. 

However, if we can arrange in the detector to identify which gamma ray has the 

highest energy, we can resolve this two-fold ambiguity. The detector is therefore 

constructed to make a rough energy measurement of the individual showers. 

From the figure above that indicates how the energy of the gamma ray varies 

with angle we see that we only need a rather crude energy measurement in order 

to tell the two gamma rays apart, except in the region around as' In this region 

the two gamma rays have nearly the same energy and a detector with poor resol­

ution may not be able to resolve them. On the other hand, in this region if one 
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assumes that the ~o direction bisects the two showers, the error on the momentum 

transfer is very small anyway. A detailed examination shows that if we can 

make an energy measurement of the individual gamma rays to 30%, that the 

perpendicular momentum transmitted to the nucleon is then never uncertain by 

more than 40 MeV. It is for this reason that we insert a proportional wire 

chamber in the converters near where the shower maximum should occur. For 

instance, a 50 BeV shower has its maximum at about 8 radiation lengths. There 

are about 200 electrons in the core which is about 1 cm. in diameter. 

The two showers from a 100 BeV ~o will be separated by 2.8 cm. or more and hence 

do not overlap seriously. The total ionization at shower maximum is proportional 

to the y-ray energy and will be recorded for each shower by the proportional 

chamber and used to identify the higher energy one. It should be noted that a 

crossed counter hodoscope made up of 1 cm. wide counters could be used in the 

same way. The ionization loss is so large that cheap ~" diameter photomultipliers 

could be used. 
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E. Counting Rat,!!!. 


Sondereger ( 3 ) gives the following expression for the 11'0 reaction: 


This was measured over the energy region from 6 to 18 GeV and of course the 

extrapolation to 150 GeV is somewhat uncertain. However, we have used the above 

equation to estimate the counting rates which are shown in the follOwing table. 

- 011'J2+11'n 11' 12 + nn 

llb 
 da Counts/hr. da Counts/hr. 

p at <0.5 dt t = 0 t <0.1 at dt t = 0 a.l1t 

20 21 110 1550 33 140 4600 


40 9.6 60 840 13 56 1700 


60 6 38 530 7 10 1000 


80 4.2 30 420 5 2 700 


100 3.3 23 320 3.5 1.5 500 


120 2.7 20 280 2.7 1.2 380 


140 2.2 16 225 2.2 1.0 320 


200 1.4 12 170 1.3 0.6 180 


Table assumes: 

2200=-­
p 

c) 105 11'/pu1se 700 pulses/hr. 

d) 2' long H2 target. 

- 0llb for 11' p + nne) da/d~ t = (~:~v) 1.40 = 

--_..._ .....__....._ ......._-------­
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We have made a similar extrapolation of the data of O. Gufsan et al. (S ) for 

the nO cross section, and the results of that extrapolation are also shown in 

4the above table. In order to accumulate at the energies shown above 10 counts 

for t less than 0.1 GeV we will need 250 hours of running time. In order to 

check out the equipment and the beam, we estimate that we will need an additional 

150 hours. Therefore we request· a total running time of 400 hours. 

F. 	 Equipment 

1) Beam: beam. Cerenkov counter to distinguish ~ from K- and p 2 

proportional wire chambers, about 5 cm. x 5 cm. 

2) Target: 2 foot hydrogen target, 2 in. in diameter, constructed in a 

fashion suitable for placing veto counters around it. 

3) Detector: 2 wire planes; a proportional chamber; and associated scin­

tillation counters for measuring the shower properties. 

4) Electronics: PDP-8 computer for recording the data; wire chamber read­

out; 	and miscellaneous fast electronics. 

5) Miscellaneous equipment: 2 graduate students; 2 undergraduate students; 

R.L. Walker has indicated he wishes to also be listed here. 

All of the above equipment, including the target, could be furnished by 

Caltech and be ready to operate by the time the accelerator can provide a beam. 

----------- ---~ 	 ­---~--- -- ­
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ABSTRACT 

A dispersion relation calculation of the real parts of forward ~±p 

and Kip scattering amplitud~s is carried out under the assumption of 

conlltant total cross sections in the Serpukhov energy range. Comparison 

with existing experimental results as well as predictions for future 

high energy experiments are presented and discussed. Electromagnetic 

effects are found to be too small to account for the expected difference 

between the ~-p and ~+p total cross sections at higher energies. 

*Work supported in part by the U. S. Atomic Energy Commission. Prepared 

under Contract AT(11-l)-68 for the San Francisco Operations Office, 

U. S. Atomic Energy Commission. 

**On leave of absence from Tel Aviv University, Tel Aviv, Israel. 
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I. INrRODUCTION 

The recent Serpukhov experimentsl ) show that all measured meson­

nucleon total cross sections stay constant at energies above 30 BeV. This 

contradicts previOUS expectations from theories describing the behavior of 

the cross sections at energies below 30 BeV. In the present paper, we 

investigate the effect of the new results on the real parts of meson­

nucleon scattering amplitudes via dispersion relations. We analyze the 

,rtp system following the approach developed in Ref. 2. We discuss the 

phase of the forward ,(±p scattering amplitudes as well as the forward 

differential cross section of ~N charge exchange (CEX). We find an esti­

mate for the upper limit of electromagnetic effects in these amplitudes, 

and conclude that it is too small to account for the expected difference 

betlieen 0T(~-p) and 0T(~+P) at the higher energies. We discuss the 

fits to presently available data and make predictions for future high­

energy experiments. We treat K±p scattering in a similar way. Although 

the experimental data on the real parts of the amplitudes are not very 

accurate, they favor the existence of an additional term. This would be 

implied if the difference between 0T(K-p) and 0T(K+P) persists at 

higher energies. 

It should be noted that in order to evaluate the real part, it is 

only necessary to speculate on the behavior of the total cross sections 

up ·to energies which are, say, an order of magnitude greater. A different 

extrapolation beyond there does not necessarily affect the dispersion 

calculation. 

In Section II we present the general formalism and discuss a mathe­

matical example that is close to the real situation in K±p. In Section nI 

we treat the 1CP problem in detail. Section IV deals with the Kp system. 
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II. GENERAL FORMALISM 

We use dispersion relations to analyze a t::o 0 scattering ampli­

tude, whose discontinuity 1s determined by total cross sections of two 

channels related by crossing (e.g., 1I:+P and 1I:-P or K+P and K-p). We 

refer the reader to Ref. 3 for the conventional formulation of disper­

sion relations and previous calculations. One separates the symmetric 

amplitude A(+) = ~ [A(1I:- p) + A(1I:+p)J £'rom the antisymmetric one 

A(-) = ~ [A(1I:-p) - A( 1I:+p )]' and writes the dispersion relations 

k2~ A(+) (v) A(+)(I-l) + ::0 +2 2 2 
M[l-(J!..) J&2_(JL) ]2M . 2M 

k2 CD v' 0(+) (v') 
+ J dV' , (1) 

v2211:2 k' (v,2 _ - iE)I-l 

2-1 v v CD k' 0(-)('" ~ A(-)(,,) = + J dV' • (2)
22 v,2 ,,2 ie_ _211:2,,2 _ (JL) tJ. 

2M 

M is the nucleon mass and I-l the meson mass. aC±)::o ~ [OT(1I:-p) ± 0T(1I:+P)]­

v and k are the meson's laboratory energy and momentum respectively. 

/!- specifies the strength of thE! Born term, and is equal to 0.082. 

ACt-{V = tJ.) is the oniy subtraction constant. It is known to be zero 

within experimental errors, in agreement with Adler's ~C self-consistency 

condition.4 ) In writing (2), one obviously makes the assumption that 

O(-) goes asymptotically to zero. This is the point which we now want to 

change. Following the approach of Ref. 2, we assume that both 0T( 11:-p) 

and 0T(1I:+P) remain constant £'rom about 30 BeV on. This then implies that 

they have different values, and O( -) is a non-zero constant. We want to 



-4­

see what the predictions of these assumptions for the real part are. 

Having to introduce a subtraction into (2), we therefore replace it by 

Ie k' a( -) (v')
+ ....L J dv' 

v,2 _ .,.,2 - ie2·l ~ 

vk2 (X) v+ J dV' c 
tl 
- •2,1- Ie 

Note that, instead of performing a subtraction on the entire inte­

gral, we divide it into two parts. One is written in an unsubtracted 

torm, and the other in a subtracted one. This is done for practical 

purposes. It avoids stressing the low-energy input and thus increasing 

the errors in the calculation. The number c depends on the choice of Ie. 

Equa~ion (~) also demonstrates the fact that the real part at low energy 

is not necessarily affected by the new assumptions on the high-energy 

behavior. We are actually able to reproduce .at low energies (say, below 

-4 BeV) the same results previously obtained by the use of (2) with any 

reasonably decreasing tit to a(-). 

To illustrate the changes brought about by the assumptions on the 

behavior of the total cross section, let us discuss a mathematical 

example that is very similar to the actual situation in Kip. let us 

denote the two reactions in question by A and B (analogous to K+p and 

K-p respectivelY). Assume first that (case I): 

, o<v<oo • 

It is then easy to find that 

Re Bx = 0 • (5) 
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This is the expected result for Kip if one uses a Regge representation 

with a regular Pomeron and two pairs of exchange degenerate trajec­

tories with intercepts at 1/2. If we now make the analogous assumption 

to that of Ref. 2, we have (case II): 

av+bJV O<v<A 
Im Bn = • (6) 

{ (a + 1..) v A<v<oo 

It is then readily established that 

2b..fi fA ~ I I cRe All = - 2t arctan.J'V + log v+A - - v ,
2tJA J!­

(7) 

bJV 
- ~ log Iv - AI + _~ v •Re ~I == -2t- log 

2t../A )1 

It il now interesting to note that although Eqs. (5) and (7) are very 

different from one another, it is still possible to find a value of c 

that will show a similar behavior for low v. Thus it is possible that 

even though Im ~ ,. Im ~ for v > A, one still finds that the real 

parts of the various amplitudes can roughly agree for v < A. 

To illustrate this point numerically, we choose a = b = 3.6, 

indicated 


A == 22. (These values are / by experiment if v is measured in 


1
BeVand the amplitudes in BeV-.) We find such an agreement between I and 

n for c =I.i. We present in Fig. 1 the results for a{A) == Re A/rm A 

and a{B) == Re B/Im B, since this is the customary way in which the data 

are given in ttN experiments. 

Note that after the value v =100 the logarithmic part in Re All 

and Re Bn: is taking over. Nevertheless it does not reach a sizable 

amount even at high v values. To quote a number -- at v = 106 we find 
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a(BxI) = -0.49 and a(ATt = 0.59. We will find a similar behavior in the 

next section when discussing the ~N problem. 

III. REAL PARrS OF ~ AMPLITUDES 

In Ref. 2, the ~ total cross sections were fitted to a form 

(8)• 

An ioniza.tion pOint was then assumed to appear at v = ~ BeV, resulting 

in the flattening off of the cross sections at that point. This meant 

that 20(-) = o(~-p) - o(~+p) > 1 mb even at high energies. In Ref. 2, 

a<-) was as sumed to remain a constant for v ~ 30 BeV. 

Any breaking of the Pomeranchuk theorem results in a logarithmic 

rise of the real part of the amplitude, notably of A(-)(v).2,5) Hence 

C¥±)v) = Re A±(V)/!:JtJ. A±(V) does not tend to 0 as v'" 00. Once the 

logarithmic behavior begins to dominate, a rises in absolute value, with 

C¥+ and a_ taking opposite signs. The strength of the logarithmic term is 

proportional to the value of o( - ) • 

The dispersion integrals were evaluated on a computer. In order to 

do the principal part integration, it is necessary to have a smooth fit 

to the data points, since the integral is sensitive to discontinuities 

near v· = v. For v S 4 BeV we used the fit of Ref. 5. The data 

between 4 and ~ Be-/>,7) can be fitted in a variety of ways. We first 

fitted each cross section separately to a form 

o == a· + b vn- l (9)•± ± ± 

In such fits, 80_ - a+ was invariably greater than 1 mb, and the choice 

of n was a matter of taste. We then tried a fit satisf,ying the 

Pomeranchuk theorem 
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(10)• 

• 

This was done in order to be able to compare the premise of a cutoff with 

the assumption that the Serpukhov data. might be wrong, and that the 

Pomeranchuk theorem might be right after all. 

The data of Citron et a.l.6 ) do not seem to fit smoothly to those of 

Foley et ale7). We had to settle for a slightly low value of n. We chose 

n = 0.25 , m = 0.6 • 

Applying to fit (10) a cutoff at 50 F!eV, we got for v above cutoff 

This number is consistent with the result of Ref. 1. In doing the same 

with fit (9), we got 2a(-) above cutoff to depend on the fit. a(~-p) 

is, of course, determined by the Serpukhov data, but there is a slight., 
freedom of play in a(~+p). We assumed the cutoff point to be the same as 

in ~-p (50 BeV) and since this is a F!eV higher than the last data. point, 

the extrapolation depends on the fit. If' we constrained· fit (9) to satisfy 

2a(-) = 1.3 mb, the dispersion relations gave the same results for the 

real parts as fit (10). We adopted the latter for the purpose of testing 

the sensitivity of the calculation to the possible breaking of the 

Pomeranchuk theorem. We called case I that which assumes· (10) to be good 

for all v. In case II we applied the cutoff, so that for v!: 50 BeV 

both cross sections were constant. The two cases are illustra.ted in 

Fig. 2. Note that if further structure appears in aT at much higher 

energies, it may have negligible effects on our calculation. 

The calculated ratios C%±(v) a Re A±(V)/Im A±(V) for the ,t±p ampli­

tudes are plotted in Fig. 3, together with the data.a) In case I there 

---- ......_.-- --------------------­. 
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is n~ free parameter in the dispersion relations (1) and (2). In case II 

there is the arbitrariness of c in (5), which can be chosen to best fit 

the data. (We used Ie = 4 BeV.) 

If one assumes exact charge independence, one can evaluate the forward 

CEX differential cross section. The predictions are plotted together with 

the data9) in Fig. 4 and Fig. 5. We note that in case I the prediction 

seems to be too high by about 30~ at, say, 20BeV. If we attribute the 

discrepancy to I-spin violation of the electromagnetic amplitude, we find 

it to be 2O~ of the total A(-) amplitude. With 2o(-)(V=20) - 1.5 mb, 

we would thus have 2oEMC-) ~ 0.5 mb. Since we do not expect the electro­

magnetic effects to vary strongly with energy, we may conclude that the 

ansatz of the Pomeranchuk theorem is good only up to 20C-) «x» s 0.5 mb. 

In case II one can adjust c so as to get a very good fit to the CEX 

" data (c = 0.55). Alternatively, one can fix c to fit the CX± data. 


Choosing here c = 0.55, we find a good fit to CX+ but a poor one to a_. 


This is an improvement over case I. A change to c:= 0.25 results in an 


equivalent overall fit to CX± with a poorer fit to CX+ and a better one to a_. 


Note that such a cbange contributes oppositely to a+ and CX_ • Checking the 


CEX prediction with c = 0.25, we find it too low by about 4~. This
. 
corresponds to 2oEM(-) S 0.5 mb. 

Note tbat the small deviations that we found are a feature of our 

calculated real parts. Point by point, the experimental a±(v), within 

their errors, are consistent with the CEX data without any I-spin violation. 

This was already pointed out by Foley et al.8) Although we can fit the data 

with no I-spin breaking, we cannot rule out 2oEM(-) ~ 0.5 mb. However, 

this is still too small to account for the expected constant difference 

between OTC,tP) and OT(1C+P). We have to conclude, then, that this 

difference is a genuine strong interaction effect. 
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The main difference between the two dispersion calculations I and II 

sets in around 100 BeV. At that point, the logarithmic part of Re A(-) 

in case II begins to dominate. Instead of going to zero, a+(v) becomes 

positive and increases, while a_(v) turns over and becomes more negative. 

The CEX forward cross section begins to rise again. On an absolute scale, 

both effects are small. 
, 

We should be able to see the CEX forward cross 

section flattening, but for the real part to dominate the amplitude we 

will need fantastically high energies. ~ that time, a new physics may 

very well set in. It was pointed out in Ref. 2, as well as in Ref. 5, 

that if Re A/rm A grows logarithmically, then one has to have the for­

ward elastic peak shrink like log2s to avoid a conflict with unitarity. 

strictly speaking, such a conflict would arise only at such large values 

of v that the whole problem looks rather academic. Nevertheless, the same 
.., 

conclusion about the shrinkage arises of course from the assumption that 

a does not rise with energy, which might very well be the case.el 

Finally, a word about errors and low-energy behavior. The cross 

sections are accurate to about l~. This leads to' errors of approximately 

:to .00:3 in a (v). A change in a( - ) above cutoff causes a bigger
± 

correction. Varying the high-energy cross sections above 30 BeV does not 

change the low-energy. (v S 4 BeV) dispersion calculations. There, our 

results agree with those of Ref. 3. 

IV. REAL PARTS OF K±p AMPLITUDES 

We calculated the real parts of K±p forward scattering amplitudes in 

the same way as for~. The data between threshold and v = 3.3 BeV were 

slightly smoothed. Above that point, the following fit was made: 

---------------- ---~-------- ....-~ ....~ 
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(11) 
• 

The dispersion relations were evaluated for cases I and II as in ~, 

with the cutoff in case II taken at 20 EaV. The errors involved here are 

much bigger than in~. The uncertainties in the subthreshold singulari­

ties do not allow a good determination of the real parts at low energies. 

In particular, the Y*(1405) is an S-wave, and thus is not quenched kine­

matically. We estimate its effect to be six times as big as the Born 

term in d. This would be approximately 5 -10~ of the real part at 

v = 5 EaV. An additional unknown is the subtraction term of the symmetriC 

amplitude, A(+)(V=~). However, their combined effect remains constant, 

while the imaginary part grows like v, so that their contribution to 

a(K~) should fall like liVe In case II there is the further diffi­

culty of evaluating the subtraction constant c in the antisymmetric 

amplitude A(-). The CEX reactions are not related by a simple I-spin 

rotation. Nor has a direct experimental determination of a±(v) by 

Coulomb interference been done. The only existing testis the forward 

elastic differential cross section. This is a measurement of 1 + c!-. 
If' a is small, its determination becomes difficult. Fortunately there 

exists relatively ~curate K+p data,lO) which suggests 

la{R7p)\ - 0.55 ± 0.15 for v - 7 -15 EaV. The error in a is evaluated 

by assuming the dO/dt data to vary within their error bars. If we 

allow a further variation of one standard deviation, we can set a lower 

limit on a of - 0.25. The K-P datall) is consistent with la(K-p)\ = 0, 

but an upper limit of - 0.:3 has to be allowed within error bars. An 

additional standard deviation increases this limit to - 0.5. The 
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calculated values of a(K'±p), together with the experimental limits are 

plotted in Fig. 6. 

Case I seems to disagree with the data. In case II we can explain 

the discrepancy by means of the subtraction term. To fit a(K+p), we can 

choose either one of two values, depending on the sign of a, which cannot 

be determined by this method. We find for It = :3 .:3, 

2 a(K+p) < 0 , a(K-p) > 0 
c ­ •

{ -1.6 a(K+p) > 0 , a(K~p) < 0 

c - -1.6 is ruled out because it gives a(K-p) - -0.65. Hence we conclude 

that a(K+p) < 0 and a(K-p) > O. The data. pOints, for a{K+p) were plotted 

under this assumption in Fig. 6. The errors are clearl¥ very large, and 

allow us to safel¥ ignore the subthreshold singularities. 

The general features of 1EP dispersion relations appear also in Kp. 

The logarithmic behavior is magnified because 2a{"') ... 4: mb. However, at 

present energies the bulk of the real part seems to come from the sub­

traction term, and not from the logarithmic one. In fact, these appear to 

have opposite signs. Thus we expect Ia I to actuall¥ fall until very high 

energies, when a changes signs and Ia I begins to grow again. As in 1EP, 

the real part does not dominate untU extremel¥ high energies. 

The difference 'between the pion and the kaon amplitudes lies in the 

energy range below the cutoff point. The usual Regge picture -- which 

assumes the Pomeranchuk theorem to hold ...... is compatible with experiment 

for the pions, but appears not to be so for the kaons. In the latter case, 

the existence of an additional real term seems to be implied by the data. 

---...• .............
~- ~ 
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FIGURE CAPrIONS 

Fig. 1: a" the ratio of real and imaginary parts of the various 9.mpli­

tudes discussed in the mathematical example of Section II. The 

subtraction constant c is chosen so that for v < A, a I 1'0:1 all. 

Fig. 2: ~ total cross.sections and fit (10). Errors plotted are the 

sum of the statistical and the systematic. The statistical 

errors of Alla.by et al. are also indicated. The errors of 

Citron et al. are "'mainly systematic, and only representative 

data points of this group have been included. 

Fig. 5: Predicted a(~) = Re A(~)/Im A(,(±p) and experimental data 

of Foley et al.8 ) I and II refer to the choice of high-energy 

cross sections. (See Fig. 2.) c is the subtraction constant. 

Fig. 4: Forward differential 1CN charge exchange cross sections predicted 

assuming exact I spin conservation, and data of Mannelli ~ al.9 
) 

Fig. 5: Blow-up of Fig. 4. The discrepancy between the fit and the data 

is an indication of the amount of I-spin violating electromagnetic 

effect. On the basis of this deviation, we conclude 

2 OEM(-) S 0.5 mb. 

Fig. 6: a(K±p)"; Re A(Kfp)/Im A(Kfp) and experimental limits 

deduced from the forward elastic differential cross sections.10,1l) 

The sign of a(K+p) was determined from the dispersion relations. 

(See text.) 
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