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Hamiltonian dynamics has been applied to study the slip-stacking dynamics. The canonical-perturbation
method is employed to obtain the second-harmonic correction term in the slip-stacking Hamiltonian. The
Hamiltonian approach provides a clear optimal method for choosing the slip-stacking parameter and
improving stacking efficiency. The dynamics are applied specifically to the Fermilab Booster-Recycler
complex. The dynamics can also be applied to other accelerator complexes.
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I. INTRODUCTION

Beam intensity is limited by space-charge effects at low
energies. Rapid cycling synchrotrons (RCS) can be used to
increase beam power. However, RCS is usually limited by
its achievable energy and a second-stage accelerator is
required to increase both energy and beam power. Slip-
stacking injection may be a necessary method to achieve
high power through doubling the beam intensity. The idea
of slip-stacking was first proposed by Mills [1], where he
studied the stability of particle motion under the influence
of an rf system at a nearby frequency. An experimental trial
on slip-stacking had been carried out in the CERN SPS
(European Organization for Nuclear Research, Superproton
Synchrotron) to accumulate beams from the CERN PS
(Proton Synchrotron) [2]. Slip-stacking had later been
applied in the Fermilab Tevatron Run IIB, where proton
bunches from the Booster were slip-stacked in the Main
Injector in order to increase antiproton production, when
the slip-stacked proton beam was extracted to hit a target
[3]. At the moment, slip-stacking is also employed in the
Fermilab Recycler Ring to increase the proton beam power
for neutrino production [4].
Recently, the dynamics of slip-stacking have been

studied by Eldred [5], by solving single-particle equations
of motion through numerical simulations. Eldred also
proposed second-harmonic correction to the slip-stacking
rf system. Here, we wish to attack the same problem but in
the Hamiltonian approach. This approach appears to be
much simpler to provide the second-harmonic rf voltage
correction required to cancel the interaction between the

two series of slipping rf buckets (or resonance islands). In
addition, it also provides us with the understanding of the
parametric resonances that pop up in the rf buckets and the
formation of chaotic regions during the slip-stacking
operation. Our paper is organized as follows. In Sec. II,
we lay out the Hamiltonian for the slip-stacking equation of
motion, where the slip-stacking Hamiltonian depends only
on a single slip-stacking parameter αs. In Sec. III, we carry
out canonical perturbation to recover the resonances pro-
duced by mutual interaction between the upper and lower
buckets. It becomes clear that these resonances can be
canceled by using an additional second-harmonic rf system.
In Sec. IV, we carry out numerical simulations to verify the
effects attained from the Hamiltonian dynamics. In Sec. V,
we discuss the choice of the slip-stacking parameter and
apply it specifically to the Fermilab accelerator complex.
Conclusion of our work is discussed in Sec. VI.

II. THE SLIP-STACKING HAMILTONIAN

When there is only one rf system in a synchrotron, the
Hamiltonian describing the longitudinal motion is [6]

H ¼ νsp2

2
þ νs½1 − cosϕ�; ð2:1Þ

where, for the sake of simplicity, we use the normalized
off-momentum coordinate p ¼ hjηjδ=νs with δ≡ ΔP=P0

being the nominal fractional off-momentum of a particle,
P the momentum of the particle and P0 the nominal
momentum of the beam, h the harmonic number of
the rf system, and η the phase-slip factor of the slip-
stacking ring. The small-amplitude synchrotron tune is
νs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjηjeVrf=2πβ2E

p
, where Vrf is the rf voltage, and βc

and E are the nominal speed and energy of the beam
particles. The rf phase ϕ and the normalized off-momentum
p are conjugate canonical coordinates, while θ represents
the independent “time” variable, which increases by 2π in
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each revolution around the ring. In the normalized phase-
space coordinates p and ϕ, the rf bucket is pendulumlike in
shape and is bounded by jϕj ≤ π and jpj ≤ 2. We call, in
this paper, this rf bucket the unperturbed rf bucket,
meaning that it is not influenced by any other rf system.
Every point inside the unperturbed rf bucket is stable.
During slip-stacking, there is another rf system at an rf

frequency lower or higher than the fundamental one by
fslip. In order for slip-stacking to work, these two rf systems
must generate buckets which slip by exactly one train or
one batch of rf buckets in consecutive injections from the
rapid-cycling booster synchrotron. This condition fixes
the rf frequency difference to fslip ¼ hBfB, where fB is
the repetition frequency of the RCS and hB is its rf
harmonics. For Fermilab, the RCS is the Booster with hB ¼
84 and fB ¼ 15 Hz. The harmonic number of the Recycler
ring is hR ¼ 588. Hereafter, all symbols without subscript
represent parameters of the slip-stacking ring. For conven-
ience, we introduce a slip-tune νslip ¼ fslip=f0, where f0 is
the revolution frequency of the Recycler Ring.
In the presence of the two rf systems, the Hamiltonian

becomes [6]

H ¼ νsp2

2
þ νs½2 − cosϕ − cosðϕ − νslipθÞ�: ð2:2Þ

Here, a constant 2 is added to the Hamiltonian for
convenience, and we assume that these two rf systems
have the same total rf cavity voltage Vrf . Note that the rf
buckets generated by the rf system corresponding to
cosðϕ − νslipθÞ are at a slightly lower energy than the
buckets generated by the fundamental rf system corre-
sponding to cosϕ in the Hamiltonian (if the phase-slip
factor is η < 0). Because of the lower energy, the lower-
energy bucket series slips forward at the rate of
Δϕ ¼ νslipθ. The fractional momentum that separates the
upper and lower bucket series is

Δδsep ≡ ΔPsep

P0

¼ νslip
hjηj ¼

hBfB
hRjηjf0

; ð2:3Þ

where ΔPsep is the momentum difference of the two slip-
stacking beams, P0 is the nominal momentum of the
beams, and η is the phase slip-factor of the slip-stacking
ring. Once the repetition rate of the RCS, the phase-slip
factors, and the revolution frequency of the slip-stacking
ring are designed, the momentum separation of the two
bucket series, Δδsep, is fixed. In terms of the normalized
off-momentum coordinate p, the separation of the centers
of the upper and lower buckets is

Δpsep ¼
hjηjΔδsep

νs
¼ νslip

νs
≡ αs; ð2:4Þ

where αs is called the slip-stacking parameter with the
property αs ∝ V−1=2

rf . The unperturbed bucket height is

jpj ≤ 2, which is independent of αs. Therefore the unper-
turbed rf buckets of the two rf systems just touch each other
at αs ¼ 4 [1]. The two unperturbed rf buckets are separated
from each other when αs > 4, and they overlap when
αs < 4.
Because of the presence of the two rf systems, the two

series of rf buckets, upper and lower, are mutually
perturbing each other. The stable bucket areas become
smaller than those of the unperturbed rf buckets. When the
upper and lower series of buckets overlap, resonance
islands can be generated in between the two series of rf
buckets usually around p ¼ 0 and ϕ ¼ 0 and �π. In
addition, chaotic regions may be created, which can reduce
the stable region of the rf buckets significantly.
Overlapping resonances can be avoided if the upper and

lower buckets are widely separated or if αs ≫ 4. Bigger αs,
however, implies smaller rf voltage and therefore smaller
unperturbed bucket areas (in δ − ϕ coordinates), which
may not be large enough to accommodate the beam injected
from the RCS. On the other hand, smaller αs implies larger
rf voltage. One may think that there would be bigger
unperturbed bucket areas to accept the beam injected from
the RCS. When αs < 4, these two bucket series can
produce strong overlapping resonances and chaos so that
the stable parts of the buckets become smaller than the
unperturbed buckets.
We now examine slip-stacking in the unnormalized off-

momentum coordinate δ ¼ ΔP=P0. The bucket separation
Δδsep given by Eq. (2.3) is rf-voltage independent, while
the half-momentum widths of the unperturbed buckets (or
half-bucket height)

Δδbucket ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4eVrf

2πβ2Ehjηj

s
¼ 2νs

hjηj ð2:5Þ

are proportional to V1=2
rf . When Δδsep ¼ 2Δδbucket, the

unperturbed upper rf bucket touches the unperturbed lower
rf bucket, which again reduces to αs ¼ 4. As rf voltage Vrf
is reduced so that Δδsep ≫ 2Δδbucket (or αs ≫ 4), the
unperturbed bucket height Δδbucket decreases and so is
the bucket area. The bucket may not be big enough to
accommodate the injected bunch. The two series of rf
buckets, however, are father apart. However, if Vrf is made
larger so that Δδsep < 2Δδbucket (or αs < 4), the upper and
lower bucket series overlap each other. This generates
resonance islands and chaotic regions in phase space,
which in turn will reduce the stable areas of the upper
and lower buckets.
The interaction of these two rf systems will produce

resonances in between the upper and lower buckets. If one
can find a compensation rf system to cancel the driving
term, these additional resonances can be eliminated or
minimized, and one may be able to restore the slip-stacking
buckets for the injection bunches.

S. Y. LEE and K. Y. NG PHYS. REV. ACCEL. BEAMS 20, 064202 (2017)

064202-2



To simplify the derivation, we first symmetrize the
Hamiltonian to a frame with the upper and lower buckets
centered at p ¼ þ 1

2
αs, or with frames moving at þ 1

2
νslipθ.

This can be accomplished by a canonical transformation
using the generating function

F2ðϕ; ~pÞ ¼
�
ϕ −

νslipθ

2

��
~pþ αs

2

�
; ð2:6Þ

where the new and old canonical variables are related by

~ϕ ¼ ∂F2

∂p̄ ¼ ϕ −
νslipθ

2
and p ¼ ∂F2

∂ϕ ¼ ~pþ αs
2
: ð2:7Þ

The new Hamiltonian is

H ¼ νs ~p2

2
þ νs

�
2 − cos

�
~ϕþ νslipθ

2

�

− cos

�
~ϕ −

νslipθ

2

��
þ νsα

2
s

8
; ð2:8Þ

where ~p and ~ϕ are the conjugate canonical coordinates of
the symmetrized slip-stacking rf systems. The Hamiltonian
represents the upper and lower buckets moving at Δϕ ¼
∓νslipθ=2, respectively, while the structures in between the
two buckets centered at ~p ¼ 0 is stationary. We will focus
on the phase space near ~p ¼ 0.

III. THE SECOND-ORDER CANONICAL
PERTURBATION

Ignoring the uninteresting constant term in Eq. (2.8)
and simplifying notation by reidentifying phase-space
coordinates with ~p → p and ~ϕ → ϕ, the Hamiltonian is

H ¼ νsp2

2

þ νs

�
2 − cos

�
ϕþ νslipθ

2

�
− cos

�
ϕ −

νslipθ

2

��
:

ð3:1Þ

Because we wish to study the phase space structure in
between the upper and lower rf buckets, we perform a
canonical transformation to cancel the potential energy
part of the Hamiltonian (3.1) using the generating
function

F2ðϕ; p̄Þ ¼ ϕp̄þ aðp̄Þ sin
�
ϕþ νslip

2
θ

�

þ bðp̄Þ sin
�
ϕ −

νslip
2

θ

�
; ð3:2Þ

where aðp̄Þ and bðp̄Þ are two functions of p̄ to be
determined. The transformation is

ϕ̄ ¼ ∂F2

∂p̄ ¼ ϕþ a0ðp̄Þ sin
�
ϕþ νslip

2
θ

�

þ b0ðp̄Þ sin
�
ϕ −

νslip
2

θ

�
; ð3:3Þ

p ¼ ∂F2

∂ϕ ¼ p̄þ aðp̄Þ cos
�
ϕþ νslip

2
θ

�

þ bðp̄Þ cos
�
ϕ −

νslip
2

θ

�
: ð3:4Þ

The transformed Hamiltonian is

H ¼ νs
2

�
p̄þ aðp̄Þ cos

�
ϕþ νslip

2
θ

�
þ bðp̄Þ cos

�
ϕ −

νslip
2

θ

��
2

þ νs

�
2 − cos

�
ϕþ νslip

2
θ

�
− cos

�
ϕ −

νslip
2

θ

��

þ
�
aðp̄Þνslip

2
cos

�
ϕþ νslip

2
θ

�
−
bðp̄Þνslip

2
cos

�
ϕ −

νslip
2

θ

��
: ð3:5Þ

We choose

aðp̄Þ ¼ 2

αs þ 2p̄
and bðp̄Þ ¼ −

2

αs − 2p̄
ð3:6Þ

to cancel the linear potential part of the Hamiltonian (3.1) with the slip-stacking parameter αs defined in Eq. (2.4).
After the cancellation of the terms linear in p̄, we find

H ¼ νsp̄2

2
þ 2νs

�
cosðϕþ νslip

2
θÞ

αs þ 2p̄
−
cosðϕ − νslip

2
θÞ

αs − 2p̄

�
2

¼ νsp̄2

2
þ 2νs

�
α2s þ 4p̄2

ðα2s − 4p̄2Þ2 −
cos 2ϕþ cos νslipθ

α2s − 4p̄2
þ cosð2ϕþ νslipθÞ

2ðαs þ 2p̄Þ2 þ cosð2ϕ − νslipθÞ
2ðαs − 2p̄Þ2

�
; ð3:7Þ
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where ϕ is related to ϕ̄ through Eq. (3.3). The second-order
canonical perturbation to the two-rf system focuses the
dynamics at the intersection region between the two
buckets. All the fundamental-harmonic dynamics are
embedded in the transformed canonical momentum p̄. In
other words, if higher harmonics are ignored p̄ becomes a
constant of motion. The square-bracketed part of the
Hamiltonian in Eq. (3.7) describes the leftover phase-space
structure in between the upper and lower buckets, or the
overlapping resonances of these two rf buckets.
At the phase-space region near p̄ ¼ 0, the Hamiltonian

can be simplified to

H ≈
νsp̄2

2
þ 2νs

α2s

�
1 − cos 2ϕ − cos νslipθ

þ cosð2ϕ − νslipθÞ
2

þ cosð2ϕþ νslipθÞ
2

�
þOðp̄α−3s Þ:

ð3:8Þ

The term cos νslipθ is purely oscillatory and is independent
of the canonical variable; it can be ignored. We can also
neglect these two second-order “time-dependent” terms in
Eq. (3.8) that arise from the second-order perturbation of
the upper to lower buckets.
The stationary term cos 2ϕ represents a second-order

resonance induced by the overlapping upper and lower rf
buckets. The key problem of the slip-stacking is that the
upper and lower buckets can generate second-order buckets
in between these two first-order buckets with a concat-
enated potential 2νs

α2s
ð1 − cos 2ϕÞ. This introduces second-

order resonance islands and chaos in the overlapping
regions of original rf buckets, and thus reduces the stable
area of the original buckets for the injected beam. The loss
of injected beams can become severe. If one can remove the
second-order resonance islands generated by these two
bucket series, one can minimize particle loss in the slip-
stacking process. To this end, we add a second-harmonic rf
cavity to cancel the second-order resonance and modify the
initial Hamiltonian from Eq. (3.1) to

H ¼ νsp2

2
þ νs

�
2 − cos

�
ϕ −

νslip
2

θ

�

− cos
�
ϕþ νslip

2
θ

�
þ λ

2
ð1 − cos 2ϕÞ

�
; ð3:9Þ

where

λ ¼ −
4

α2s
ð3:10Þ

corresponds to the strength of the compensating second-
order rf harmonic potential intended to cancel the second-
harmonic voltage produced by the fundamental rf cavities.

Here, 1
2
λ represents the ratio of the second-harmonic rf

voltage to the fundamental rf voltage [7]. The compensa-
tion by second-harmonic potential has been proposed by
Eldred [5], who, through numerical tracking, determined
the optimal amount of compensation or the value of λ by
the exhibition of the maximum stable phase-space area.
His numerical fitting reveals two empirical formulas:
λ ¼ −e−0.4αs and λ ¼ −3.5α−2s depicted in Fig. 1. For
comparison, our determination is shown in red.
In short, the canonical transformation solves the

Hamiltonian up to the first-order rf harmonic leaving
behind all higher harmonics. Further canonical transforma-
tions can also be performed to solve for the next rf
harmonic successively. However, it is normally sufficient
to stop at the second-order canonical perturbation to tackle
these important resonances.

IV. NUMERICAL TRACKING

The Fermilab accelerator complex for the slip-stacking is
composed of the fast-cycling Booster and the Recycler
Ring. The rf buckets at the Booster and the Recycler are
both generated by rf systems of the same frequency
∼52.8 MHz. The Booster accommodates hB ¼ 84 rf buck-
ets and has a cycle rate of fB ¼ 15 Hz. The slip-stacking
frequency is therefore fslip ¼ fBhB ¼ 1260 Hz. The
Recycler has a revolution period of T0 ¼ 11.13 μs or a
revolution frequency of f0 ¼ 89.85 kHz. Thus the slip-
stacking tune is νslip ¼ fslip=f0 ¼ 0.0140. The Recycler
operates at the fixed particle kinetic energy of 8 GeV with a
phase-slip factor η ¼ −0.00869. At the rf voltage
Vrf ¼ 60 kV, for example, the small-amplitude synchro-
tron tune of the Recycler, is νs ¼ 0.00235 and the slip-
stacking parameter is αs ¼ νslip=νs ¼ 6.0. Figure 2 shows
the slip-stacking parameter αs versus the rf voltage Vrf for
the Recycler.

FIG. 1. Comparison of derived compensation second-harmonic
ratio λ with empirical values obtained by Eldred through
simulations. Our determination is shown in red.
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Numerical simulations of the Hamiltonian dynamics
[Eq. (3.9)] are performed in the normalized phase-space
coordinates. In theory, no machine parameters are needed.
The above quoted machine parameters just give us an
idea of the parameter space to be considered in a realistic
accelerator complex. The only machine parameter
employed in the tracking is the synchrotron tune, which
sets the pace for the phase and off-momentum coordinates
of a particle in the longitudinal phase space per revolution.
The number of revolutions in the turn-by-turn tracking or

the slip-stacking time is a machine-dependent number. The
injection of six booster batches takes 6=fB ¼ 0.40 s, or
6f0=fB ¼ 3594 Recycler turns. This is the number of turns
each tracking was performed. In the tracking with a phase
modulation or a voltage modulation, stroboscopic frames
are taken every modulation cycle, to ensure that the phase-
space diagram remains stationary or nonrotating. Here,
synchrotron oscillations in theRecycler aremodulated by the
slip-stacking tune νslip. The stroboscopic frames are therefore
taken every slip-stacking cycle or every Nslip turns, with
Nslip ¼ 1=νslip ¼ f0=fslip exactly. Unfortunately, 1=νslip ¼
71.28 is not a whole number. To facilitate the viewing of the
tracking results, we modify the slip-stacking cycle to exactly
Nslip ¼ 71. Since the slip-stacking frequency is fixed at
fslip ¼ 1260 Hz, the revolution frequency of the Recycler
Ring is modified accordingly to f0 ¼ Nslipfslip ¼
89.46 kHz (instead of the commonly quoted revolution
frequency of 89.85 kHz). The stroboscopic phase-space plot
is called the Poincaré map. We have studied tracking at
various values of the slip-stacking parameter αs, which is an
input to our tracking code. Below, we report tracking results
at αs ¼ 3.5, 4.1, and 6.0. All of these Poincarémaps have the
same initial phase-space points [8].
First, we study the situation of αs ¼ 4.1 (or Vrf ¼

127.3 kV for the Fermilab Recycler). Without second-
harmonic rf compensation, i.e. λ ¼ 0, the phase-space

structure is shown in the top plot of Fig. 3, where there
are many structure resonances embedded in a large chaotic
region between the upper and lower rf buckets. The lower
plot shows the phase-space structure with the second-
harmonic rf compensation. The compensation causes some
structure resonances in the buckets to be bounded by
invariant tori and the stable bucket area increases dramati-
cally to accommodate a larger injection bunch.
In order to depict the upper and lower rf buckets together

with the central fourth-order structure in one plot, particles
in the upper and lower buckets are made to slip backward
artificially by the phase �πνslip per revolution turn. This
back-slipping process is just to facilitate plotting and is not

FIG. 3. Top: phase-space structure with slip-stacking parameter
αs ¼ 4.1 without second-harmonic rf compensation, i.e. λ ¼ 0.
Bottom: phase-space structure when the second-harmonic rf
compensation is turned on, or λ ¼ −4=α2s ¼ −0.238. The inter-
action of two primary buckets is so strong that the phase space
between them becomes chaotic. Only the cores of the fifth-order
resonance islands are stable in the top plot. Once the compensa-
tion rf is included, the chaotic region becomes smaller. There are
stable tori outside the fifth-order resonance islands and the stable
bucket area increases, i.e., a larger injection bunch area can be
accepted.

FIG. 2. The slip-stacking parameter αs versus the Recycler rf
voltage Vrf .
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incorporated in the turn-by-turn tracking. This corresponds
to the Poincaré maps in the respective rotating frames.
Without second-harmonic rf compensation, the cores of

the fifth-order resonance islands are embedded in the
chaotic sea (upper plot). The fifth-order resonance is one
of the fundamental resonances generated by the modula-
tion of the synchrotron oscillations by the slip-
stacking frequency. Its occurrence comes about because
νslip=νs ¼ αs > 4. It is the choice of αs ¼ 4.1 (just above 4)
that produces the fifth-order resonance islands nearer to the
separatrix of each rf bucket than the center (see Sec. IVA
below). Increasing αs, these fifth-order resonance islands
moves toward the center of the bucket [9].
When the second-harmonic rf is turned on at

λ ¼ −4=α2s ¼ −0.238, the second-order resonances
between the upper and lower buckets at ϕ ¼ 0 and π are
simultaneously compensated. Reducing the mutual inter-
actions between the two bucket series, the fifth-order
resonance islands are now enclosed inside stable tori (lower
plot). The stable bucket area is much enlarged and the
acceptance of the slip-stacking beam has been substantially
increased.
We next study the situation when the slip-stacking

parameter is αs ¼ 6.0, the typical Fermilab slip-stacking
operational condition at Vrf ¼ 60 kV. The results without
and with second-harmonic rf compensation are shown in
the upper and lower plots of Fig. 4. Here, the first
fundamental parametric resonance generated by the slip-
stacking modulation is the seventh-order resonance and the
resonance islands are very far away from the centers of the
buckets.
The second-harmonic rf compensation λ ¼ −4=α2s ¼

−0.111 appears to change little the upper and lower
buckets. This is understandable because these two buckets
are well separated in the normalized fractional-momentum
coordinate p, or the buckets are much narrower in the
unnormalized fractional-momentum-spread coordinate δ.
The mutual influence between the two buckets becomes
much smaller, and so is the modulation at the slip-stacking
tune νslip. This explains why the seventh-order resonance is
less pronounced. Although the compensation term does
reduce the resonances between the upper and lower buckets
at p ¼ 0 and ϕ ¼ 0, π, the compensation does not increase
the bucket area for the stacking beams by much. There is no
significant reduction in the chaos near the separatrices of
the upper and lower buckets, because they arise from
overlapping parametric resonances.
In case the bunch area of the RCS beam is too large, we

may need a larger slip-stacking rf voltage Vrf leading to the
employment of a slip-stacking parameter αs < 4. In an
extreme case, we examine the effect of resonance com-
pensation for αs ¼ 3.5, or Vrf ¼ 174.7 kV at the Fermilab
Recycler. The top plot of Fig. 5 shows the Poincaré map of
slip-stacking buckets without correction. The stable phase-
space area of the bunch is the small diamondlike region of

the bucket (top plot), the signature of a very strong fourth-
order resonance. Because the slip-stacking parameter is 3.5,
the fourth-order resonance islands reside about midway
between the center of the bucket and its separatrix.
However, they are not visible, because the interaction
between the upper and lower buckets is so strong that
all resonance islands from the interaction are destroyed and
the chaotic region covers nearly all the phase space between
the upper and lower buckets.
When the second-harmonic compensation cavity with

λ ¼ −4=α2s is turned on, the stable phase-space area
increases considerably (bottom plot). The buckets restore
to their pendulumlike or elliptical shapes. The strong
fourth-order resonance islands are now visible in the upper
and lower slip-stacking buckets. However, they are still
embedded in the chaotic sea. The compensation term helps

FIG. 4. Phase-space structure with slip-stacking parameter
αs ¼ 6.0 is shown in the top plot with no second-harmonic rf
compensation or λ ¼ 0, and in the lower plot with second-
harmonic rf compensation or λ ¼ −4=α2s ¼ −0.111. It is clear
that the compensation reduces the chaotic region between the
upper and lower buckets with, however, only small increase in the
phase-space areas of the slip-stacking buckets.
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the perturbation between the buckets but cannot change the
resonances within each bucket. The stable part of the rf
buckets may be still inadequate to accept a sizable bunch
from the Booster. It is therefore advisable to choose the
slip-stacking parameter at αs > 4 in order to avoid beam
loss, even with the compensation term turned on.

A. Parametric resonances

For beam particles in one of the buckets, the other slip-
stacking rf system produces a time-dependent modulation
at the tune of νslip ¼ αsνs, which is a combination of phase
and voltage modulations. If the modulation tune is equal to
an integer multiple of the particle tune, resonance occurs.
The synchrotron tune of a particle in the bucket depends on
its synchrotron amplitude [6]; i.e., the synchrotron tune is
νs at small amplitude and decreases to zero at the separatrix

of the synchrotron phase space, as shown in Fig. 6.
Resonances will occur at different phase-space locations
as the slip-tune αsνs changes.
If the modulation (slip-stacking) tune cuts through the

nth harmonic of the synchrotron tune, the nth-order
resonance, called the n∶1 parametric resonance, will appear
at the corresponding phase-space location. For example,
the horizontal red dashed line in Fig. 6 corresponding to
αs ¼ 4.1 cuts through the fifth harmonic of the synchrotron
tune to produce a fifth-order resonance at the maximum rf
phase amplitude ϕmax ∼ 95°. Two strong resonances can
also concatenate into a second-order resonance, for exam-
ple, the 4∶1 and 5∶1 resonances can interact to produce a
9∶2 resonance at the phase space in between these two first-
order resonances, evidently shown at the top plot of Fig. 3.
The size of the resonance islands depend on the resonance
strength and the slope of the n-harmonic synchrotron tune
versus amplitude [6].
In the slip-stacking Hamiltonian, the resonances created

by the interaction between the upper and lower rf buckets
are called the second-order and higher-order resonances.
For example, the second term of the Hamiltonian of
Eq. (3.8) is the second-order resonance. When the sec-
ond-order resonance and parametric resonance overlap,
resonance islands of both types are partially or totally
destroyed, leaving behind a sea of chaos. This explains why
the fourth-order resonances are not visible in the upper plot
of Fig. 5. In the presence of second-harmonic rf compen-
sation, the second-order resonance is mostly canceled, and
their interaction with the parametric resonances reduced.
This explains why the fourth-order resonances in the lower
plot of Fig. 5 are restored and their resonance islands

FIG. 6. The synchrotron tune and its harmonics of a stationary
rf system versus ϕmax, the maximum phase amplitude of
synchrotron oscillation. The horizontal dashed lines are modu-
lation tunes at various slip-stacking parameters. When they cut
through an nth harmonic of the synchrotron tune, the nth-order
resonance will occur at that phase-space amplitude. These are the
resonances visible in Figs. 3–5.

FIG. 5. Phase-space structure with slip-stacking parameter
αs ¼ 3.5 is shown in the top plot with no second-harmonic rf
compensation or λ ¼ 0, and in the lower plot with second-
harmonic rf compensation or λ ¼ −4=α2s ¼ −0.327. The com-
pensation restores some of the structure resonances, but they are
still embedded in the chaotic sea. The compensation does not
cancel resonances associated with each slip-stacking bucket.
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become visible. Unfortunately, these fourth-order reso-
nance islands are still outside any stable tori. They are
still surrounded by a chaotic sea, which is the result of
strong overlapping parametric resonances generated by
time modulation at νslip ¼ αsνs, and cannot be canceled
by the compensating second-harmonic rf system.

V. CHOICE OF SLIP-STACKING PARAMETER αs

In this section, we apply the slip-stacking Hamiltonian
to the Fermilab accelerator complex. The slip-stacking
frequency of the Recycler is fixed at fslip¼hBfB¼1260Hz,
where hB ¼ 84 is the rf harmonic number of the Booster
and fB ¼ 15 Hz is its repetition or cycle rate. The rf
harmonic number for the Recycler is h ¼ 588. The
frequencies of the two rf systems in the Recycler are
separated by fslip, and the centers of the upper and lower
bucket series are separated by the fractional off-momentum
Δδsep ¼ νslip=ðhjηjÞ ¼ 0.00276, where η ¼ −0.00869 is
phase-slip factor of the Recycler Ring. Given a slip-
stacking parameter αs, the necessary Recycler rf voltage
Vrf is

Vrf ¼
2πβ2ν2sE
ehjηj ¼ 2πβ2Eν2slip

ehjηj α−2s ; ð5:1Þ

where E ¼ 8.938 GeV for the total nominal energy of the
particle beam at slip-stacking.
Since the separation of the two rf bucket series is, in

terms of the normalized fractional momentum spread,
psep ¼ αs, it is more transparent to use the slip-stacking

parameter. But, how does one choose the slip-stacking
parameter αs in operation? Note that the choice of αs does
not change the unperturbed bunch area of the captured
combined slip-stacked beam by much.
If one chooses αs ≫ 4 so that two rf buckets do not

overlap, the rf voltage Vrf will be small. The unperturbed
bucket area (in ϕ-δ) may be too small to accept the injected
beam, resulting in possible beam loss. If one chooses
α < 4, the rf voltage Vrf will be large, and so is the area of
each rf unperturbed bucket. Since two overlapping buckets
can produce strong resonances and chaos, the actual stable
bucket area may become too small for beam injection.
Typically, one would choose αs ≳ 4 (or Vrf < 134 kV)

to avoid resonances and chaotic regions created by the
overlapping of the upper and lower series of rf buckets. The
left plot of Fig. 7 shows the unperturbed bucket area (red
line), the unperturbed half-rf bucket height ΔEbucket (black
line) of a single rf system versus the Recycler rf voltage Vrf .
The data of stable bucket half-height are obtained from our
simulations with (blue) and without (black) second-order
harmonic correction. The right plot shows the half-bunch
width of the Booster ring at extraction for, respectively,
phase-space area A ¼ 0.1, 0.15, and 0.2 eVs versus the
Booster rf voltage at extraction. The typical phase-space
area of a Booster bunch at injection is about A ¼ 0.1 eVs
[10]. Although the Recycler has enough bucket area for the
Booster beam, there is a mismatch in bunch shape between
the two rings. At 60 to 70 kV Recycler rf voltage, the bunch
aspect ratio is 1.4 to 1.5 MeV=ns, while at the 350 kV
Booster extraction rf voltage, the aspect ratio of the bunch
is 5.5 MeV=ns. Without suitable bunch rotation, the height

FIG. 7. Left: bucket area (red line) and bucket height (black line) versus rf voltage Vrf for the Recycler. The typical operational
Recycler rf voltage is 60 kV. Data points are obtained from numerical simulation without (black) and with (blue) second-harmonic rf
compensation, where the dip at about 90 kV arises from the fifth-order resonance inside each slip-stacking bucket. The fourth-order
resonance occurs around 150 kV Recycler rf voltage. Right: bunch height of the Booster beam at bunch areas 0.1, 0.15, and 0.2 eVs
versus Booster rf voltage at extraction with the Booster rf sum of about 350 kV at extraction [10].
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of the stable part of the slip-stacking (or perturbed) bucket
is not sufficient for the Booster beam.
The stable half-bucket height in the left plot of Fig. 7

shows dips of the available bucket height. These dips are
located at αs ¼ 5.5, 5.1, 4.4, 4.1 or Vrf ¼ 70, 82, 110, and
127 kV, respectively. They are associated with the inter-
action between the resonances generated by the overlap-
ping bucket series and the parametric resonances generated
in each rf bucket by the slip-stacking modulation. With the
second harmonic compensation, all these dips disappear. In
the Recycler, the available stable half-bucket height of the
slip-stacking system provides just about 7.0 MeV for the
injected beam (see the left plot of Fig. 7 at Vrf ¼ 60 kV or
αs ¼ 6.0). With compensation, the half-bucket height may
be able to reach 8.5 MeVat Vrf ¼ 70–80 kV with αs ∼ 5.5
to 5.2.
The Booster bunch area does increase during the Booster

cycle because of various reasons, like space-charge effects,
transition crossing, horizontal and vertical coupling, etc.
[10]. Eldred [5] reported a measured Booster bunch area of
0.17 eVs near extraction. If bunch rotation can be imple-
mented to the Booster to achieve a bunch aspect ratio of
1.45 MeV=ns, the bunch half-height will be reduced to
8.86 MeV (or Δδb ¼ 1.0 × 10−3). Then with a proper
compensating second-harmonic rf cavity, the Recycler rf
voltage of Vrf ¼ 70 to 80 kV (corresponding αs ¼ 5.5 to
5.2) should be able to provide sufficient bucket height for
the Booster bunch accommodation.
Our simulations show that the second-harmonic com-

pensation is a beneficial for αs < 6.0. A proper second-
harmonic compensation correction will enlarge the stable
part of the slip-stacking buckets for the injection beam. The
compensation rf cavity, however, cannot compensate the
intrinsic parametric resonances within each slip-stacking
bucket, because those resonances are generated by the
modulation of the synchrotron oscillations at the modula-
tion tune of νslip ¼ αsνs. The key to achieving efficient slip-
stacking is to optimize bunch-phase-space matching
between the RCS and the slip-stacking ring.

VI. CONCLUSION

In conclusion, we have employed the Hamiltonian
dynamics to study the slip-stacking dynamics, and we
use numerical simulations to verify the Hamiltonian
dynamics. We apply the slip-stacking Hamiltonian to the
Fermilab Booster-Recycler complex. We have derived the
optimal range of the slip-stacking parameter and its
dependence on the phase-space area at the Booster extrac-
tion. To improve the slip-stacking efficiency, it is important
to minimize the phase-space area of the Booster extracted
beam, but the key problem is the aspect-ratio matching of
the RCS to the slip-stacking ring.
The final slip-stacked phase-space area depends essen-

tially on the Booster repetition rate and the properties of the
Recycler, for example, the rf harmonic numbers and the

phase-slip factor [see Eq. (2.3)]. Once these parameters are
fixed, the phase space of the stacked beam is fixed. The
slip-stacking parameter does not affect the captured
stacked-beam area by much. If the phase-space area of
the injected beam is small, one can use αs ≫ 4 to minimize
the interaction of the slip-stacking buckets. However, if the
phase-space area of the injection beam is large, one can use
the compensation second-harmonic rf cavity to minimize
the interaction between the slip-stacking buckets at
αs ≲ 5.5. The overlapping of the upper and lower rf bucket
series produces the resonance phase-space structure in
between the buckets, while the modulation of the synchro-
tron oscillations by the slip-stacking cycles produces the
intrinsic parametric resonances inside the rf buckets [6,9].
When these two types of resonances overlap, chaos results.
With the compensation rf cavity of Eq. (3.9), resonances in
between the two buckets are removed leaving intact the
parametric resonances associated with the buckets. The
compensation second-harmonic rf cavity can only cancel to
a certain extent the phase-space structure between the
bucket series. It cannot compensate the intrinsic parametric
resonances inside each slip-stacking bucket. If parametric
resonances are bounded by invariant tori, particles inside
these tori will be stable. Thus the compensating rf system
would be useful in recovering the stable bucket area in
some cases. Figure 7 of our simulations can be exper-
imentally tested at Fermilab on the stable bucket height for
the slip-stacking beams at Fermilab.
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