
ar
X

iv
:1

51
0.

05
49

4v
1

 [
he

p-
ph

]
 1

9
O

ct
 2

01
5 The GENIE Neutrino Monte Carlo Generator

PHYSICS & USER MANUAL

(version 2.10.0)

Costas Andreopoulos2, 5, Christopher Barry2, Steve Dytman3, Hugh Gallagher6, Tomasz Golan1, 4,

Robert Hatcher1, Gabriel Perdue1, and Julia Yarba1

1 Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

2University of Liverpool, Dept. of Physics, Liverpool L69 7ZE, UK

3 University of Pittsburgh, Dept. of Physics and Astronomy, Pittsburgh PA 15260, USA

4 University of Rochester, Dept. of Physics and Astronomy, Rochester NY 14627, USA

5STFC Rutherford Appleton Laboratory, Particle Physics Dept., Oxfordshire OX11 0QX, UK

6 Tufts University, Dept. of Physics and Astronomy, Medford MA, 02155, USA

October 20, 2015

FERMILAB-FN-1004-CD

Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.

http://arxiv.org/abs/1510.05494v1

2

This is a draft document.
Please send comments and corrections to costas.andreopoulos@stfc.ac.uk

3

4

Preface

GENIE [1] is a suite of products for the experimental neutrino physics community. This suite includes i)
a modern software framework for implementing neutrino event generators, a state-of-the-art comprehen-
sive physics model and tools to support neutrino interaction simulation for realistic experimental setups
(aka the “Generator”), ii) extensive archives of neutrino, charged-lepton and hadron scattering data and
software to produce a comprehensive set of data/MC comparisons (aka the “Comparisons”), and iii) a
generator tuning framework and fitting applications (aka the “Tuning”). These products come with dif-
ferent licenses. The Generator is an open-source product, whereas the Comparisons and the Tuning are
distributed only under special agreement.

This book provides the definite guide for the GENIE Generator: It presents the software architecture and
a detailed description of its physics model and official tunes. In addition, it provides a rich set of data/MC
comparisons that characterise the physics performance of GENIE. Detailed step-by-step instructions on
how to install and configure the Generator, run its applications and analyze its outputs are also included.

5

6

Key

• Class names: Italic (eg. TRandom3, GHepRecord, ...)

• GENIE application / library names: Italic (eg. gT2Kevgen, gevdump, ...)

• External packages: Normal (eg. ROOT, PYTHIA6, ...)

• Object names: ‘Normal’ (eg. ‘flux’, ...)

• Typed-in commands: Courier+Small+Bold (eg. $ gevdump -f /data/file.ghep.root)

• Fragments of typed-in commands: ‘Courier+Small+Bold’ (eg. ‘-n 100’)

• Environmnental variables: ‘Courier+Small+Bold’ (eg. $GENIE)

• Filenames and paths: ‘Italic’ (eg. ‘/data/flux/atmospheric/bglrs/numu.root’)

• URLs: Italic (eg. http://www.genie-mc.org)

Notes:

• A leading $, & or % in typed-in commands represent your command shell prompt. Don’t type that
in.

7

8

Contents

1 Introduction 13
1.1 GENIE project overview . 13

1.2 Neutrino Interaction Simulation: Challenges and Significance 14

2 Neutrino Interaction Physics Modeling 17
2.1 Introduction . 17

2.2 Nuclear Physics Model . 17

2.3 Cross section model . 18

2.4 Neutrino-induced Hadron Production . 21

2.5 Intranuclear Hadron Transport . 39

3 The GENIE Software Framework 51

4 Downloading & Installing GENIE 53
4.1 Understanding the versioning scheme . 53

4.2 Obtaining the source code . 54

4.3 3rd Party Sofwtare . 55

4.4 Preparing your environment . 55

4.5 Configuring GENIE . 56

4.6 Building GENIE . 58

4.7 Performing simple post-installation tests . 59

5 Generating Neutrino Event Samples 61
5.1 Introduction . 61

5.2 Preparing event generation inputs: Cross-section splines 61

5.2.1 The XML cross section splines file format . 61

5.2.2 Downloading pre-computed cross section splines 62

5.2.3 Generating cross section splines . 63

5.2.4 Re-using splines for modified GENIE configurations 67

5.2.5 Using cross section splines in your analysis program 67

5.3 Simple event generation cases . 69

5.3.1 The gevgen generic event generation application 69

5.4 Obtaining special samples . 72

5.4.1 Switching reaction modes on/off . 72

5.4.2 Event cherry-picking . 73

9

10 CONTENTS

6 Using a Realistic Flux and Detector Geometry 75
6.1 Introduction . 75
6.2 Components for building customized event generation applications 75

6.2.1 The flux driver interface . 76
6.2.2 The geometry navigation driver interface . 77
6.2.3 Setting-up GENIE MC jobs using fluxes and geometries 77

6.3 Built-in flux drivers . 78
6.3.1 JPARC neutrino flux driver specifics . 79
6.3.2 NuMI neutrino flux driver specific . 79
6.3.3 FLUKA and BGLRS atmospheric flux driver specifics 79
6.3.4 Generic histogram-based flux specifics . 80
6.3.5 Generic ntuple-based flux specifics . 80

6.4 Built-in geometry navigation drivers . 83
6.4.1 ROOT geometry navigation driver specifics . 83

6.5 Built-in specialized event generation applications . 84
6.5.1 Event generation application for the T2K experiment 85
6.5.2 Event generation application for Fermilab neutrino experiments 91
6.5.3 Event generation application for atmospheric neutrinos 95

7 Analyzing Output Event Samples 101
7.1 Introduction . 101
7.2 The GHEP event structure . 101

7.2.1 GHEP information with event-wide scope . 101
7.2.2 Interaction summary . 101
7.2.3 GHEP particles . 102
7.2.4 Mother / daughter particle associations . 103

7.3 Printing-out events . 105
7.3.1 The gevdump utility . 105

7.4 Event loop skeleton program . 106
7.5 Extracting event information . 107
7.6 Event tree conversions . 109

7.6.1 The gntpc ntuple conversion utility . 110
7.6.2 Formats supported by gntpc . 112

7.7 Units . 122

8 Non-Neutrino Event Generation Modes 123
8.1 Introduction . 123
8.2 Hadron (and Photon) - Nucleus scattering . 123

8.2.1 The gevgen_hadron event generation application 123
8.3 Charged Lepton - Nucleus scattering . 125
8.4 Nucleon decay . 125

8.4.1 The gevgen_ndcy event generation application . 125

9 Event Reweighting 129
9.1 Introduction . 129
9.2 Propagating neutrino-cross section uncertainties . 133
9.3 Propagating hadronization and resonance decay uncertainties 134
9.4 Propagating intranuclear hadron transport uncertainties 138
9.5 Event reweighting applications . 150

CONTENTS 11

9.5.1 Built-in applications . 150
9.5.2 Writing a new reweighting application . 151

9.6 Adding a new event reweighting class . 153

A Copyright Notice and Citation Guidelines 155
A.1 Guidelines for Fair Academic Use . 155
A.2 Main references . 155

B Special Topics, FAQs and Troubleshooting 157
B.1 Installation / Versioning . 157

B.1.1 Making user-code conditional on the GENIE version 157
B.2 Software framework . 157

B.2.1 Calling GENIE algorithms directly . 157
B.2.2 Plugging-in to the message logging system . 159

B.3 Particle decays . 159
B.3.1 Deciding which particles to decay . 159
B.3.2 Setting particle decay flags . 161
B.3.3 Inhibiting decay channels . 161

B.4 Numerical algorithms . 161
B.4.1 Random number periodicity . 161
B.4.2 Setting required numerical accurancy . 162

C Summary of Important Physics Parameters 163

D Common Status and Particle Codes 171
D.1 Status codes . 171
D.2 Particle codes . 171
D.3 Baryon resonance codes . 173
D.4 Ion codes . 173
D.5 GENIE pseudo-particle codes . 173

E 3rd Party Softw. Installation Instructions 175

F Finding More Information 179
F.1 The GENIE web page . 179
F.2 Subscribing at the GENIE mailing lists . 179
F.3 The GENIE document database (DocDB) . 179
F.4 The GENIE issue tracker . 180
F.5 The GENIE Generator repository browser . 180
F.6 The GENIE doxygen documentation . 180

G Glossary 181

Bibliography 185

12 CONTENTS

Chapter 1

Introduction

1.1 GENIE project overview

Over the last few years, throughout the field of high energy physics (HEP), we have witnessed an enormous
effort committed to migrating many popular procedural Monte Carlo Generators into their C++ equiva-
lents designed using object-oriented methodologies. Well-known examples are the GEANT [2], HERWIG
[3] and PYTHIA [4] Monte Carlo Generators. This reflects a radical change in our approach to scientific
computing. Along with the eternal requirement that the modeled physics be correct and extensively
validated with external data, the evolving nature of computing in HEP has introduced new requirements.
These requirements relate to the way large HEP software systems are developed and maintained, by wide
geographically-spread collaborations over a typical time-span of \sim25 years during which they will
undergo many (initially unforeseen) extensions and modifications to accommodate new needs. This puts
a stress on software qualities such re-usability, maintainability, robustness, modularity and extensibility.
Software engineering provides many well proven techniques to address these requirements and thereby
improve the quality and lifetime of HEP software. In neutrino physics, the requirements for a new physics
generator are more challenging for three reasons: the lack of a ‘canonical’ procedural generator, theoreti-
cal and phenomenological challenges in modeling few-GeV neutrino interactions, and the rapidly evolving
experimental and theoretical landscape.

The long-term goal of this project is for GENIE to become a ‘canonical’ neutrino event generator whose
validity will extend to all nuclear targets and neutrino flavors over a wide spectrum of energies ranging
from ∼1 MeV to ∼1 PeV. Currently, emphasis is given to the few-GeV energy range, the challenging
boundary between the non-perturbative and perturbative regimes which is relevant for the current and
near future long-baseline precision neutrino experiments using accelerator-made beams. The present
version provides comprehensive neutrino interaction modelling in the energy from, approximately, ∼100
MeV to a few hundred GeV.

GENIE1 is a ROOT-based [5] Neutrino MC Generator. It was designed using object-oriented method-
ologies and developed entirely in C++ over a period of more than three years, from 2004 to 2007. Its first
official physics release (v2.0.0) was made available on August 2007. GENIE has already being adopted
by the majority of neutrino experiments, including those as the JPARC and NuMI neutrino beamlines,
and will be an important physics tool for the exploitation of the world accelerator neutrino program.

The project is supported by a group of physicists from all major neutrino experiments operating in
this energy range, establishing GENIE as a major HEP event generator collaboration. Many members

1GENIE stands for Generates Events for Neutrino Interaction Experiments

13

14 CHAPTER 1. INTRODUCTION

of the GENIE collaboration have extensive experience in developing and maintaining the legacy Monte
Carlo Generators that GENIE strives to replace, which guarantees knowledge exchange and continuation.
The default set of physics models in GENIE have adiabatically evolved from those in the NEUGEN [6]
package, which was used as the event generator by numerous experiments over the past decade.

1.2 Neutrino Interaction Simulation: Challenges and Significance

Neutrinos have played an important role in particle physics since their discovery half a century ago. They
have been used to elucidate the structure of the electroweak symmetry groups, to illuminate the quark
nature of hadrons, and to confirm our models of astrophysical phenomena. With the discovery of neutrino
oscillations using atmospheric, solar, accelerator, and reactor neutrinos, these elusive particles now take
center stage as the objects of study themselves. Precision measurements of the lepton mixing matrix,
the search for lepton charge-parity (CP) violation, and the determination of the neutrino masses and
hierarchy will be major efforts in HEP for several decades. The cost of this next generation of experiments
will be significant, typically tens to hundreds of millions of dollars. A comprehensive, thoroughly tested
neutrino event generator package plays an important role in the design and execution of these experiments,
since this tool is used to evaluate the feasibility of proposed projects and estimate their physics impact,
make decisions about detector design and optimization, analyze the collected data samples, and evaluate
systematic errors. With the advent of high-intensity neutrino beams from proton colliders, we have
entered a new era of high-statistics, precision neutrino experiments which will require a new level of
accuracy in our knowledge, and simulation, of neutrino interaction physics.

While object-oriented physics generators in other fields of high energy physics were evolved from
well established legacy systems, in neutrino physics no such ‘canonical’ MC exists. Until quite recently,
most neutrino experiments developed their own neutrino event generators. This was due partly to the
wide variety of energies, nuclear targets, detectors, and physics topics being simulated. Without doubt
these generators, the most commonly used of which have been GENEVE [7], NEUT [8], NeuGEN [6],
NUANCE [9] and NUX [10], played an important role in the design and exploration of the previous and
current generation of accelerator neutrino experiments. Tuning on the basis of unpublished data from
each group’s own experiment has not been unusual making it virtually impossible to perform a global,
independent evaluation for the state-of-the-art in neutrino interaction physics simulations. Moreover,
limited manpower and the fragility of the overextended software architectures meant that many of these
legacy physics generators were not keeping up with the latest theoretical ideas and experimental mea-
surements. A more recent development in the field has been the direct involvement of theory groups in
the development of neutrino event generators, such as the NuWRO [11] and GiBUU [12] packages, and
the inclusion of neutrino scattering in the long-established FLUKA hadron scattering package [13].

Simulating neutrino interactions in the energy range of interest to current and near-future experiments
poses significant challenges. This broad energy range bridges the perturbative and non-perturbative
pictures of the nucleon and a variety of scattering mechanisms are important. In many areas, including
elementary cross sections, hadronization models, and nuclear physics, one is required to piece together
models with different ranges of validity in order to generate events over all of the available phase space.
This inevitably introduces challenges in merging and tuning models, making sure that double counting
and discontinuities are avoided. In addition there are kinematic regimes which are outside the stated
range of validity of all available models, in which case we are left with the challenge of developing our own
models or deciding which model best extrapolates into this region. An additional fundamental problem
in this energy range is a lack of data. Most simulations have been tuned to bubble chamber data taken
in the 70’s and 80’s. Because of the limited size of the data samples (important exclusive channels might
only contain a handful of events), and the limited coverage in the space of (ν/ν, Eν , A), substantial
uncertainties exist in numerous aspects of the simulations.

1.2. NEUTRINO INTERACTION SIMULATION: CHALLENGES AND SIGNIFICANCE 15

The use cases for GENIE are also informed by the experiences of the developers and users of the
previous generation of procedural codes. Dealing with these substantial model uncertainties has been an
important analysis challenge for many recent experiments. The impact of these uncertainties on physics
analyses have been evaluated in detailed systematics studies and in some cases the models have been fit
directly to experimental data to reduce systematics. These ‘downstream’ simulation-related studies can
often be among the most challenging and time-consuming in an analysis.

To see the difficulties facing the current generation of neutrino experiments, one can look no further
than the K2K and MiniBooNE experiments. Both of these experiments have measured a substantially
different Q2 distribution for their quasielastic-like events when compared with their simulations, which
involve a standard Fermi Gas model nuclear model [14, 15]. The disagreement between nominal Monte
Carlo and data is quite large - in the lowest Q2 bin of MiniBooNE the deficit in the data is around 30%
[15]. It seems likely that the discrepancies seen by both experiments have a common origin. However the
two experiments have been able to obtain internal consistency with very different model changes - the
K2K experiment does this by eliminating the charged current (CC) coherent contribution in the Monte
Carlo [16] and the MiniBooNE experiment does this by modifying certain parameters in their Fermi Gas
model [15]. Another example of the rapidly evolving nature of this field is the recently reported excess of
low energy electron-like events by the MiniBooNE collaboration [17]. These discrepancies have generated
significant new theoretical work on these topics over the past several years [18, 19, 20, ?, 21, 22, 23, 24].
The situation is bound to become even more interesting, and complicated, in the coming decade, as new
high-statistics experiments begin taking data in this energy range. Designing a software system that can
be responsive to this rapidly evolving experimental and theoretical landscape is a major challenge.

One of the aims of this manual is to describe the ways in which the GENIE neutrino event generator
addresses these challenges. These solutions rely heavily on the power of modern software engineering,
particularly the extensibility, modularity, and flexibility of object oriented design, as well as the combined
expertise and experience of the collaboration with previous procedural codes.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Neutrino Interaction Physics Modeling

2.1 Introduction

The set of physics models used in GENIE incorporates the dominant scattering mechanisms from several
MeV to several hundred GeV and are appropriate for any neutrino flavor and target type. Over this
energy range, many different physical processes are important. These physics models can be broadly
categorized into nuclear physics models, cross section models, and hadronization models.

Substantial uncertainties exist in modeling neutrino-nucleus interactions, particularly in the few-GeV
regime which bridges the transition region between perturbative and non-perturbative descriptions of
the scattering process. For the purposes of developing an event generator this theoretical difficulty is
compounded by the empirical limitation that previous experiments often did not publish results in these
difficult kinematic regions since a theoretical interpretation was unavailable.

In physics model development for GENIE we have been forced to pay particular attention to this
‘transition region’, as for few-GeV experiments it dominates the event rate. In particular the boundaries
between regions of validity of different models need to be treated with care in order to avoid theoretical
inconsistencies, discontinuities in generated distributions, and double-counting. In this brief section we
will describe the models available in GENIE and the ways in which we combine models to cover regions
of phase space where clear theoretical or empirical guidance is lacking.

2.2 Nuclear Physics Model

The importance of the nuclear model depends strongly on the kinematics of the reaction. Nuclear physics
plays a large role in every aspect of neutrino scattering simulations at few-GeV energies and introduces
coupling between several aspects of the simulation. The relativistic Fermi gas (RFG) nuclear model is used
for all processes. GENIE uses the version of Bodek and Ritchie which has been modified to incorporate
short range nucleon-nucleon correlations [25]. This is simple, yet applicable across a broad range of target
atoms and neutrino energies. The best tests of the RFG model come from electron scattering experiments
[26]. At high energies, the nuclear model requires broad features due to shadowing and similar effects.
At the lower end of the GENIE energy range, the impulse approximation works very well and the RFG is
often successful. The nuclear medium gives the struck nucleon a momentum and average binding energy
which have been determined in electron scattering experiments. Mass densities are taken from review
articles [27]. For A <20, the modified Gaussian density parameterization is used. For heavier nuclei, the
2-parameter Woods-Saxon density function is used. Thus, the model can be used for all nuclei. Presently,
fit parameters for selected nuclei are used with interpolations for other nuclei. All isotopes of a particular

17

18 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

nucleus are assumed to have the same density.

It is well known that scattering kinematics for nucleons in a nuclear environment are different from
those obtained in scattering from free nucleons. For quasi-elastic and elastic scattering, Pauli blocking is
applied as described in Sec. 2.3. For nuclear targets a nuclear modification factor is included to account
for observed differences between nuclear and free nucleon structure functions which include shadowing,
anti-shadowing, and the EMC effect [28].

Nuclear reinteractions of produced hadrons is simulated using a cascade Monte Carlo which will be
described in more detail in a following section. The struck nucleus is undoubtedly left in a highly excited
state and will typically de-excite by emitting nuclear fission fragments, nucleons, and photons. At present
de-excitation photon emission is simulated only for oxygen [29, 30] due to the significance of these 3-10
MeV photons in energy reconstruction at water Cherenkov detectors. Future versions of the generator
will handle de-excitation photon emission from additional nuclear targets.

2.3 Cross section model

The cross section model provides the calculation of the differential and total cross sections. During event
generation the total cross section is used together with the flux to determine the energies of interacting
neutrinos. The cross sections for specific processes are then used to determine which interaction type
occurs, and the differential distributions for that interaction model are used to determine the event
kinematics. While the differential distributions must be calculated event-by-event, the total cross sections
can be pre-calculated and stored for use by many jobs sharing the same physics models. Over this
energy range neutrinos can scatter off a variety of different ‘targets’ including the nucleus (via coherent
scattering), individual nucleons, quarks within the nucleons, and atomic electrons.

Quasi-Elastic Scattering: Quasi-elastic scattering (e.g. νµ + n → µ− + p) is modeled using an
implementation of the Llewellyn-Smith model [31]. In this model the hadronic weak current is expressed
in terms of the most general Lorentz-invariant form factors. Two are set to zero as they violate G-parity.
Two vector form factors can be related via CVC to electromagnetic form factors which are measured over
a broad range of kinematics in electron elastic scattering experiments. Several different parametrizations
of these electromagnetic form factors including Sachs [32], BBA2003 [33] and BBBA2005 [34] models
are available with BBBA2005 being the default. Two form factors - the pseudo-scalar and axial vector,
remain. The pseudo-scalar form factor is assumed to have the form suggested by the partially conserved
axial current (PCAC) hypothesis [31], which leaves the axial form factor FA(Q2) as the sole remaining
unknown quantity. FA(0) is well known from measurements of neutron beta decay and the Q2 dependence
of this form factor can only be determined in neutrino experiments and has been the focus of a large
amount of experimental work over several decades. In GENIE a dipole form is assumed, with the axial
vector mass mA remaining as the sole free parameter with a default value of 0.99 GeV/c2.

For nuclear targets, the struck a suppression factor is included from an analytic calculation of the
rejection factor in the Fermi Gas model, based on the simple requirement that the momentum of the
outgoing nucleon exceed the fermi momentum kF for the nucleus in question. Typical values of kF are
0.221 GeV/c for nucleons in 12C, 0.251 GeV/c for protons in 56Fe, and 0.256 GeV/c for neutrons in 56Fe.

Elastic Neutral Current Scattering: Elastic neutral current processes are computed according to
the model described by Ahrens et al. [35], where the axial form factor is given by:

GA(Q
2) =

1

2

GA(0)

(1 +Q2/M2
A)

2
(1 + η). (2.1)

The adjustable parameter η includes possible isoscalar contributions to the axial current, and the GENIE
default value is η = 0.12. For nuclear targets the same reduction factor described above is used.

2.3. CROSS SECTION MODEL 19

Baryon Resonance Production: The production of baryon resonances in neutral and charged
current channels is included with the Rein-Sehgal model [36]. This model employs the Feynman-Kislinger-
Ravndal [37] model of baryon resonances, which gives wavefunctions for the resonances as excited states
of a 3-quark system in a relativistic harmonic oscillator potential with spin-flavor symmetry. In the
Rein-Sehgal paper the helicity amplitudes for the FKR model are computed and used to construct the
cross sections for neutrino-production of the baryon resonances. From the 18 resonances of the original
paper we include the 16 that are listed as unambiguous at the latest PDG baryon tables and all resonance
parameters have been updated. In our implementation of the Rein-Sehgal model interference between
neighboring resonances has been ignored. Lepton mass terms are not included in the calculation of the
differential cross section, but the effect of the lepton mass on the phase space boundaries is taken into
account. For tau neutrino charged current interactions an overall correction factor to the total cross
section is applied to account for neglected elements (pseudoscalar form factors and lepton mass terms)
in the original model. The default value for the resonance axial vector mass mA is 1.12 GeV/c2, as
determined in the global fits carried out in Reference [38].

Coherent Neutrino-Nucleus Scattering: Coherent scattering results in the production of forward
going pions in both charged current (νµ+A→ µ−+π++A) and neutral current (νµ+A→ νµ+π

0+A)
channels. Coherent neutrino-nucleus interactions are modeled according to the Rein-Sehgal model [39].
Since the coherence condition requires a small momentum transfer to the target nucleus, it is a low-Q2

process which is related via PCAC to the pion field. The Rein-Sehgal model begins from the PCAC form
at Q2=0, assumes a dipole dependence for non-zero Q2, with mA = 1.00 GeV/c2, and then calculates
the relevant pion-nucleus cross section from measured data on total and inelastic pion scattering from
protons and deuterium [40]. The GENIE implementation is using the modified PCAC formula described
in a recent revision of the Rein-Sehgal model [41] that includes lepton mass terms.

Non-Resonance Inelastic Scattering: Deep (and not-so-deep) inelastic scattering (DIS) is calcu-
lated in an effective leading order model using the modifications suggested by Bodek and Yang [28] to
describe scattering at low Q2. In this model higher twist and target mass corrections are accounted for
through the use of a new scaling variable and modifications to the low Q2 parton distributions. The cross
sections are computed at a fully partonic level (the νq→lq′ cross sections are computed for all relevant
sea and valence quarks). The longitudinal structure function is taken into account using the Whitlow
R (R = FL/2xF1) parameterization [42]. The default parameter values are those given in [28], which
are determined based on the GRV98 LO parton distributions [43]. An overall scale factor of 1.032 is
applied to the predictions of the Bodek-Yang model to achieve agreement with the measured value of the
neutrino cross section at high energy (100 GeV). This factor is necessary since the Bodek-Yang model
treats axial and vector form modifications identically and would therefore not be expected to reproduce
neutrino data perfectly. This overall DIS scale factor needs to be recalculated when elements of the cross
section model are changed.

The same model can be extended to low energies; it is the model used for the nonresonant processes
that compete with resonances in the few-GeV region.

Quasi-Elastic Charm Production: QEL charm production is modeled according to the Kovalenko
local duality inspired model [44] tuned by the GENIE authors to recent NOMAD data [45].

Deep-Inelastic Charm Production: DIS charm production is modeled according to the Aivazis,
Olness and Tung model [46]. Charm-production fractions for neutrino interactions are taken from [47], and
utilize both Peterson [48] and Collins-Spiller [49] fragmentation functions, with Peterson fragmentation
functions being the default. The charm mass is adjustable and is set to 1.43 GeV/c2 by default.

Inclusive Inverse Muon Decay: Inclusive Inverse Muon Decay cross section is computed using
an implementation of the Bardin and Dokuchaeva model [50] taking into account all 1-loop radiative
corrections.

Neutrino-Electron Elastic Scattering: The cross sections for all νe− scattering channels other
than Inverse Muon Decay is computed according to [51]. Inverse Tau decay is neglected.

20 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

Modeling the transition region

As discussed, for example, by Kuzmin, Lyubushkin and Naumov [52] one typically considers the total
νN CC scattering cross section as

σtot = σQEL ⊕ σ1π ⊕ σ2π ⊕ ...⊕ σ1K ⊕ ...⊕ σDIS

In the absence of a model for exclusive inelastic multi-particle neutrinoproduction, the above is usually
being approximated as

σtot = σQEL ⊕ σRES ⊕ σDIS

assuming that all exclusive low multiplicity inelastic reactions proceed primarily through resonance
neutrinoproduction. For the sake of simplicity, small contributions to the total cross section in the few
GeV energy range, such as coherent and elastic νe− scattering, were omitted from the expression above.
In this picture, one should be careful in avoiding double counting the low multiplicity inelastic reaction
cross sections.

In GENIE release the total cross sections is constructed along the same lines, adopting the proce-
dure developed in NeuGEN [6] to avoid double counting. The total inelastic differential cross section is
computed as

d2σinel

dQ2dW
= d2σRES

dQ2dW
+ d2σDIS

dQ2dW

The term d2σRES/dQ2dW represents the contribution from all low multiplicity inelastic channels
proceeding via resonance production. This term is computed as

d2σRES

dQ2dW
=

∑
k

(d2σR/S

dQ2dW

)
k
·Θ(Wcut−W)

where the index k runs over all baryon resonances taken into account, Wcut is a configurable parameter
and (d2σRS

νN /dQ
2dW)k is the Rein-Seghal model prediction for the kth resonance cross section.

The DIS term of the inelastic differential cross section is expressed in terms of the differential cross
section predicted by the Bodek-Yang model appropriately modulated in the “resonance-dominance" region
W < Wcut so that the RES/DIS mixture in this region agrees with inclusive cross section data [53, 54,
55, 56, 57, 58, 59, 60, 61, 62] and exclusive 1-pion [63, 64, 65, 66, 67, 68, 69, 70, 71, 60, 72] and 2-pion
[73, 67] cross section data:

d2σDIS

dQ2dW
=

d2σDIS,BY

dQ2dW
·Θ(W −Wcut) +

+
d2σDIS,BY

dQ2dW
·Θ(Wcut−W) ·

∑

m

fm

In the above expression, m refers to the multiplicity of the hadronic system and, therefore, the factor
fm relates the total calculated DIS cross section to the DIS contribution to this particular multiplicity
channel. These factors are computed as fm = Rm·P had

m where Rm is a tunable parameter and P had
m is the

probability, taken from the hadronization model, that the DIS final state hadronic system multiplicity
would be equal to m. The approach described above couples the GENIE cross section and hadronic
multiparticle production model [74].

2.4. NEUTRINO-INDUCED HADRON PRODUCTION 21

Cross section model tuning

As mentioned previously, the quasi-elastic, resonance production, and DIS models employ form factors,
axial vector masses, and other parameters which have been determined by others in their global fits
[34, 38]. In order to check the overall consistency of our model, and to verify that we have correctly
implemented the DIS model, predictions are compared to electron scattering inclusive data [75, 76] and
neutrino structure function data [77]. The current default values for transition region parameters are
Wcut=1.7 GeV/c2, R2(νp) = R2(νn)=0.1, R2(νn) = R2(νp)=0.3, and Rm=1.0 for all m > 2 reactions.
These are determined from fits to inclusive and exclusive (one and two-pion) production neutrino inter-
action channels. For these comparisons we rely heavily on online compilations of neutrino data [78] and
related fitting tools [79] that allow one to include some correlated systematic errors (such as arising from
flux uncertainties). The GENIE default cross section for νµ charged current scattering from an isoscalar
target, together with the estimated uncertainty on the total cross section, as evaluated in [80] are shown
in Fig. 2.1.

2.4 Neutrino-induced Hadron Production

Introduction

In neutrino interaction simulations the hadronization model (or fragmentation model) determines the
final state particles and 4-momenta given the nature of a neutrino-nucleon interaction (CC/NC, ν/ν̄,
target neutron/proton) and the event kinematics (W 2, Q2, x, y). The modeling of neutrino-produced
hadronic showers is important for a number of analyses in the current and coming generation of neutrino
oscillation experiments:

Calorimetry: Neutrino oscillation experiments like MINOS which use calorimetry to reconstruct the
shower energy, and hence the neutrino energy, are sensitive to the modelling of hadronic showers. These
detectors are typically calibrated using single particle test beams, which introduces a model dependence
in determining the conversion between detector activity and the energy of neutrino-produced hadronic
systems [80].

NC/CC Identification: Analyses which classify events as charged current (CC) or neutral current (NC)
based on topological features such as track length in the few-GeV region rely on accurate simulation of
hadronic particle distributions to determine NC contamination in CC samples.

Topological Classification: Analyses which rely on topological classifications, for instance selecting
quasi-elastic-like events based on track or ring counting depend on the simulation of hadronic systems
to determine feeddown of multi-particle states into selected samples. Because of the wide-band nature
of most current neutrino beams, this feeddown is non-neglible even for experiments operating in beams
with mean energy as low as 1 GeV [15, 81].

νe Appearance Backgrounds: A new generation of νµ → νe appearance experiments are being devel-
oped around the world, which hope to find evidence of charge-parity (CP) violation in the lepton sector.
In these experiments background is dominated by neutral pions generated in NC interaction. The evalua-
tion of NC backgrounds in these analysis can be quite sensitive to the details of the NC shower simulation
and specifically the π0 shower content and transverse momentum distributions of hadrons [82].

In order to improve Monte Carlo simulations for the MINOS experiment, a new hadronization model,
referred to here as the ‘AGKY model’, was developed. We use the PYTHIA/JETSET [84] model to
simulate the hadronic showers at high hadronic invariant masses. We also developed a phenomenological
description of the low invariant mass hadronization since the applicability of the
PYTHIA/JETSET model, for neutrino-induced showers, is known to deteriorate as one approaches the
pion production threshold. We present here a description of the AGKY hadronization model and the
tuning and validation of this model using bubble chamber experimental data.

22 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

The AGKY Model

The AGKY model, which is now the default hadronization model in the neutrino Monte Carlo generators
NEUGEN [6] and GENIE-2.0.0 [85], includes a phenomenological description of the low invariant mass
region based on Koba-Nielsen-Olesen (KNO) scaling [86], while at higher masses it gradually switches
over to the PYTHIA/JETSET model. The transition from the KNO-based model to the
PYTHIA/JETSET model takes place gradually, at an intermediate invariant mass region, ensuring the
continuity of all simulated observables as a function of the invariant mass. This is accomplished by using
a transition window [W tr

min,W
tr
max] over which we linearly increase the fraction of neutrino events for

which the hadronization is performed by the PYTHIA/JETSET model from 0% at W tr
min to 100% at

W tr
max. The default values used in the AGKY model are:

W tr
min = 2.3 GeV/c2,W tr

max = 3.0 GeV/c2. (2.2)

The kinematic region probed by any particular experiment depends on the neutrino flux, and for the
1-10 GeV range of importance to oscillation experiments, the KNO-based phenomenological description
plays a particularly crucial role. The higher invariant mass region where PYTHIA/JETSET is used
is not accessed until a neutrino energy of approximately 3 GeV is reached, at which point 44.6% of
charged current interactions are non-resonant inelastic and are hadronized using the KNO-based part of
the model. For 1 GeV neutrinos this component is 8.3%, indicating that this model plays a significant
role even at relatively low neutrino energies. At 9 GeV, the contributions from the KNO-based and
PYTHIA/JETSET components of the model are approximately equal, with each handling around 40%
of generated CC interactions. The main thrust of this work was to improve the modeling of hadronic
showers in this low invariant mass / energy regime which is of importance to oscillation experiments.

The description of AGKY’s KNO model, used at low invariant masses, can be split into two indepen-
dent parts:

• Generation of the hadron shower particle content

• Generation of hadron 4-momenta

These two will be described in detail in the following sections.
The neutrino interactions are often described by the following kinematic variables:

Q2 = 2Eν(Eµ − pLµ)−m2

ν = Eν − Eµ

W 2 = M2 + 2Mν −Q2

x = Q2/2Mν

y = ν/Eν (2.3)

where Q2 is the invariant 4-momentum transfer squared, ν is the neutrino energy transfer, W is the
effective mass of all secondary hadrons (invariant hadronic mass), x is the Bjorken scaling variable, y is
the relative energy transfer, Eν is the incident neutrino energy, Eµ and pLµ are the energy and longitudinal
momentum of the muon, M is the nucleon mass and m is the muon mass.

For each hadron in the hadronic system, we define the variables z = Eh/ν, xF = 2p∗L/W and pT
where Eh is the energy in the laboratory frame, p∗L is the longitudinal momentum in the hadronic c.m.s.,
and pT is the transverse momentum.

Low-W model: Particle content At low invariant masses the AGKY model generates hadronic
systems that typically consist of exactly one baryon (p or n) and any number of π and K mesons that
are kinematically possible and consistent with charge conservation.

2.4. NEUTRINO-INDUCED HADRON PRODUCTION 23

Table 2.1: Default average hadron multiplicity and dispersion parameters used in the AGKY model.
νp νn ν̄p ν̄n

ach 0.40 [83] -0.20 [83] 0.02 [88] 0.80 [88]
bch 1.42 [83] 1.42 [83] 1.28 [88] 0.95 [88]
cch 7.93 [83] 5.22 [83] 5.22 7.93
ahyperon 0.022 0.022 0.022 0.022
bhyperon 0.042 0.042 0.042 0.042

For a fixed hadronic invariant mass and initial state (neutrino and struck nucleon), the method for
generating the hadron shower particles generally proceeds in four steps:

Determine 〈nch〉: Compute the average charged hadron multiplicity using the empirical expression:

〈nch〉 = ach + bch lnW 2 (2.4)

The coefficients ach, bch, which depend on the initial state, have been determined by bubble chamber
experiments.

Determine 〈n〉: Compute the average hadron multiplicity as 〈ntot〉 = 1.5〈nch〉 [87].
Deterimine n: Generate the actual hadron multiplicity taking into account that the multiplicity

dispersion is described by the KNO scaling law [86]:

〈n〉 × P (n) = f(n/〈n〉) (2.5)

where P (n) is the probability of generating n hadrons and f is the universal scaling function which can
be parametrized by the Levy function 1 (z = n/〈n〉) with an input parameter c that depends on the
initial state. Fig.2.2 shows the KNO scaling distributions for νp (left) and νn (right) CC interactions.
We fit the data points to the Levy function and the best fit parameters are cch = 7.93± 0.34 for the νp
interactions and cch = 5.22± 0.15 for the νn interactions.

Select particle types: Select hadrons up to the generated hadron multiplicity taking into account
charge conservation and kinematic constraints. The hadronic system contains any number of mesons and
exactly one baryon which is generated based on simple quark model arguments. Protons and neutrons
are produced in the ratio 2:1 for νp interactions, 1:1 for νn and ν̄p, and 1:2 for ν̄n interactions. Charged
mesons are then created in order to balance charge, and the remaining mesons are generated in neutral
pairs. The probablilities for each are 31.33% (π0, π0), 62.66% (π+, π−), and 6% strange meson pairs.
The probability of producing a strange baryon via associated production is determined from a fit to Λ
production data:

Phyperon = ahyperon + bhyperon lnW 2 (2.6)

TABLE 2.1 shows the default average hadron multiplicity and dispersion parameters used in the
AGKY model.

Low-W model: Hadron system decay Once an acceptable particle content has been generated, the
available invariant mass needs to be partitioned amongst the generated hadrons. The most pronounced
kinematic features in the low-W region result from the fact that the produced baryon is much heavier
than the mesons and exhibits a strong directional anticorrelation with the current direction.

Our strategy is to first attempt to reproduce the experimentally measured final state nucleon momen-
tum distributions. We then perform a phase space decay on the remnant system employing, in addition,
a pT -based rejection scheme designed to reproduce the expected meson transverse momentum distribu-
tion. The hadronization model performs its calculation in the hadronic c.m.s., where the z-axis is in

1The Levy function: Levy(z; c) = 2e−cccz+1/Γ(cz + 1)

24 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

the direction of the momentum transfer. Once the hadronization is completed, the hadronic system will
be boosted and rotated to the LAB frame. The boost and rotation maintains the pT generated in the
hadronic c.m.s.

In more detail, the algorithm for decaying a system of N hadrons is the following:
Generate baryon: Generate the baryon 4-momentum P ∗

N = (E∗
N ,p

∗
N) using the nucleon p2T and xF

PDFs which are parametrized based on experimental data [89, 90]. The xF distribution used is shown in
Fig.2.3. We do not take into account the correlation between pT and xF in our selection.

Remnant System: Once an accepted P ∗
N has been generated, calculate the 4-momentum of the re-

maining N-1 hadrons, (the “remnant” hadronic system) as P ∗
R = P ∗

X − P ∗
N where P ∗

X = (W, 0) is the
initial hadron shower 4-momentum in the hadronic c.m.s.

Decay Remnant System: Generate an unweighted phase space decay of the remnant hadronic system.
The decay takes place at the remnant system c.m.s. after which the particles are boosted back to the
hadronic c.m.s. The phase space decay employs a rejection method suggested in [91], with a rejection
factor e−A∗pT for each meson. This causes the transverse momentum distribution of the generated
mesons to fall exponentially with increasing p2T . Here pT is the momentum component perpendicular to
the current direction.

Two-body hadronic systems are treated as a special case. Their decay is performed isotropically in
the hadronic c.m.s. and no pT -based suppression factor is applied.

High-W model: PYTHIA The high invariant mass hadronization is performed by the PYTHIA
model [84]. The PYTHIA program is a standard tool for the generation of high-energy collisions, com-
prising a coherent set of physics models for the evolution from a few-body hard process to a complex
multihadronic final state. It contains a library of hard processes and models for initial- and final-state
parton showers, multiple parton-parton interactions, beam remnants, string fragmentation and particle
decays. The hadronization model in PYTHIA is based on the Lund string fragmentation framework [92].
In the AGKY model, all but four of the PYTHIA configuration parameters are set to be the default
values. Those four parameters take the non-default values tuned by NUX [10], a high energy neutrino
MC generator used by the NOMAD experiment:

• Pss̄ controlling the ss̄ production suppression:
(PARJ(2))=0.21.

• P〈p2

T 〉 determining the average hadron 〈p2T 〉:

(PARJ(21))=0.44.

• Pngt parameterizing the non-gaussian pT tails:
(PARJ(23))=0.01.

• PEc an energy cutoff for the fragmentation process:
(PARJ(33))=0.20.

Data/MC Comparisons

The characteristics of neutrino-produced hadronic systems have been extensively studied by several bubble
chamber experiments. The bubble chamber technique is well suited for studying details of charged hadron
production in neutrino interactions since the detector can provide precise information for each track.
However, the bubble chamber has disadvantages for measurements of hadronic system characteristics as
well. The detection of neutral particles, in particular of photons from π0 decay, was difficult for the low
density hydrogen and deuterium experiments. Experiments that measured neutral pions typically used
heavily liquids such as neon-hydrogen mixtures and Freon. While these exposures had the advantage of
higher statistics and improved neutral particle identification, they had the disadvantage of introducing

2.4. NEUTRINO-INDUCED HADRON PRODUCTION 25

intranuclear rescattering which complicates the extraction of information related to the hadronization
process itself.

We tried to distill the vast literature and focus on the following aspects of ν/ν̄ measurements made
in three bubble chambers - the Big European Bubble Chamber (BEBC) at CERN, the 15-foot bubble
chamber at Fermilab, and the SKAT bubble chamber in Russia. Measurements from the experiments
of particular interest for tuning purposes can be broadly categorized as multiplicity measurements and
hadronic system measurements. Multiplicity measurements include averaged charged and neutral particle
(π0) multiplicities, forward and backward hemisphere average multiplicities and correlations, topologi-
cal cross sections of charged particles, and neutral - charged pion multiplicity correlations. Hadronic
system measurements include fragmentation functions (z distributions), xF distributions, p2T (transverse
momentum squared) distributions, and xF − 〈p2T 〉 correlations (“seagull” plots).

The systematic errors in many of these measurements are substantial and various corrections had to
be made to correct for muon selection efficiency, neutrino energy smearing, etc. The direction of the
incident ν/ν̄ is well known from the geometry of the beam and the position of the interaction point. Its
energy is unknown and is usually estimated using a method based on transverse momentum imbalance.
The muon is usually identified through the kinematic information or by using an external muon identifier
(EMI). The resolution in neutrino energy is typically 10% in the bubble chamber experiments and the
invariant hadronic mass W is less well determined.

The differential cross section for semi-inclusive pion production in neutrino interactions

ν +N → µ− + π +X (2.7)

may in general be written as:

dσ(x,Q2, z)

dxdQ2dz
=
dσ(x,Q2)

dxdQ2
Dπ(x,Q2, z), (2.8)

where Dπ(x,Q2, z) is the pion fragmentation function. Experimentally Dπ is determined as:

Dπ(x,Q2, z) = [Nev(x,Q
2)]−1dN/dz. (2.9)

In the framework of the Quark Parton Model (QPM) the dominant mechanism for reactions (2.7)
is the interaction of the exchanged W boson with a d-quark to give a u-quark which fragments into
hadrons in neutrino interactions, leaving a di-quark spectator system which produces target fragments.
In this picture the fragmentation function is independent of x and the scaling hypothesis excludes a Q2

dependence; therefore the fragmentation function should depend only on z. There is no reliable way
to separate the current fragmentation region from the target fragmentation region if the effective mass
of the hadronic system (W) is not sufficiently high. Most experiments required W > W0 where W0 is
between 3 GeV/c2 and 4 GeV/c2 when studying the fragmentation characteristics. The caused difficulties
in the tuning of our model because we are mostly interested in the interactions at low hadronic invariant
masses.

We determined the parameters in our model by fitting experimental data with simulated CC neutrino
free nucleon interactions uniformly distributed in the energy range from 1 to 61 GeV. The events were
analyzed to determine the hadronic system characteristics and compared with published experimental
data from the BEBC, Fermilab 15-foot, and SKAT bubble chamber experiments. We reweight our MC
to the energy spectrum measured by the experiment if that information is available. This step is not
strictly necessary for the following two reasons: many observables (mean multiplicity, dispersion, etc.)
are measured as a function of the hadronic invariant mass W , in which case the energy dependency is
removed; secondly the scaling variables (xF , z, etc.) are rather independent of energy according to the
scaling hypothesis.

26 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

Some experiments required Q2 > 1GeV2 to reduce the quasi-elastic contribution, y < 0.9 to reduce
the neutral currents, and x > 0.1 to reduce the sea-quark contribution. They often applied a cut on the
muon momentum to select clean CC events. We apply the same kinematic cuts as explicitly stated in
the papers to our simulated events. The hadronization model described here is used only for continuum
production of hadrons, resonance-mediated production is described as part of the resonance model [36].
Combining resonance and non-resonant inelastic contributions to the inclusive cross section requires care
to avoide double-counting [94], and the underlying model used here includes a resonant contribution which
dominates the cross section at threshold, but whose contribution gradually diminishes up to a cutoff value
of W=1.7 GeV/c2, above which only non-resonant processes contribute. All of the comparisons shown in
this paper between models and data include the resonant contribution to the models unless it is explicitly
excluded by experimental cuts.

Fig.2.4 shows the average charged hadron multiplicity 〈nch〉 (the number of charged hadrons in the final
state, i.e. excluding the muon) as a function ofW 2. 〈nch〉 rises linearly with ln(W 2) forW > 2GeV/c2. At
the lowestW values the dominant interaction channels are single pion production from baryon resonances:

ν + p → µ− + p+ π+ (2.10)

ν + n → µ− + p+ π0 (2.11)

ν + n → µ− + n+ π+ (2.12)

Therefore 〈nch〉 becomes 2 (1) for νp (νn) interactions as W approaches the pion production threshold.
For νp interactions there is a disagreement between the two measurements especially at high invariant
masses, which is probably due to differences in scattering from hydrogen and deuterium targets. Our
parameterization of low-W model was based on the Fermilab 15-foot chamber data. Historically the
PYTHIA/JETSET program was tuned on the BEBC data. The AGKY model uses the KNO-based
empirical model at low invariant masses and it uses the PYTHIA/JETSET program to simulation high
invariance mass interactions. Therefore the MC prediction agrees better with the Fermilab data at low
invariant masses and it agrees better with the BEBC data at high invariant masses.

Fig.2.5(a) shows the dispersion D− = (〈n2
−〉 − 〈n−〉

2)1/2 of the negative hadron multiplicity as a
function of 〈n−〉. Fig.2.5(b) shows the ratio D/〈nch〉 as a function of W 2. The dispersion is solely
determined by the KNO scaling distributions shown in Fig.2.2. The agreement between data and MC
predictions is satisfactory.

Fig.2.6(a) shows the average π0 multiplicity 〈nπ0〉 as a function of W 2. Fig.2.6(b) shows the disper-
sion of the distributions in multiplicity as a function of the average multiplicity of π0 mesons. As we
mentioned it is difficult to detect π0’s inside a hydrogen bubble chamber. Also shown in the plot are
some measurements using heavy liquids such as neon and Freon. In principle, rescattering of the primary
hadrons can occur in the nucleus. Some studies of inclusive negative hadron production in the hydrogen-
neon mixture and comparison with data obtained by using hydrogen targets indicate that these effects
are negligible [98]. The model is in good agreement with the data. 〈nπ0〉 is 0(1/2) for νp(νn) interactions
when the hadronic invariant mass approaches the pion production threshold, which is consistent with the
expectation from the reactions (2.10-2.12). The model predicts the same average π0 multiplicity for νp
and νn interactions for W > 2GeV/c2.

Fig.2.7 shows the average π0 multiplicities 〈nπ0〉 as a function of the number of negative hadrons n−

for various W ranges. At lower W , 〈nπ0〉 tends to decrease with n−, probably because of limited phase
space, while at higher W 〈nπ0〉 is rather independent of n− where there is enough phase space. Our model
reproduces the correlation at lower W suggested by the data. However, another experiment measured the
same correlation using neon-hydrogen mixture and their results indicate that 〈nπ0〉 is rather independent
of n− for both W > 4GeV/c2 and W < 4GeV/c2 [99]. Since events with π0 but with 0 or very few charged
pions are dominant background events in the νe appearance analysis, it is very important to understand
the correlation between the neutral pions and charged pions; this should be a goal of future experiments
[100].

2.4. NEUTRINO-INDUCED HADRON PRODUCTION 27

Fig.2.8 shows the average charged-hadron multiplicity in the forward and backward hemispheres
as functions of W 2. The forward hemisphere is defined by the direction of the current in the total
hadronic c.m.s. There is a bump in the MC prediction in the forward hemisphere for νp interactions at
W ∼ 2GeV/c2 and there is a slight dip in the backward hemisphere in the same region. This indicates
that the MC may overestimate the hadrons going forward in the hadronic c.m.s. at W ∼ 2GeV/c2 and
underestimate the hadrons going backward. One consequence could be that the MC overestimates the
energetic hadrons since the hadrons in the forward hemisphere of hadronic c.m.s. get more Lorentz boost
than those in the backward hemisphere when boosted to the LAB frame. This may be caused by the
way we determine the baryon 4-momentum and preferably select events with low pT in the phase space
decay. These effects will be investigated further for improvement in future versions of the model.

The production of strange particles via associated production is shown in Figures 2.9 and 2.10. The
production of kaons and lambdas for the KNO-based model are in reasonable agreement with the data,
while the rate of strange meson production from JETSET is clearly low. We have investigated adjusting
JETSET parameters to produce better agreement with data. While it is possible to improve the agree-
ment with strange particle production data, doing so yields reduced agreement with other important
distributions, such as the normalized charged particle distributions.

Fig.2.11 shows the fragmentation functions for positive and negative hadrons. The fragmentation
function is defined as: D(z) = 1

Nev
· dN

dz , where Nev is the total number of interactions (events) and
z = E/ν is the fraction of the total energy transfer carried by each final hadron in the laboratory frame.
The AGKY predictions are in excellent agreement with the data.

Fig.2.12 shows the mean value of the transverse momentum with respect to the current direction of
charged hadrons as a function of W . The MC predictions match the data reasonably well. In the naive
QPM, the quarks have no transverse momentum within the struck nucleon, and the fragments acquire a
P frag
T with respect to the struck quark from the hadronization process. The average transverse momentum

〈P 2
T 〉 of the hadrons will then be independent of variables such as xBJ , y, Q2, W , etc., apart from trivial

kinematic constraints and any instrumental effects. Both MC and data reflect this feature. However, in a
perturbative QCD picture, the quark acquires an additional transverse component, 〈P 2

T 〉
QCD, as a result

of gluon radiation. The quark itself may also have a primordial 〈P 2
T 〉

prim inside the nucleon. These QCD
effects can introduce dependencies of 〈P 2

T 〉 on the variables xBJ , y, Q2, W , z, etc.
Fig.2.13 shows the mean value of the transverse momentum of charged hadrons as a function of xF ,

where xF =
p∗

L

p∗

Lmax

is the Feynman-x. As is well known, 〈pT 〉 increases with increasing |xF | with a shape

called the seagull effect. This effect is reasonably well modeled by the AGKY model.

Conclusions

In this section we have described the GENIE hadronic mutiparticle production model tuned for exper-
iments in the few-GeV energy regime. The model exhibits satisfactory agreement with wide variety
of data for charged, neutral pions as well as strange particles. Several upcoming expriments will have
high-statistics data sets in detectors with excellent energy resolution, neutral particle containment, and
particle identification. These experiments are in some cases considering possible running with cryogenic
hydrogen and deuterium targets. These experiments will be operating in this few-GeV regime and have
the potential to fill in several gaps in our understanding that will help improve hadronic shower modeling
for oscillation experiments.

The upcoming generation of experiments have all the necessary prerequisites to significantly address
the existing experimental uncertainties in hadronization at low invariant mass. These result from the
fact that these detectors have good containment for both charged and neutral particles, high event rates,
good tracking resolution, excellent particle identification and energy resolution, and the possibility of
collecting data on free nucleons with cryogenic targets. The latter offers the possibility of addressing the
challenge of disentangling hadronization modeling from intranuclear rescattering effects. Charged current

28 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

measurements of particular interest will include clarifying the experimental discrepancy at low invariant
mass between the existing published results as shown in Fig.2.8, the origin of which probably relates
to particle misidentification corrections [96]. This discrepancy has a large effect on forward/backward
measurements, and a succesful resolution of this question will reduce systematic differences between
datasets in a large class of existing measurements. In addition, measurements of transverse momentum
at low invariant masses will be helpful in model tuning. Measurements of neutral particles, in particular
multiplicity and particle dispersion from free targets at low invariant mass, will be tremendously helpful.
The correlation between neutral and charged particle multiplicities at low invariant mass is particularly
important for oscillation simulations, as it determines the likelihood that a low invariant mass shower
will be dominated by neutral pions.

2.4. NEUTRINO-INDUCED HADRON PRODUCTION 29

0

0.2

0.4

0.6

0.8

1

1.2

10
-1

1 10 10
2

GENIE 2.4.0 Prediction

νµ+N → µ+X

BNL 7

CCFRR
CDHSW
GGM - SPS
BEBC
ITEP

SKAT
CRS

GGM - PS

ANL

E(GeV)

σ/
E

 (
10

-3
8 c

m
2 /G

eV
)

Figure 2.1: νµ charged current scattering from an isoscalar target. The shaded band indicates the
estimated uncertainty on the free nucleon cross section. Data are from [53] (CCFRR), [54] (CDHSW),
[55] (GGM-SPS), [56, 57] (BEBC), [58] (ITEP), [59] (CRS, SKAT), [60] (ANL), [61] (BNL) and [62]
(GGM-PS).

30 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

>ch/<nchn

0 1 2 3 4

)
ch

>
P

(n
ch

<
n

−210

−110

1

10 2
DνData 15’

1<W<3GeV

3<W<5GeV

5<W<7GeV

7<W<10GeV

10<W<15GeV

pν

>ch/<nchn

0 1 2 3 4

)
ch

>
P

(n
ch

<
n

−210

−110

1

10 nν 2
DνData 15’

1<W<3GeV

3<W<5GeV

5<W<7GeV

7<W<10GeV

10<W<15GeV

Figure 2.2: νp (left) and νn interactions. The curve represents a fit to the Levy function. Data points
are taken from [83].

2.4. NEUTRINO-INDUCED HADRON PRODUCTION 31

Fx
-1.0 -0.5 0.0 0.5

F
)

dN
/d

x
0

(1
/N

0.00

0.02

0.04

0.06

0.08

0.10

Figure 2.3: Nucleon xF distribution data from Cooper et al. [90] and the AGKY parametrization (solid
line).

32 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

)4/c2(GeV2W
1 10 210

>
ch

<
n

0

2

4

6

8

10

2
Dν15’

2
HνBEBC

AGKY

++X-µ→pν(a)

)4/c2(GeV2W
1 10 210

>
ch

<
n

0

2

4

6

8

10

2
Dν15’

AGKY

+X-µ→nν(b)

Figure 2.4: 〈nch〉 as a function of W 2. (a) νp events. (b) νn events. Data points are taken from [83, 93].

>-<n
0 1 2 3 4

-
D

0

0.5

1

1.5

2

2
Dνp 15’ ν

2
Dνn 15’ ν

p AGKYν
n AGKYν

(a)

)4/c2(GeV2W
1 10 210 310

>
ch

D
/<

n

0

0.2

0.4

0.6

0.8

2
Dνp 15’ ν

2
Dνn 15’ ν

p AGKYν
n AGKYν

(b)

Figure 2.5: D− = (〈n2
−〉− 〈n−〉

2)1/2 as a function of 〈n−〉. (b) D/〈nch〉 as a function of W 2. Data points
are taken from [83].

2.4. NEUTRINO-INDUCED HADRON PRODUCTION 33

)4/c2(GeV2W
1 10 210 310

>
0 π

<
n

0

1

2

3

4

FreonνA SKAT ν

2
Hνp BEBC ν

neon BEBCν

p AGKYν

n AGKYν

(a)

>0π<n
0 0.5 1 1.5 2 2.5 3

0 π
D

0

0.5

1

1.5

2

FreonνA SKAT ν

p AGKYν

n AGKYν

(b)

Figure 2.6: π0 mesons as a function of W 2. (b) Dispersion of the distributions in multiplicity as a function
of the average multiplicity of π0 mesons. Data points are taken from [87, 95, 96]

> 0 π
<

n

0

1

2

3

4 2
Hνp BEBC ν

p AGKYν

2(a) 3<W<4GeV/c

-n
0 2 4 6

>
0 π

<
n

0

1

2

3

4
2

Hνp BEBC ν

p AGKYν

2(c) 5<W<7GeV/c

0

1

2

3

4 2
Hνp BEBC ν

p AGKYν

2(b) 4<W<5GeV/c

-n
0 2 4 6

0

1

2

3

4
2

Hνp BEBC ν

p AGKYν

(d) 7<W<10GeV

Figure 2.7: π0 multiplicity 〈nπ0〉 as a function of the number of negative hadrons n− for different intervals
of W . Data points are taken from [96].

34 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

1 10 10>
ch

<
n

0

1

2

3

4

5

2
HνBEBC

2DνBEBC

2Dν15’
AGKY

p forwardν(a)

)4/c2(GeV2W
1 10 210

>
ch

<
n

0

1

2

3

4

5

2DνBEBC

2Dν15’
AGKY

n forwardν(c)

1 10 10

0

1

2

3

4

5

2
HνBEBC

2DνBEBC

2Dν15’
AGKY

p backwardν(b)

)4/c2(GeV2W
1 10 210

0

1

2

3

4

5

2
DνBEBC

2
Dν15’

AGKY

n backwardν(d)

Figure 2.8: W 2: (a) νp, forward, (b) νp, backward, (c) νn, forward, (d) νn, backward. Data points are
taken from [83, 96, 97].

2.4. NEUTRINO-INDUCED HADRON PRODUCTION 35

)4/c2(GeV2W
1 10 210

>
0

K
<n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ne ν15’

Ne ν15’

Ne νBEBC

Ne20 νAGKY

Figure 2.9: [101, 102, 103].

36 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

)4/c2(GeV2W
1 10 210

>
Λ

<n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ne ν15’

Ne ν15’

Ne νBEBC

Ne20 νAGKY

Figure 2.10: [101, 102, 103].

2.4. NEUTRINO-INDUCED HADRON PRODUCTION 37

z
0 0.2 0.4 0.6 0.8 1

(z
)

+
D

-310

-210

-110

1

10

, BEBC2Dν
p, AGKYν
n, AGKYν

+(a) h

z
0 0.2 0.4 0.6 0.8 1

(z
)

-
D

-310

-210

-110

1

10

, BEBC2Dν
p, AGKYν
n, AGKYν

-
(b) h

Figure 2.11: W 2 > 5(GeV/c2)2, Q2 > 1(GeV/c)2. Data points are taken from [97].

)2W(GeV/c

2 4 6 8 10

>
(G

eV
/c

)
T

<
P

0

0.2

0.4

0.6

2Dνp 15’ ν

p AGKYν

>0
F

(a) x

)2W(GeV/c

2 4 6 8 10

>
(G

eV
/c

)
T

<
P

0

0.2

0.4

0.6

2Dνp 15’ ν

p AGKYν

<0
F

(b) x

)2W(GeV/c

2 4 6 8 10

>
(G

eV
/c

)
T

<
P

0

0.2

0.4

0.6

2Dνp 15’ ν

p AGKYν

F
(c) All x

Figure 2.12: W for the selections (a) xF > 0, (b) xF < 0, and (c) all xF . Data points are taken from
[104].

38 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

Fx
-1 -0.5 0 0.5 1

>
(G

eV
/c

)
T

<
P

0

0.2

0.4

0.6

0.8

2Dνp 15’ ν
p AGKYν

2(a) W<4GeV/c

Fx
-1 -0.5 0 0.5 1

>
(G

eV
/c

)
T

<
P

0

0.2

0.4

0.6

0.8

2Dνp 15’ ν
p AGKYν

2(b) W>4GeV/c

Figure 2.13: xF for ν̄p. (a) W < 4GeV/c2, (b) W > 4GeV/c2. Data points are taken from [104].

2.5. INTRANUCLEAR HADRON TRANSPORT 39

2.5 Intranuclear Hadron Transport

The hadronization model describes particle production from free targets and is tuned primarily to bubble
chamber data on hydrogen and deuterium targets [83, 89, 93, 95, 96, 97, 98, 99]. Hadrons produced in the
nuclear environment may rescatter on their way out of the nucleus, and these reinteractions significantly
modify the observable distributions in most detectors.

It is also well established that hadrons produced in the nuclear environment do not immediately
reinteract with their full cross section. The basic picture is that during the time it takes for quarks
to materialize as hadrons, they propagate through the nucleus with a dramatically reduced interaction
probability. This was implemented in GENIE as a simple ‘free step’ at the start of the intranuclear
cascade during which no interactions can occur. The ‘free step’ comes from a formation time of 0.342
fm/c according to the SKAT model [105].

Intranuclear hadron transport in GENIE is handled by a subpackage called INTRANUKE. IN-
TRANUKE is an intranuclear cascade simulation and has gone through numerous revisions since the
original version was developed for use by the Soudan 2 Collaboration [106]. The sensitivity of a par-
ticular experiment to intranuclear rescattering depends strongly on the detector technology, the energy
range of the neutrinos, and the physics measurement being made. INTRANUKE simulates rescattering
of pions and nucleons in the nucleus. When produced inside a nucleus, hadrons have a typical mean
free path (MFP) of a few femtometers. Detectors in a neutrino experiment are almost always composed
of nuclei today. Therefore, the hadrons produced in the primary interaction (what the neutrino does
directly) often (e.g. ∼30% in iron for few GeV neutrinos) have a FSI. There are many possibilities from
benign to dangerous. For example, a quasielastic (QE) interaction that emits a proton can end up with a
final state of 3 protons, 2 neutrons, and a few photons with finite probability. For a 1 GeV muon neutrino
QE interaction in carbon, the probability of a final state different than 1 proton is 35% (GENIE). A
possibility even worse is a pion production primary interaction where the pion is absorbed. Such an event
occurs for 20% (GENIE) of pion production events and can look like a QE event. At minimum, the wrong
beam energy will be measured for these events as the topology is often mistaken. A high quality Monte
Carlo code is the only way to understand the role of these events. Fig. 2.14 shows the pion energies that
are relevant to a νµC experiment at 1 GeV; we must understand the interactions of pions of up to about
0.8 GeV kinetic energy. We see that the ∆ resonance dominates the response for pion production, but
provides only about half of all pions. Fig. 2.15 shows that the spectrum of pions is significantly altered
by FSI.

The best way to understand the effects of FSI is to measure the cross sections for as many final
states as possible with neutrino beams. At this time, the storehouse for this kind of data is very bare.
Dedicated cross section experiments such as SciBooNE and MINERvA will bridge this gap, but we will
always be dependent on hadron-nucleus and photon-nucleus experiments for some information. These
experiments measure very useful properties of hadrons propagating in nuclei. Although hadron beams are
always composed free particles, neutrino experiments need the properties of hadrons produced off-shell in
the nucleus. (Pion photoproduction experiments provide useful bridge reactions. Pion FSI are always an
important part of all theory calculations for these experiments; the models always come from pion-nucleus
data.) The correct attitude is to validate FSI models for neutrino-nucleus with hadron-nucleus data, then
use these models to make first predictions of the upcoming dedicated cross section experiments.

Various models are available. Quantum mechanical models for hadron-nucleus experiments would be
the most correct, but difficulties in tracking multiple particles make such a calculation impossible. Semi-
classical models have some success in describing pion-nucleus interaction data and are now being applied
to neutrino interactions [12]. However, intranuclear cascade (INC) models [107, 108, 109, 110] provided
the most important means to understand pion-nucleus data where the final state was highly inelastic, i.e.
the kinds of data most important for neutrinos. In the semi-classical or INC models, the hadron sees a
nucleus of (largely) isolated nucleons (neutrons and protons). The probability of interaction is governed

40 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3 3.5 4

to
ta

l
c

ro
s

s
 s

e
c

ti
o

n
s

 (
×

1
0

-3
8
 c

m
2
)

Eν (GeV)

total CC π+
 production - νµ

12
C → µ-

 π+
 X - Eν

GENIE full
GENIE Delta only

GENIE res only

Figure 2.14: π+ total cross section resulting
from ν12µ C interactions. Different lines show re-
sults including all sources, all resonances, and
the ∆ resonance alone. The nonresonant pro-
cesses are significant in GENIE.

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1 1.2 1.4d
if

fe
re

n
ti

a
l

c
ro

s
s

 s
e

c
ti

o
n

s
 (

×
1

0
-3

8
 c

m
2
/G

e
V

)

Tπ (GeV)

total CC π+
 production - νµ

12
C → µ-

 π+
 X - Eν= 1 GeV

GENIE full (no FSI)
GENIE full

Figure 2.15: Comparison of the π+ momentum
distribution due to the bare resonance interac-
tion and what is seen in the final state.

by the free cross section and the density of nucleons,

λ(E, r) =
1

σhN,tot ∗ ρ(r)
(2.13)

The actual class of interaction is then chosen according to the cross sections for various reactions for free
nucleons, sometimes modified for nuclear medium effects.

Survey of models

Semi-classical models have advanced significantly due to the work of the Giessen group in building a
new program called GiBUU [12]. The strong interaction section [111, 22] is the most complete part of
the package. The dominant interaction of pions is through resonance formation and they are handled
with care. Nucleons in the nucleus are corrected for binding with a local potential well and for Fermi
motion with a local Fermi momentum. Resonance production is corrected for the nearby nucleons in a
local density approximation. Nonresonant reactions are added by hand. Allowing for the nonlocality of
the interaction is an important recent advance. The classical part of the model comes from the use of
free cross sections with corrections rather than quantum mechanical amplitudes for interactions. Thus,
GiBUU could be called a very sophisticated INC model. The passage of a hadron through the nuclear
medium is then handled by a set of coupled integro-differential equations. Thus, required computer
resources are significant.

GENIE, NEUT, and FLUKA have more standard INC models. They use free cross sections for
interactions but also apply medium corrections of various kinds. These corrections are less complete
and more empirical than what is found in GiBUU. These models are most applicable for higher energy
hadrons (roughly pions with kinetic energy larger than 300 MeV and nucleons above 200 MeV), where
the mean free path is long compared to the inter-nuclear spacing of roughly 1.8fm and the pion Compton
wavelength.

Peanut (FLUKA) [112] received a major effort in 1995-9 and is very well adapted to describe pro-
cesses from 10 MeV to 100 GeV. They include effects such as coherence time, refraction, and pre-
equilibrium/compound nucleus processes which simulate known quantum mechanical features. NEUT
FSI is based on the work of Salcedo, Oset, Vicente-Vacas, and Garcia-Recio [113]. This is a “∆ domi-
nance” model such as were common in the 1980’s when pion-nucleus physics was important in nuclear

2.5. INTRANUCLEAR HADRON TRANSPORT 41

physics. It has the advantage of doing a careful job simulating the pion-nucleus interaction through
∆(1232) intermediate states.

Systematics of hadron-nucleus data

Each nucleus has A nucleons (Z protons +N neutrons). All nuclei of interest to neutrino physics are
either bound or slightly unbound. Nuclear densities show saturation because of short range repulsion.
Therefore, the typical nucleus is approximately a sphere of radius proportional to A1/3. The charge
density of light nuclei (A<20) is found to be Gaussian or modified Gaussian. Heavier nuclei are described
by the Woods-Saxon shape,

ρ(r) = N0
1

1 + e(r−c)/z
(2.14)

where c describes the size and a describes the width of the surface of a nucleus. For example, c=4.1 fm
and z=0.55 fm for 56Fe. To good accuracy, c is the radius where the density falls to half the central value
with c ∼ 1.2fm ∗A1/3 and z ∼ 0.55fm.

Hadrons interact with nuclei in a variety of ways. We use historical definitions of final states that
come from interpretation of experiments. In elastic scattering, the final state nucleus is in its ground state
and the hadron has same charge as the beam particle. If the hadron scatters inelastically, the residual
nucleus can be in the ground state or the nucleus can break apart. At low excitation energies (<∼ 10
MeV), the residual nucleus decays to a photon and the ground state. (This is important in analysis of
SuperKamiokande data.) At higher excitation energies, one or more nucleons are emitted. Final state
interactions increase this number. If there is a hadron of the same type but different charge in the final
state, we call it charge exchange. For example, the reaction π−p → π0n is very common inside nuclei.
As a boson, the pion can disappear inside the nucleus. Pion initiated reactions with no pions in the final
state are called absorption. (This provides an important background process to neutrino quasielastic
scattering.) For incident nucleons, most of these labels apply exactly. Since they can’t be absorbed, final
states with 2 or more nucleons are called spallation. If the hadron has enough energy, a pion (a second
pion if the initial hadron is a pion) can be produced in the nucleus. We call those events pion production.

For low energy incident particles, these definitions are clean. At higher energies, the states mix and
confusion can result. For example, a reaction π+12C → π+π012C can be inelastic, charge exchange, or
pion production. Definitions we use call it pion production. A way to avoid difficulties is to measure
inclusive cross sections; there, the energy and angular distribution of a particular particle are determined.
In each case, various reactions are possible but models can be tested without ambiguity.

Because the MFP is so short for hadron interactions, elastic scattering cross sections look very diffrac-
tive. In fact, the angular distribution can be calculated with a quantum mechanical model using a black
disk for the nucleus. This wave property is very difficult to simulate in a semi-classical or INC model.

Another consequence of the short MFP is seen in the total reaction cross section (σreac = σtot−σelas).
For hadrons, this is close to the nuclear size, πR2. For example, σreac for protons and neutrons of 0.4-
1GeV is flat at a value of about 300mb=30fm2 for carbon and about 80fm2 for iron. These corresponds
to a radius, R, of about 3 and 5 fm. These values are close to the radius where the nuclear density is
about half of the central value. If we divide these values by A1/3, the result is close to the commonly
used value of 1.2 fm. The pion-nucleus reaction cross section at kinetic energies of about 85-315 MeV
is dominated by the effect of the ∆(1232) resonance. Thus, the effective size of the nucleus here is at a
radius where the density is about 1% of the central density. For total cross sections, the A dependence is
often a power relation, σ ∝ Aα, but α will vary from the expected value of 2/3 due to more complicated
dynamics. The total cross section for pion-nucleus has a power of about 0.8 for a wide range in energy.
The A dependence of α[114, 115] varies between 0.55 and 0.8 for the components of the total reaction
cross section as a function of energy and process.

42 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

Nevertheless, many inelastic cross sections have prominent contributions from quasifree interactions.
Here, the hadrons in the final state have the kinematics as though they came from a single interaction
between the incident particle and a nucleon in the nuclear medium. The name comes from the fact that
nucleons in the nuclear medium are in a bound state and therefore not free. If the nucleon were free,
the scattered particles would have a single energy at each angle. The struck nucleons have momentum
(called Fermi motion), giving particles a range of momentum at a given angle. The largest momentum a
nucleon can have is well-defined in the Fermi Gas model, is approximate in real nuclei. It is called the
Fermi momentum and its value is approximately 250 MeV/c. In heavy nuclei, the average binding energy
is about 25 MeV. Thus, the peak due to quasifree scattering from a bound nucleon is shifted by about 40
MeV from the free case and the width is roughly 100 MeV.

This process has been widely studied for electron and pion probes. If it could be studied with neutrinos,
the same structure would be seen. The so-called quasielastic peak is prominent in the inclusive scattering
cross section. At high excitation energies (lower kinetic energy for the scattered particle), a second peak
is found for quasifree pion production from a bound nucleon. Final state interactions are more important
in the details in this case. Consider the case of π+ interactions in carbon at 245 MeV. Evidence for
quasifree pion scattering is strong. A scattered π+ is tagged on one side of the beam and the spectrum
of protons is measured on the other side. A prominent peak is seen close to the angle where protons
would be if the target was a free proton. The same correlation is seen between 2 protons where the π+

is absorbed on a quasideuteron in the nuclear medium. Strong evidence for quasifree pion scattering and
absorption is seen. Calculations with an INC model are in excellent agreement with these data.

The energy distribution of π+ detected at 130◦ [116] shows a peak close to where scattering from
a free proton would be seen. Since Fig. 2.16 is for a H2O target, scattering from H is seen as a gap
at about 130 MeV (cross section is too large to show). Pions interacting with oxygen nuclei produce a
peak at about 100 MeV. Calculations show it is dominated by events with a single scattering (S). At low
energies, the distribution is modified by events with more than one scattering (M). At forward angles,
the contributions from multiple scattering aremore important.

If incident particles have a higher energy, complications can be found. With light targets, FSI effects
are small and quasifree scattering and pion production peaks are seen. However, INC calculations have
trouble getting the shape right, particularly in the region between the peaks. Fig. 2.17 is for π− scattering
from 12C at 500 MeV [117]. For π+ absorption, the quasifree process would be π+d→ pp since pions are
highly unlikely to be absorbed on a single nucleon. LADS data [118] for π+ absorption in Ar (A=40)
shows the largest strength for the pp final state but this is less than half of the total cross section.

INC models

Prominence of the quasifree reaction mechanism shows why INC models are valuable. These models
assume the nucleus is an ensemble of nucleons which have Fermi motion and binding energy. The incident
particle interacts in a series of encounters with single nucleons called a cascade (see Figs. 2.18, 2.19).

All interactions are governed by the cross section for the free process, e.g. π+n → π+n or pp → pp.
Probability of interaction is governed by a mean free path according to Eqn. 2.13. Cross sections for
pions, kaons, protons, and photons interacting with free nucleons are fit with a partial wave analysis with
results provided by the GWU group [119, 120]. Nucleon densities come from compilations; note that
neutron and protons have very similar densities even for nuclei such as lead.

The problems with INC models must be considered. Since interactions are governed by cross sections
rather than quantum mechanical amplitudes, the nuclear model is often very simple. The simplest and
most general nuclear model is the Fermi gas which is the basis for all neutrino-nucleus event generator
models. Effects of nucleon correlations must be included empirically. Both the struck nucleon and the
scattered hadron are likely to be off-shell. Although this effect has been shown to be ‘moderate’, it is
difficult to simulate in a semi-classical model. Thus, there is no definite prescription for an INC model;

2.5. INTRANUCLEAR HADRON TRANSPORT 43

Figure 2.16: Inclusive π+scattering data from In-
gram, et al. compared with separate curves for
single and multiple scattering contributions.

Figure 2.17: Inclusive π− scattering data from
Zumbro, et al. compared with INC calculations
of Mashnik, et al.

Figure 2.18: Schematic diagram for reaction in-
volving typical FSI process.

Figure 2.19: Schematic diagram for reaction where
pion is produced then absorbed in the same nu-
cleus.

44 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

Figure 2.20: Mashnik, et al. INC calculations com-
pared with McKeown, et al. data.

Figure 2.21: Mashnik, et al. INC calculations com-
pared with Iwamoto, et al. data.

many versions exist with a wide range of applicability.
The successes of INC models are large. For many reactions, they are the only models available for

comparison. They were first used for pion production in proton-nucleus interactions by Metropolis and
Harp [107]. A general INC model (CEM03) developed by Mashnik and collaborators [108, 109, 110] has
been applied with success to a wide range of pion- and proton-nucleus data [121]. Examples are shown
in Figs. 2.17, 2.20 and 2.21; we will show similar comparisons for the GENIE FSI model.

The FSI model in FLUKA is PEANUT. This uses a more sophisticated INC model than CEM03.
Various nuclear and quantum mechanical corrections are applied. The result is impressive agreement
with a wide variety of data.

Treatment of pion absorption is somewhat different in the INC models than the ∆ dominance models.
In the latter, pions first rescatter off a nucleon (off-shell) and then absorbed on another. There are other
mechanisms which should be included. Salcedo, Oset, Vicente-Vacas, and Garcia-Recio [113] include
both S-wave absorption and 3-body absorption. In INC, the fundamental process for pion absorption
is π+d → pp and this is often the only process included. Since the density of nucleons is much smaller
in deuterium as compared with real nuclei, an empirical factor (with a value often about 3) must be
included.

The INTRANUKE / hA FSI model

The first FSI model is in the spirit of the other models in GENIE. It is simple and empirical, data-driven.
Rather than calculate a cascade of hadronic interactions as is done in a complete INC model, we use the
total cross section for each possible nuclear process for pions and nucleons as a function of energy up
to 1.2 GeV. Thus, it is called hA. The emphasis is on iron because the first application was to MINOS
where production of high energy pions is important. At low energies (50-300 MeV), there is sufficient data
[114, 115, 122, 123, 124] for a good description. At high energies, only a few data points are available.
Here, we use results obtained for the CEM03 model. Although the calculations are complete, they are not
in good agreement with the existing total cross section data. Therefore, the calculations are normalized

2.5. INTRANUCLEAR HADRON TRANSPORT 45

0 200 400 600 800 1000
KE [MeV]

0

400

800

1200

1600

2000

to
ta

lx
s

(m
b)

+ 56
Fe

pion prod
absorption
inelastic
elastic
total

Figure 2.22: π+Fe reactions used in GENIE hA
model. Final states are chosen according to these
values.

0 200 400 600 800 1000
p KE [MeV]

0

500

1000

1500

2000

2500

to
ta

lx
s

(m
b)

p
56

Fe

pi prod
multinucleon ko
cex
inelastic
elastic
total

Figure 2.23: Same for pFe reactions.

to the data at low energies. Elastic data at high energy are used to extrapolate the model to 1.2 GeV.

The hA model also handles proton and neutron rescattering. The same reactions are possible except
that neither can be absorbed. Still, multinucleon knockout is highly probable. Although much less data
is available for nucleons than pions, CEM03 was tuned primarily for them.

The values used for π+ and p are shown in Figs. 2.22 and 2.23. Data values are used for energies
below 315 MeV for all cross sections. Total cross section data is available across the entire range. Data for
total and total reaction cross sections are used across the entire range in energy. Cross sections for targets
other than iron are obtained by scaling by A2/3. As discussed above, this is a reasonable approximation.
Because such a large range is covered, processes such as pion production must be included. Here, we use
the CEM03 calculations.

The total cross section is calculated from the mean free path and can be checked against data. In
addition the accuracy of the A2/3 scaling can be checked with data from another target. We show the
total and component cross sections for the model compared with carbon data in Figs. 2.24 and 2.25.
(Agreement for iron has less information and is equal in quality.)

All the data points in Figs. 2.24 and 2.25 have error bars. These are either taken from the data or
estimated. These provide the range of values sampled during reweighting exercises. This is an excellent
way to estimate model dependent errors in a neutrino oscillation experiment (see ‘Event Reweighting’
chapter). The ability to reweight is an important feature of this model.

This is the default FSI model in GENIE v2.4.0, the public version as of now. It uses identical cross
section for π+ and π− and for p and n. For isoscalar targets (e.g. 12C and 16O, this is no issue for the
pions because of isospin symmetry. For targets such as lead, this is a 10% effect. The charges of particles
in the final state tend to reflect the charge of the probe. For example, final states for π+ have more
protons than neutrons while the opposite holds for π−. Cross sections for π0 beams can’t be measured.
This code uses isospin symmetry to calculate them from the charged pions. The total reaction cross
sections for p and n are very similar, plots are shown in the next section. Charges of final state particles
tend to be more positive for incident protons.

46 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

σ (π++C12)

0

100

200

300

400

500

600

700

800

200 400 600 800 1000 1200 1400

E(MeV)

σ(
m

b)

Figure 2.24: π+C reactions. GENIE hA model is
used. Total cross section is determined with proper
mean free path in a carbon nucleus.

σ (π++C12)

0
50

100
150
200
250
300
350
400

200 400 600

E(MeV)

σ(
m

b)

0
50

100
150
200
250
300
350
400

200 400 600

E(MeV)

σ(
m

b)

0
50

100
150
200
250
300
350
400

200 400 600

E(MeV)

σ(
m

b)

0
50

100
150
200
250
300
350
400

200 400 600

E(MeV)

σ(
m

b)

Figure 2.25: Component cross sections come from
the corresponding iron cross sections scaled by
A2/3.

Pion absorption and nucleon spallation reactions can knock out large numbers of nucleons. This is
seen strongly in data. More detailed calculations (see below) show an average of 10 nucleons ejected from
iron in pion absorption. To simplify the code, the hA model limits this to 5. For MINOS, this is never
an issue.

Angular and energy distributions of particles are estimated. For elastic scattering, template angular
distributions from relevant data are used. These distributions are very forward peaked, so it’s not an
important simplification. For final states with more than 1 hadron, particles are distributed by phase
space. This gives the correct limits, but the energy distribution changes somewhat when the ∆ resonance
dominates. The effect of these approximations have not yet been simulated, but they are unlikely to be
an important effect in the MINOS experiment. One of the most significant errors is in the treatment of
the quasielastic scattering. Only the incident particle is put in the final state and it’s energy and angle
distribution are both flat.

Since the elastic cross section can’t be generated in an INC model, it has to be added on. For the hA
model, we chose an empirical method. The size of the nucleus is increased by ∆R which is proportional
to the de Broglie wavelength. This nicely matches the data for all energies.

Almost all of the problems in the last paragraphs will be fixed in GENIE v2.6.0. Changes due to isospin
in either hadron or nucleus will be greatly improved. The number of final states sampled will be increased.
Inelastic final states will be assumed to be dominated by quasielastic events. (This approximation can
be checked against data and will be discussed in the next section.)

The INTRANUKE / hN FSI model

The second FSI model in GENIE (hN) is a full INC model. It includes interactions of pions, nucleons,
kaons, and photons in all nuclei. The basis is the angular distributions as a function of energy for about
14 reactions from threshold to 1.2 GeV. All this information comes from the GWU group [119, 120]. A
preliminary version of the hN model is scheduled to be in GENIE v2.6.0, but the hA model will still be

2.5. INTRANUCLEAR HADRON TRANSPORT 47

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400

σ T
o

t
(m

b
)

Tp (MeV)

Total Reaction XS p+
56

Fe

Fe (various)
GENIE calc

Figure 2.26: pFe reactions from the GENIE hN
model.

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000

σ T
o

t
(m

b
)

Tn (MeV)

Total Reaction XS n+
12

C

C (Schimmerling)
GENIE calc

Figure 2.27: Total reaction cross sections for nC
reactions from the GENIE hN model.

the default.

As a full INC model, all reactions on all nuclei can be calculated. None of the restrictions that apply
to hA model are relevant. Although the choice of interaction points through the MFP is identical in the 2
models, the cascade is fully modeled in the hN model. For example, there is a small but finite probability
of knocking out every nucleon in an event.

One new feature of this code is the inclusion of nucleon pre-equilibrium and compund nuclear processes.
The present model is simple, but effective. This is important to give an improved description of the vertex
energy deposition.

The code was designed to minimize the number of parameters. One parameter scales the absorption
MFP and is fit to the pion total absorption cross section. Separate values for the ∆R values for pions and
nucleons are fit to the total reaction cross sections. All particles get a free step when they are produced;
this simulates the effect of ∆ resonance propagation in a simple way. It is used to adjust the normalization
of certain inclusive scattering distributions. A shift in the energy of nucleons in the nucleus is used to
put the quasielastic peak (see Fig. 2L) (similar to what is used in electron scattering).

The validation of this new code comes in 2 parts- the total cross sections for various processes (e.g.
Fig. 2.24) which test the overall propagation of particles and the inclusive cross sections (e.g. Figs. 2.17,
2.20 and 2.21). Each is important. Previous validations emphasize the total cross sections because this
sets the overall flow of particles into each topology. Previous neutrino experiments emphasize topology.
Future experiments are expected to put emphasis into the distribution of particles in energy and angle
as beam and detector technology improve.

The component total cross section data is limited to hadron energy of less than ∼350 MeV. The
exception is the total reaction cross section which has been measured for π+, π−, p, and n up to roughly
1 GeV. Figs. 2.26 and 2.27 show σreac for protons in iron and neutrons in carbon respectivelly. The energy
dependence is flat and we see the cross section approximately equal to the nuclear area as discussed in
the introduction. Agreement of the model is excellent.

In Figs. 2.28 and 2.29, we show σreac for pions. The agreement is excellent except at low energies for
heavier targets; this is still under study.

With the significant interest in absorption, we show 2 examples of that total cross section in Figs.
2.30 and 2.31. Overall agreement is very good, but the problem in σreac at low energies for heavy targets
is shown to be in the absorption channel.

Continuing with absorption, we show 2 examples similar to Figs. 2.20 and 2.21 in Figs. 2.32 and
2.33. The agreement shown here is excellent as the details of pion reactions are explored across a wide

48 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

KE (MeV)
0 200 400 600 800 1000 1200

 (
m

b)
σ

0

100

200

300

400

500

600

700

800

900

1000
Ashery data
Allardyce data
GENIE calc

+ C total reaction cross sectionπ

Figure 2.28: π+C using the GENIE hN model
compared to data.

KE (MeV)
0 200 400 600 800 1000 1200

 (
m

b)
σ

0

500

1000

1500

2000

2500

3000

3500

4000
Ashery data
Allardyce data
GENIE calc

+ Pb total reaction cross sectionπ

Figure 2.29: Total reaction cross sections for π+Pb
using the GENIE hN model.

KE (MeV)
0 200 400 600 800 1000 1200

 (
m

b)
σ

0

50

100

150

200

250

300

350

400

450

500
Ashery data
GENIE calc

+ C total absorption cross sectionπ

Figure 2.30: π+C using the GENIE hN model
compared to data.

KE (MeV)
0 200 400 600 800 1000 1200

 (
m

b
)

σ

0

100

200

300

400

500

600

700

800

900

1000 19

data
GENIE calc

+ Fe total absorption cross sectionπ

Figure 2.31: Total reaction cross sections for π+Pb
using the GENIE hN model.

2.5. INTRANUCLEAR HADRON TRANSPORT 49

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400

in
cl

us
iv

e
cr

os
s

se
ct

io
ns

 (
m

b/
sr

*M
eV

)

Tp (MeV)

π+ A → pX; Tπ= 220 MeV, θ=30 deg

data Li
2*data Be
4*data C
6*data Al
8*data Ni

10*data Ta
GENIE Li

2*GENIE Be
4*GENIE C
6*GENIE Al
8*GENIE Ni

10*GENIE Ta

Figure 2.32: π+ interacting in various nuclei. In
each distribution, protons are detected at 30◦.
Data is from McKeown, et al. These protons come
from both absorption and scattering processes.

Energy [MeV]
0 100 200 300 400 500 600 700 800 900

]
M

eV
⋅

sr
m

b
 [

dE
Ωd

σd

-310

-210

-110

1

10

210

310

410

Graph Title

Figure 2.33: Inclusive cross sections for neutrons
emitted from 870 MeV π+ interacting in iron. In
each case, neutrons are detected at different angles.
Data is from Iwamoto, et al. These neutrons come
from predominantly the absorption process.

kinematic range.
The last example of this new code is for scattering processes. When hadrons interact in the nuclear

medium, the quasifree scattering process is important; that has been seen in numerous data sets. In
Figs. 2.34 and 2.35 we show examples for pion and proton scattering. For the pion case, a back angle is
shown; here, the quasielastic mechanism dominates. For protons, the beam energy is large enough that
the multiple scattering process is sampled over a wide range in energy. The agreement is excellent.

Conclusions

We have reviewed strong interactions as they will be applied to neutrino experiments of the near future.
The basic premise is that hadron-nucleus experiments are the best way (definitely now, likely also in the
future) to validate FSI models. General properties have been identified from data, the general blackness
of nuclei to hadrons along with the importance of quasifree mechanisms.

Various models were discussed with a focus on INC models. Although, they are not the most theo-
retically viable, the role of INC models is significant because they can ’easily’ describe a wide range of
data.

The 2 FSI models in GENIE are described in some detail. The hA model is simpler and more empirical.
Although it isn’t the most accurate, it is very fast and straightforward to reweight. The hN model is
a full INC calculation which is much more accurate. In v2.4, the hA model is the only FSI model. For
version 2.6, both will be included but hA will still be the default. The hA model will be applicable to all
nuclei from helium to lead for kinetic energies up to 1.2 GeV for pions and nucleons. Its main value will
be for high energy neutrinos and in reweighting. The hN model is nearly complete for this round. It will
be valid for energies above 50 MeV and will provide a very complete description of many final states.

Thus, each GENIE FSI model has independent validity. An important component of any simulation
is the estimation of systematic errors. A comparison of the results using each model can show model
dependence. Varying parameters inside the hA model is the best way to assess systematic errors due to
FSI.

50 CHAPTER 2. NEUTRINO INTERACTION PHYSICS MODELING

Energy [MeV]
0 20 40 60 80 100 120 140 160 180 200 220 240

]
M

eV
⋅

sr
m

b
 [

dE
Ωd

σd

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
GENIE 19

Ingram Data (130 deg)

+ Xπ →+ 16O π240 MeV

Figure 2.34: π+ scattered at 130◦ from 240 MeV
π+ interacting with oxygen. At this back angle,
the spectrum of π+ is dominated by the quasifree
mechanism. Data is from Ingram, et al.

Energy [MeV]
0 100 200 300 400 500 600 700 800

]
M

eV
⋅

sr
m

b
 [

dE
Ωd

σd

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
GENIE 19

Mcgill Data (20 deg)

 p X→800 MeV p Ca

Figure 2.35: Inclusive cross sections for protons
scattered at 20◦ from 800 MeV protons interact-
ing with calcium. Data is from McGill, et al and
Chrien, et al. There is a known absolute normal-
ization difference between the 2 experiments but it
is not available to us.

Chapter 3

The GENIE Software Framework

[to be added in future revision]

51

52 CHAPTER 3. THE GENIE SOFTWARE FRAMEWORK

Chapter 4

Downloading & Installing GENIE

4.1 Understanding the versioning scheme

SVN Tags

In the GENIE version numbering scheme, releases are tagged in the SVN source-code repository as R-
major_minor_revision1. When a number of significant functionality improvements or additions have
been made, the major index is incremented. The minor index is incremented in case of significant fixes
and/or minor feature additions. The revision number is incremented for minor bug fixes and updates.

Version number semantics

• Versions with even minor number (eg 2.0.*, 2.4.*) correspond to stable, fully validated physics
production releases2.

• Versions with odd minor number (eg. 2.3.*, 2.5.*) correspond to release candidates tagged during
the validation stage preceding the release of a production version.

• Production versions, and candidate releases, always have an even revision number.

• The SVN head has a nominal version number of 999.999.999.

Release codenames

The major production-quality releases are code-named after modern extinct or endangered species (series
of production releases: Auk , Blueback , Cheetah , Dodo , Elk , Fox , Gazelle, Hippo , Ibex ,...).

Release qualifiers

The GENIE releases are marked as:

• pro : Validated production-quality versions recommended for physics studies.

• old : Older ‘pro’ versions that have been greatly superseded by newer versions. Versions marked as
‘old’ become unsupported. We appreciate that experiments get highly attached on specific versions
due to the enormous amount of work invested in generating high statistics samples and calculating

1For example, tag R-1_99_1 corresponds to GENIE vrs 1.99.1, tag R-2_0_2 corresponds to GENIE vrs 2.0.2 etc.
2To the dismay of mathematicians, our versioning scheme uses 0 as am even number.

53

54 CHAPTER 4. DOWNLOADING & INSTALLING GENIE

MC-dependent corrections and systematics. We strive to support ‘pro’ versions for a minimum of
two years.

• rc: Release candidates. You may not use for physics studies.

• special : Special releases prepared for a particular study or event such as a) the evaluation of an
experiment systematic with an appropriately modified version of GENIE, or b) a GENIE tutorial
or a summer / winter school. You may not use these releases outside the intended context.

4.2 Obtaining the source code

The official GENIE source code is maintained at a SubVersion repository hosted at HepForge3. The
development version and a host of frozen physics releases are available from the repository. Alternatively,
you can download compressed archives stored at the HepForge archive area, or you can create and
download such archives using the web interface to the GENIE SubVersion repository. Details are given
below. Further general information can be found at

• The HepForge documentation page: http://www.hepforge.org/docs/

• The SVN book: http://svnbook.red-bean.com/

The code repository can be accessed anonymously via HTTP, without a HepForge account. You need to
have a SubVersion client installed and you probably already do. If not, binaries are readily available for
most platforms (see http://subversion.apache.org/).

You can check-out the generator SVN trunk by typing:

$ svn co http://svn.hepforge.org/genie/generator/trunk <local_dir>

You can check-out frozen releases by typing:

$ svn co http://svn.hepforge.org/genie/generator/branches/<genie_tag> <local_dir>

Make the appropriate substitutions for <genie_tag> and <local_dir> . To view the available <genie_tag> s
see the GENIE release table on the web, or just type:

$ svn list http://svn.hepforge.org/genie/generator/branches/

Alternatively, compressed archives for recent stable version releases are posted at the HepForge archive
area:
http://www.hepforge.org/downloads/genie

You can also download a compressed archive of the latest development version (created automatically
upon your request) using the repository’s web interface. Visit the repository trunk at:
http:// projects.hepforge.org/genie/trac/browser/trunk

Then click on ‘Download in other formats: Zip Archive’ towards the end of the page.

Write access to the Generator repository, as well as to other GENIE products including the Com-
parisons and the Tuning require a HepForge account and it is permitted only for GENIE collaborators.

3http://www.hepforge.org

http://www.hepforge.org/downloads/genie
http://projects.hepforge.org/genie/trac/browser/trunk

4.3. 3RD PARTY SOFWTARE 55

Special limited accounts may be setup for regular GEBINE contributors.

4.3 3rd Party Sofwtare

A typical GENIE installation4 requires the following external packages5:

• ROOT

• GSL
The GNU Scientific Library

• LHAPDF
The Les Houches Accord PDF interface, a PDFLIB successor.

• PYTHIA6
The well known LUND Monte Carlo package used by GENIE for particle decays and string frag-
mentation (for neutrino interactions of high invariant mass).

• log4cpp
A C++ library for message logging.

• libxml2
The C XML library for the GNOME project.

The installation of external packages is described in detail in their corresponding web pages. Additional
detailed instructions can also be found at Appendix E of this manual.

4.4 Preparing your environment

A number of environmental variables need to bee set or updated before using GENIE.

• Set the ‘GENIE’ environmental variable to point at the top level GENIE directory

• Set the ‘ROOTSYS’ environmental variable to point at the top level ROOT directory

• Set the ‘LHAPATH’ environmental variable to point to LHAPDF’s PDF data files

• Append ‘$ROOTSYS/bin’ and ‘$GENIE/bin’ to your ‘PATH’

• Append ‘$ROOTSYS/lib’, ‘$GENIE/lib’ and the paths to the log4cpp, libxml2, LHPADF and PYTHIA6
libraries to your ‘LD_LIBRARY_PATH’ environmental variable (or to your ‘DYLD_LIBRARY_PATH’ en-
vironmental variable if you are using GENIE on MAC OS X).

It is more convenient to create a GENIE setup script and execute it before using GENIE.
A setup script should look like the following:

4A minimal installation that can be used for event generation / physics studies.
5The implicit assumption here is that you start with a ‘working system’ where some basic tools, such as the gcc compiler

suite, make, autoconf, PERL, CVS and SVN clients etc, are already installed. Instructions are given assuming that you are
using the bash shell but it is trivial to adapt these instructions for your own shell.

56 CHAPTER 4. DOWNLOADING & INSTALLING GENIE

#!/bin/bash

export GENIE=/path/to/genie/top/directory

export ROOTSYS=/path/to/root/top/directory

export LHAPATH=/path/to/lhapdf/PDFSets/

export PATH=$PATH:\

$ROOTSYS/bin:\

$GENIE/bin

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:\

/path/to/log4cpp/library:\

/path/to/libxml2/library:\

/path/to/lhapdf/libraries:\

/path/to/pythia6/library:\

$ROOTSYS/lib:\

$GENIE/lib

Assuming that the above script is named ‘genie_setup’, you can execute it by typing:

$ source genie_setup

4.5 Configuring GENIE

A configuration script is provided with the GENIE source code to help you configure your GENIE in-
stallation (enable / disable features and specify paths to external packages). To see what configuration
options are available, type:

$ cd $GENIE

$./configure --help

This will generate a screen output that looks like the following:

FLAG DESCRIPTION

--prefix Install path (for make install)

enable/disable options

prefix with either --enable or --disable

(eg. --enable-lhapdf --disable-flux-drivers)

profiler GENIE code profiling using Google perftools.

doxygen-doc Generate doxygen documentation at build time.

dylibversion Adds version number in dynamic library names.

lowlevel-mesg Disable (rather than filter out) some prolific

debug level messages known to slow GENIE down.

4.5. CONFIGURING GENIE 57

debug Adds -g compiler option to request debug info.

lhapdf Use the LHAPDF library.

cernlib Use the CERN libraries.

flux-drivers Enable built-in flux drivers.

geom-drivers Enable built-in detector geometry drivers.

mueloss Muon energy loss modeling.

validation-tools GENIE physics model validation tools.

test Build test programs.

t2k Enable T2K-specific event generation application.

fnal Enable FNAL experiment-specific event generation application.

atmo Enable atmospheric neutrino event generation application.

nucleon-decay Enable nucleon decay event generation application.

rwght Enable event reweighting tools.

masterclass Enable GENIE neutrino masterclass application.

with options for 3rd party software

prefix with --with (eg. --with-lhapdf-lib=/some/path)

optimiz-level Compiler optimiz. level (O,O2,O3,OO,Os)

profiler-lib Path to profiler library

doxygen-path Path to doxygen binary

pythia6-lib Path to PYTHIA6 library

cern-lib Path to CERN libraries

lhapdf-inc Path to LHAPDF includes

lhapdf-lib Path to LHAPDF libraries

libxml2-inc Path to libxml2 includes

libxml2-lib Path to libxlm2 library

log4cpp-inc Path to log4cpp includes

log4cpp-lib Path to log4cpp library

By default all options required for a minimal installation that can be used for physics event generation
are enabled and non-essential features are disabled. Typically, the folowing should be sufficient for most
users:

$ cd $GENIE

$./configure

Not specifying any configuration option (like above) is equivalent to specifying:
--disable-profiler

--disable-doxygen-doc

--enable-dylibversion

--disable-lowlevel-mesg

--disable-debug

--enable-lhapdf

--disable-cernlib

--enable-flux-drivers

--enable-geom-drivers

--enable-mueloss

--disable-validation-tools

--disable-test

58 CHAPTER 4. DOWNLOADING & INSTALLING GENIE

--disable-t2k

--disable-fnal

--disable-atmo

--disable-nucleon-decay

--disable-rwght

--disable-masterclass

The default optimization level is set to O2 and --prefix is set to /usr/local.

The configuration script can, in principle, auto-detect the paths to required external packages installed at
your system if no path is given explicitly. On some occasions, before scanning your system for external
products, the configuration script will check whether some rather standard environmental variables have
been set (from example, before searching for the PYTHIA6 / JETSET library, the configure script will
check whether a ‘PYTHIA6’ environmental variable has been set. See ‘./configure --help’ for more infor-
mation).

Obviously, if you want greater control over the configuration options (so that you do not depend on
pre-set defaults that may one day change), if you want to modify some other default options or if the
script fails to discover some external product path, then do set the configure script options explicitly.

4.6 Building GENIE

Once GENIE has been properly configured, you are ready to build it. Just type:

$ cd $GENIE

$ gmake

On successful completion you should be able to find many libraries located in $GENIE/lib and some
applications and scripts in $GENIE/bin.

You may stop the building procedure here and start using GENIE now! However, some users may
prefer to take their installation one step further and type:

$ gmake install

If /some/path was the location specified via the --prefix configuration flag, then ‘gmake install’ will:

• move all executables and scripts to /some/path/bin,

• move all libraries to /some/path/lib, and

• move all headers to /some/path/include/GENIE.

If you do run ‘gmake install’, before running GENIE you need to update your ‘LD_LIBRARY_PATH’ (or
‘DYLD_LIBRARY_PATH’ on MAC OS X) and ‘PATH’ environmental variables accordingly.

Whether you stop the installation procedure after the ‘gmake’ or ‘gmake install’ step is probably more a
matter of personal taste 6. Whatever you choose should work given that your system’s paths have been
properly set.

6I find it easier to manage multiple GENIE installations if I stop after the ‘gmake’ step.

4.7. PERFORMING SIMPLE POST-INSTALLATION TESTS 59

Assuming now that the GENIE installation has been completed without apparent errors, we are go-
ing to provide instructions for a couple of simple post-installation tests to verify that GENIE has been
properly built.

4.7 Performing simple post-installation tests

Here are few simple things you can do in order to try out your installation:

1. Generate a νµ + O16 (νµ PDG code: 14, O16 PDG code: 1000080160) event sample (10k events)
between 0 and 10 GeV, using a simple histogram-based description of the T2K νµ flux (ROOT
TH1D object ‘h30000’ stored in ‘$GENIE/data/flux/t2kflux.root ’). Use pre-calculated cross-sections
(later, you will learn how to calculate these on your own) which can be downloaded from http://
www.hepforge.org/archive/genie/data/.

The commands used here will be explained in the next section:

$ gevgen -n 10000 -p 14 -t 1000080160 -e 0,10 --run 100

-f $GENIE/data/flux/t2kflux.root,h30000

--seed 2989819 --cross-sections /some/path/xsec.xml

A ‘genie-mcjob-<run number>.status’ status file is created. It is updated periodicaly with job statis-
tics and the most recent event dump. When the job is completed a ‘gntp.<run number>.ghep.root ’
file, containing the generated event tree, is written-out. To print-out the first 200 events from the
event file you just generated, type:
$ gevdump -f gntp.100.ghep.root -n 200

2. Generate a 10,000 event sample of π+ +O16interactions for π+’s of 200 MeV kinetic energy.
(π+ PDG code: 211, O16 PDG code: 1000080160):

$ gevgen_hadron -n 10000 -p 211 -t 1000080160 -k 0.2 --seed 9839389

If everything seems to work then the GENIE is really ‘out of the bottle’. Continue reading the Physics
and User Manual to find out more about running the GENIE applications bundled in your installation.

http://www.hepforge.org/archive/genie/data/
http://www.hepforge.org/archive/genie/data/

60 CHAPTER 4. DOWNLOADING & INSTALLING GENIE

Chapter 5

Generating Neutrino Event Samples

5.1 Introduction

[to be added in future revision]

5.2 Preparing event generation inputs: Cross-section splines

When generating neutrino interaction events, most CPU-cycles are spent on calculating neutrino inter-
action cross sections. In order to select an interaction channel for a neutrino scattered off a target at a
particular energy, the differential cross section for each possible channel is integrated over the kinematic
phase space available at this energy. With ∼ 102 possible interaction modes per initial state and with
∼ 105 differential cross section evaluations per cross section integration then ∼ 107 differential cross
section evaluations are required just in order to select an interaction channel for a given initial state. Had
you been simulating events in a realistic detector geometry (∼ 102 different isotopes) then the number
of differential cross section evaluations, before even starting simulating the event kinematics, would rise
to ∼ 109. It is therefore advantageous to pre-calculate the cross section data. The event generation
drivers can be instructed to to load the pre-computed data and estimate the cross section by numerical
interpolation, rather than by performing numerous CPU-intensive differential cross section integrations.
The cross section data are written out in XML format and, when loaded into GENIE, they are used for
instantiating Spline objects.

5.2.1 The XML cross section splines file format

The XML file format is particularly wekk-suited for moving data between different GENIE applications.
This is the only intended usage of these files. If you wish to use GENIE’s cross section splines in another
context, eg. within your analysis code, then we recommend converting them from XML to ROOT format
using utilities provided by GENIE (See Section 5.2.5). Although you should never have to read the XML
cross section file, it is generally usefull that you do have an understanding of how it is structured so as
to be able to diagnose problems.

All XML splines are stored within ‘<genie_xsec_spline_list>’ tags:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- generated by genie::XSecSplineList::SaveSplineList() -->

<genie_xsec_spline_list version="2.00" uselog="1">

61

62 CHAPTER 5. GENERATING NEUTRINO EVENT SAMPLES

...

...

</genie_xsec_spline_list>

The ‘uselog=”1” ’ flag indicates that the spline knots are spaced ‘logarithmically’ in energy (This is the
default GENIE option so that there is higher knot density where the cross section changes more rapidly).
The data for each spline are stored within ‘<spline>’ tags1:

<spline

name = "{algorithm/reaction; string}"

nknots = "{number of knots; int}">

<knot>

<E> {energy; double} </E>

<xsec> {cross section; double} </xsec>

</knot>

<knot>

<E> {energy; double} </E>

<xsec> {cross section; double} </xsec>

</knot>

... ...

</spline>

Each spline is named by combining the names of the cross section algorithm and its configuration with a
string interaction code. These rather long names are built automatically by GENIE and used for retrieving
the correct spline2 from the spline pool. For example, a spline named ‘genie::DISPartonModelPXSec/CC-

Default/nu:-12;tgt:1000260560;N:2112;q:-1(s);proc:Weak[CC],DIS ’ indicates that it was computed using the
cross section algorithm ‘genie::DISPartonModelPXSec’ run in the ‘CC-Default’ configuration for an in-
teraction channel with the following string code: ‘nu:-12;tgt:1000260560;N:2112;q:-1(s);proc:Weak[CC],DIS ’
(indicating a DIS CC νµFe

56 scattering process of a sea d̄ quark in a bound neutron). The spline knots
are listed in increasing energy, going up to a maximum value specified during the spline construction.
One of the knots falls exactly on the energy threshold for the given process so as to improve the accuracy
of numerical interpolation around threshold. The energy and cross section values are given in the natural
system of units (~ = c = 1) used internally within GENIE (Note that the more widespread cross section
units, 10−38cm2, are used when the cross section data are exported to a ROOT format for inclusion in
user analysis code. See Section5.2.5).

5.2.2 Downloading pre-computed cross section splines

Cross section spline XML files are kept in: http:// www. hepforge.org/ archive/genie/data/

You need to select the file corresponding to the version of GENIE you are using.

Typically I post cross section spline files for all modeled processes for νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ scattered
off free-nucleons (p, n) and off a large set of nuclear targets (the ∼ 40 isotopes that can be found in the
T2K detector geometries3). Using the posted free-nucleon cross section data is easy / fast to calculate

1In the description below, the curly braces within tags are to be ‘viewed’ as a single value of the specified type with the
specified semantics.

2GENIE takes the safest route and checks both the ‘reaction mode’ and ‘cross section algorithm’. It will not use cross
section spline data calculated by a cross section algorithm A, if an alternative cross section algorithm B is currently in use.

3N14, N15, O16, O17, O18, Al27, C12, C13, H2, Cl35, Cl37, Pb204, Pb206, Pb207, Pb208, Cu63, Cu65, Zn64, Zn66,
Zn67, Zn68, Zn70, Ar36, Ar38, Ar40, Si28, Si29, Si30, B10, B11, Na23, F e54, F e56, F e57, F e58, Co59.

http://www.hepforge.org/archive/genie/data/

5.2. PREPARING EVENT GENERATION INPUTS: CROSS-SECTION SPLINES 63

cross section splines for any set of nuclear targets.

Any reasonable request for providing additional cross section splines will be satisfied.

5.2.3 Generating cross section splines

Cross section spline calculation is very CPU-intensive. It is recommended that, for the default GENIE
configuration, you use the officially distributed files. However, the information provided in this section
will allow you to generate your own cross section spline files, should you need to.

The gmkspl spline generation utility

Name

gmkspl – A GENIE utility for generating the cross section splines for a specified set of modeled processes
for a specified list of initial states. The cross section splines are written out in an XML file in the format
expected by all other GENIE programs.

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/gMakeSplines.cxx ’.

Synopsis

$ gmkspl -p neutrino_code <-t target_codes, -f geometry> [-n nknots] [-e max_energy]

[<--output-cross-sections | -o> xml_file] [--input-cross-sections xml_file]

[--seed rnd_seed_num] [--event-generator-list list_name] [--message-thresholds xml_file]

where [] marks optional arguments, and <> marks a list of arguments out of which only one can be
selected at any given time.

Description

The following options are available:

-p Specifies the neutrino PDG codes.

Multiple neutrino codes can be specified as a comma separated list.

-t Specifies the target PDG codes.

Multiple target PDG codes can be specified as a comma separated list. The PDG2006 conventions
is used (10LZZZAAAI). So, for example, O16 code = 1000080160, Fe56 code = 1000260560. For more
details see Appendix D.

-f Specifies a ROOT file containing a ROOT/GEANT detector geometry description.

-n Specifies the number of knots per spline.

By default GENIE is using 15 knots per decade of the spline energy range and at least 30 knots overall.

64 CHAPTER 5. GENERATING NEUTRINO EVENT SAMPLES

-e Specifies the maximum neutrino energy in the range of each spline.

By default the maximum energy is set to be the declared upper end of the validity range of the event
generation thread responsible for generating the cross section spline.

–output-cross-sections, -o Specifies the name (incl. full path) of an output cross-section XML file.

By default GENIE writes-out the calculated cross section splines in an XML file named ‘xsec_splines.xml ’
created at the current directory.

–input-cross-sections Specifies the name (incl. full path) of the output XML file.

An input cross-section file could be specified when it is possible to recycle previous calculations. It is,
sometimes, possible to recycle cross-section calculations for scattering off free nucleons when calculating
nuclear cross-sections.

–seed Specifies the random number seed for the current job.

This setting will only ne relevant if MC intergation methods are employed for cross-section calculation.

–event-generator-list List of event generators to load.

The list of event generators to load affects the list of processes that can be simulated and, for
which, cross-section calculations need to be calculated by this application. By default, GENIE is
loading a list of of tuned and fully-validated generators which allow comprehensive neutrino inter-
action modelling the medium-energy range. Valid settings are the XML block names appearing in
$GENIE/config/EventGeneratorListAssembler.xml ’. Please, make sure you read Sec. 5.4 explaining why,
almost invariantly, for physics studies you should be using a comprehensive collection of event generators.

–message-thresholds Specifies the GENIE verbosity level.

The verbosity level is controlled with an XML file allowing users to customize the threshold of each
message stream. See ‘$GENIE/config/Messenger.xml ’ for the XML schema. The ‘Messenger.xml’ file con-
tains the default thresholds used by GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’
files define, correspondingly, less and more verbose configurations.

Examples

1. To calculate cross-sections for νµ (PDG code: 14) and ν̄µ (PDG code: -14) scattering off Fe56

(PDG code: 1000260560), and build splines with 150 knots in the energy range up to 20 GeV, type

$ gmkspl -p 14,-14 -t 1000260560 -n 150 -e 20

The cross section splines will be saved in an output XML file named ‘xsec_splines.xml ’ (default
name).

2. To calculate the CCQE cross-section for νµ (PDG code: 14) and ν̄µ (PDG code: -14) scattering off
all the targets in the input ROOT geometry file ‘/data/mygeometry.root ’ and write out the splines
in a file named ‘mysplines.xml ’, type

5.2. PREPARING EVENT GENERATION INPUTS: CROSS-SECTION SPLINES 65

$ gmkspl -p 14,-14 -f /data/mygeometry.root -o mysplines.xml --event-generator-list CCQE

Generating cross-section splines is a CPU-intensive task as a large number of processes (see Fig. 5.1)
and numerical integration of steeply peaked differential cross-sections over extended, multi-dimensional
kinematical phase spaces. When cross-section calculations are needed for multiple targets, it is often
impractical to generate all splines in a single job. The task is typically split into smaller jobs which can
be run on parallel in a batch farm. Batch submission scripts used by GENIE developers can be found in
‘$GENIE/src/scripts/production/batch/ ’ and easily adapted to match user needs. Detailed documentation
is available within the scripts. The multiple XML outputs of all the gmkspl jobs can be merged into
a single XML file using GENIE’s gspladd utility. (See Section 5.2.3.) It is worth highlighting that, for
faster results, it is preferable if one organizes the jobs as ‘single neutrino + multiple nuclear targets’
rather than ‘multiple neutrinos + single nuclear target’: In the former case intermediate, CPU-intensive
free-nucleon cross-section calculations, for the given neutrino species, will be recycled in the nuclear
target cross-section calculations. For even faster results one can calculate the free-nucleon cross-section
splines first, then feed the output into a nuclear cross-section spline calculation. Because of the way
nuclear effects are currently handled, nuclear cross-section calculations can recycle CPU-intensive free-
nucleon calculations resulting in a dramatic speed improvement. To feed-in free-nucleon cross-sections
in a nuclear cross-section calculation job, use the gmkspl –input-cross-sections option. Note that, if
you feed-in cross-sections, the calculated cross-sections can not extend higher in energy than the input
cross-sections.

The gspladd spline merging utility

Name

gspladd – A GENIE utility for merging many separate XML cross section files into a single XML file.

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/gSplineAdd.cxx ’.

Synopsis

$ gspladd -f file_list -d directory_list -o output_file

Description

The following options are available:

-f Specifies input XML files. Multiple input files can be specified as a comma separated list.

-d Specifies input directories. Multiple input files can be specified as a comma separated list. All
XML files found in each directory will be included.

-o Specifies the name of the output XML file.

66 CHAPTER 5. GENERATING NEUTRINO EVENT SAMPLES

Figure 5.1: Cross section splines just for νµFe
56 processes modeled in GENIE. The large number of splines

and the fine numerical integration stepping makes spline calculation a very CPU-intensive process.

5.2. PREPARING EVENT GENERATION INPUTS: CROSS-SECTION SPLINES 67

Notes

• At least 2 XML files must be specified as inputs for the gspladd application to work.

Examples

1. To merge ‘/data/iron/xsec.xml ’ and ‘/data/oxygen/xsec.xml ’ into ‘./xsec_all.xml ’, type:

$ gspladd -f /data/iron/xsec.xml,/data/oxygen/xsec.xml -o xsec_all.xml

2. To merge ‘./xsec_Fe56.xml ’ and all the cross section spline files found in ‘/scratch/job1 ’ and
‘/scratch/job2 ’ into ‘./xsec_all.xml ’, type

$ gspladd -f xsec_Fe56.xml -d /scratch/job1/,/scratch/job2 -o xsec_all.xml

5.2.4 Re-using splines for modified GENIE configurations

You should never be doing that (unless you are absolutely sure about what you are doing). The safest
assumption is that changes in GENIE, either a change of default model parameter or a change of a
default model, invalidates previously generated cross section splines as the cross section models (used for
generating these splines) may be affected.

5.2.5 Using cross section splines in your analysis program

As seen before, GENIE’s gmkspl utility writes-out cross section values in XML format. While this format
is particularly well-suited for moving data between GENIE components, it is not the most usefull format
from the perspective of a user who wishes to read and interpolate these cross section data in different
contexts within his/her analysis code.

GENIE provides the gspl2root utility to convert XML cross section splines into a ROOT formats.
The XML cross section data for each process and initial state are converted into a single ROOT TGraph
objects. All ROOT TGraph objects corresponding to the same initial state are written-out in the same
ROOT TDirectory which is named after the given initial state. Multiple TDirectory objects can be
saved in a single output ROOT file. ROOT TGraph objects support numerical interpolation via the
‘TGraph::Eval(double)’ method, so, essentially, one can write-out all GENIE cross section ‘func-
tions’ one needs into a single ROOT file. More details on this particularly useful feature are given
next.

The gspl2root spline file conversion utility

Name

gspl2root - A GENIE utility to convert XML cross section files into a ROOT format.

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/gSplineXnml2Root.cxx ’.

68 CHAPTER 5. GENERATING NEUTRINO EVENT SAMPLES

Synopsis

$ gspl2root

-f input_xml_file

-p neutrino_pdg_code -t target_pdg_code

[-e maximum_energy] [-o output_root_file] [-w]

where [] denotes an optional argument.

Description

The following options are available:

-f Specifies the input XML cross section spline file.

-p Specifies the neutrino PDG code.

-t Specifies the target PDG code (format: 10LZZZAAAI).

-e Specifies the maximum energy for the generated graphs.

-o Specifies the output ROOT file name.

-w Instructs gspl2root to write-out plots in a postscipt file.

Notes

• The spline data written-out have the energies given in GeV and the cross sections given in in
10−38cm2.

Examples

1. In order to extract all νµ+n, νµ+p and νµ+O16 cross section splines from the input XML file ‘mys-
plines.xml ’, convert splines into a ROOT format and save them into a single ROOT file ‘xsec.root ’,
type:

$ gspl2root -f mysplines.xml -p 14 -t 1000000010 -o xsec.root

$ gspl2root -f mysplines.xml -p 14 -t 1000010010 -o xsec.root

$ gspl2root -f mysplines.xml -p 14 -t 1000080160 -o xsec.root

A large number of graphs (one per simulated process and appropriate totals) will be generated
in each case. Each set of plots is saved into its own ROOT TDirectory named after the specified
initial state.

The stored graphs can be used for cross section interpolation. For instance, the ‘xsec.root ’ file
generated in this example will contain a ‘nu_mu_O16’ TDirectory (generated by the last com-
mand) which will include cross section graphs for all νµ+O16 processes. To extract the νµ+O16

DIS CC cross section graph for hit u valence quarks in a bound proton and evaluate the cross
section at energy E, type:

5.3. SIMPLE EVENT GENERATION CASES 69

root[0] TFile file(“xsec.root”,”read”);

root[1] TDirectory * dir = (TDirectory*) file->Get("nu_mu_O16");

root[2] TGraph * graph = (TGraph*) dir->Get("dis_cc_p_uval");

root[3] cout << graph->Eval(E) << endl;

5.3 Simple event generation cases

This section will introduce gevgen, a generic GENIE event generation application. This particular appli-
cation has access to the full suite of GENIE physics models but will only handle relatively simple flux and
geometry setups. It doesn’t use any of the atmospheric, JPARC, NuMI or other specialized flux drivers
included in GENIE and doesn’t use ROOT/Geant-4 based detector geometries. A reader interested in
the more specialized event generation applications included in GENIE can jump to Chapter 6.

5.3.1 The gevgen generic event generation application

Name

gevgen - A generic GENIE event generation application for simple event generation cases. The application
handles event generation for neutrinos scattered off a given target (or ‘target mix’). It doesn’t support
event generation over ROOT/Geant4-based detector geometries. It handles mono-energetic flux neutrinos
or neutrino fluxes described in simple terms (either via a functional form, a vector file or a ROOT TH1D
histogram).

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/gEvGen.cxx ’.

Synopsis

$ gevgen [-h] [-r run#] -n nev -p neutrino_pdg -t target_pdg -e energy [-f flux]

[-w] [-seed random_number_seed] [--cross-section xml_file] [--event-generator-list list_name]

[--message-thresholds xml_file] [--unphysical-event-mask mask] [--event-record-print-level level]

[--mc-job-status-refresh-rate rate] [--cache-file root_file]

where [] denotes an optional argument.

Description

The following options are available:

• -h Prints-out help on gevgen syntax and exits.

• -r Specifies the MC run number.

• -n Specifies the number of events to generate.

• p Specifies the neutrino PDG code.

• -t Specifies the target PDG code(s).

The PDG2006 convention is used (10LZZZAAAI). So, for example, O16 code = 1000080160, Fe56

code = 1000260560. For more details see Appendix D.

70 CHAPTER 5. GENERATING NEUTRINO EVENT SAMPLES

Multiple targets (a ‘target mix’) can be specified as a comma-separated list of PDG codes, each
followed by its corresponding weight fraction in brackets as in:
‘code1[fraction1],code2[fraction2],...’.
For example, to use a target mix of 95% O16 and 5% H type:
‘-t 1000080160[0.95],1000010010[0.05]’.

• -e Specifies the neutrino energy or energy range.

For example, specifying ‘-e 1.5’ will instruct gevgen to generate events at 1.5 GeV.

If what follows ‘-e’ is a comma separated pair of values then gevgen will interpret that as an
‘energy range’. For example, specifying ‘-e 0.5,2.3’ will be interpreted as the [0.5 GeV, 2.3 GeV]
range. If an energy range is specified then gevgen expects the ‘-f’ option to be set as well so as to
describe the energy spectrum of flux neutrinos over that range (see below).

• -f Specifies the neutrino flux spectrum.

This generic event generation driver allows to specify the flux in any one of three simple ways:

– As a ‘function’.
For example, in order to specify a flux that has the x2 + 4e−x functional form, type:
‘-f ‘x*x+4*exp(-x)”

– As a ‘vector file’.
The file should contain 2 columns corresponding to energy (in GeV), flux (in arbitrary units).
For example, in order to specify that the flux is described by the vector file ‘/data/fluxvec.data’,
type:
‘-f /data/fluxvec.data’

– As a ‘1-D histogram (TH1D) in a ROOT file’.
The general syntax is: ‘-f /full/path/file.root,object_name’.
For example, in order to specify that the flux is described by the ‘nue’ TH1D object in
‘/data/flux.root ’, type:
‘-f /data/flux.root,nue’

• -w Forces generation of weighted events.

This option is relevant only if a neutrino flux is specified via the ‘-f’ option. In this context
‘weighted’ refers to an event generation biasing in selecting an initial state (a flux neutrino and
target pair at a given neutrino energy). Internal weighting schemes for generating event kinematics
can still be enabled independently even if ‘-w’ is not set. Don’t use this option unless you under-
stand what the internal biasing does and how to analyze the generated sample. The default option
is to generated unweighted events.

• –seed Specifies the random number seed for the current job.

• –cross-sections Specifies the name (incl. full path) of an input XML file with pre-computed
neutrino cross-sections

5.3. SIMPLE EVENT GENERATION CASES 71

• –event-generator-list Specifies the list of event generators to use in the MC job.

By default, GENIE is loading a list of of tuned and fully-validated generators which allow compre-
hensive neutrino interaction modelling the medium-energy range. Valid settings are the XML block
names appearing in $GENIE/config/EventGeneratorListAssembler.xml ’. Please, make sure you read
Sec. 5.4 explaining why, almost invariantly, for physics studies you should be using a comprehensive
collection of event generators.

• –message-thresholds Specifies the GENIE verbosity level.

The verbosity level is controlled with an XML file allowing users to customize the threshold of
each message stream. See ‘$GENIE/config/Messenger.xml ’ for the XML schema. The ‘Messen-
ger.xml’ file contains the default thresholds used by GENIE. The ‘Messenger_laconic.xml’ and
‘Messenger_rambling.xml’ files define, correspondingly, less and more verbose configurations.

• --unphysical-event-mask Specify a 16-bit mask to allow certain types of unphysical events to be
written in the output event file.

By default, all unphysical events are rejected.

• --event-record-print-level Allows users to set the level of information shown when the event
94 record is printed in the screen.

See GHepRecord::Print() for allowed settings.

• --mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

• --cache-file Allows users to specify a ROOT file so that results of calculation cached throughout
a MC job can be re-used in subsequent MC jobs.

Examples

1. To generate 20,000 νµ (PDG code: 14) scattered off Fe56 (PDG code: 1000260560) at an energy of
6.5 GeV, reading pre-computed cross-sections from ‘/data/gxsec.xml ’, and using a random number
seed of 171872, type:

$ gevgen -n 20000 -e 6.5 -p 14 -t 1000260560 -cross-sections /data/gxsec.xml --seed 171872

2. To generate a similar sample as above, but with the νµ energies, between 1 and 4 GeV, selected

from a spectrum that has the x2e(−x2+3)/4 functional form, type:

$ gevgen -n 20000 -e 1,4 -p 14 -t 1000260560 -cross-sections /data/gxsec.xml --seed 171872

-f ‘x*x*exp((-x*x+3)/4)’

3. To generate a similar sample as above, but with the neutrino flux described via the ‘/path/flux.data’
input vector file, type:

$ gevgen -n 20000 -e 1,4 -p 14 -t 1000260560 -cross-sections /data/gxsec.xml --seed 171872

-f /path/flux.data

72 CHAPTER 5. GENERATING NEUTRINO EVENT SAMPLES

4. To generate a similar sample as above, but with the neutrino flux described a ROOT TH1D his-
togram called ‘nu_flux’ stored in ‘/path/file.root ’, type:

$ gevgen -n 20000 -e 1,4 -p 14 -t 1000260560 -cross-sections /data/gxsec.xml --seed 171872

-f /path/file.root,nu_flux

Note that the event generation driver will use only the input histogram bins that fall within the
specified (via the ‘-e’ option) energy range. In the example shown above, all the neutrino flux bins
that do not fall in the 1 to 4 GeV energy range will be neglected. The bins including 1 GeV and 4
GeV will be taken into account. So the actual energy range used is: from the lower edge of the bin
containing 1 GeV to the upper edge of the bin containing 4 GeV.

5. To generate a similar sample as above, but, this time, on a target mix that is made of 95% O16
(PDG code: 1000080160) and 5% H (1000010010), type:

$ gevgen -n 30000 -e 1,4 -p 14 -cross-sections /data/gxsec.xml --seed 171872

-t 1000080160[0.95],1000010010[0.05] -f /path/file.root,nu_flux

Output files Typically, event generation jobs produce two files:

• During job an ascii status file which contains MC job statistics and the most recent event dump
is being updated periodically. The status file is typically named ‘genie-mcjob-<run_number> .status ’
and is located in the current directory. Use –mc-job-status-refresh-rate to adjust the refteshrate of
this file.

• The generated events are stored in an output ROOT file, in GENIE’s native GHEP format. The
event file is typically named ‘<prefix> .<run_number> .ghep.root ’ and is located in the current direc-
tory. In addition to the generated event tree, the output file contains a couple of ROOT folders,
‘gconfig’ and ‘genv’, containing, respectivelly, snapshots of your GENIE configuration and running
environment. Chapter 7 describes how to set-up an ‘event loop’ and analyze the generated event
sample.

5.4 Obtaining special samples

5.4.1 Switching reaction modes on/off

The default behaviour of GENIE is to generate ‘comprehensive unweighted’ event samples. All modelled
processes are included and the frequency of process P as well as the occupancy of different parts of the
kinematical phase space {Kn}4 reflects the value of the differetial cross section dnσP /d{K

n}).
An easy way to obtain special samples is by setting the –event-generator-list option available in

most GENIE applications. The option controls the list of event generators loaded into a particular GENIE
MC job. Valid settings for this option can be found in ‘$GENIE/config/EventGeneratorListAssembler.xml ’
(the name of each <param_set> ... </param_set> XML block). New parameter sets can be trivially
added by the user.

Please note that this is primarily a GENIE developer option which users should handle with care. In
the overwhelming majority of cases, it is only poor understanding of neutrino interaction physics that may
lead one thinking that a particular setting is appropriate for generating the special sample one requires.

4Such as, for example, {W , Q2} or {x, y}

5.4. OBTAINING SPECIAL SAMPLES 73

In general, we do not recommend switching-off generator-level reaction modes. These modes should be
treated by the user as internal, generator-specific “labels”. No detector measures generator-level reaction
modes like CCQE or NC resonance production. Detectors measure final states / topologies like, for
example, {1µ−, 0π}, {1µ−, 1π+}, {0µ−, 1π0}, {1 track, 1 shower}, {1 µ-like ring} etc depending on
granularity, thresholds and PID capabilities. No final state / topology is a proxy for any particular
reaction mode (and vice versa). Intranuclear re-scattering in particular causes significant migration
between states (see Table 9.4).
Examples:

1. {1µ−, 0π} is mostly νµ CCQE but this particular final state can also come about, for example, by
νµ resonance production followed by intranuclear pion absorption.

2. νµ CCQE yields mostly {1µ−, 0π} final states but, occasionaly, can yield {1µ−, 1π} if the recoil
nucleon re-interacts.

3. NC1π0 final states can be caused by all

(a) NC elastic followed by nucleon rescattering,

(b) NC resonance neutrino-production,

(c) NC non-resonance background,

(d) low-W NC DIS,

(e) NC coherent scattering.

Each such NC1π0 source contributes differently to the observed pion momentum distribution.

5.4.2 Event cherry-picking

The gevpick cherry-picking utility

Name

gevpick - Reads a list of GENIE event files (GHEP format), ‘cherry-picks’ events with a given topology
and writes them out in a separate file. The output tree contains two additional branches to aid book-
keeping by maintaining a ‘link’ to the source location of each cherry-picked event. For each such event
we store a) the name of the original file and b) its original event number.

Source

The source code for this application is in ‘$GENIE/src/stapp/gEvPick.cxx ’

Synopsis

gevpick

-i input_file_list

-t cherry_picked_topology

[-o output_file_name]

where [] denotes an optional argument.

74 CHAPTER 5. GENERATING NEUTRINO EVENT SAMPLES

Description

The following options are available:

-i Specifies the input file(s).

Wildcards accepted, eg ‘-i “/data/genie/pro/gntp.*.ghep.root”’.

-t Specifies the event topology to cherry-pick. The event topology to cherry-pick can be any of
the following strings:

• ‘all’: Selet all events (basically merges all files into one)

• ‘numu_cc_1pip’: Selects νµ CC events with 1 π+ (and no other pion) in final state.

• ‘numu_cc_1pi0’: Selects νµ CC events with 1 π0 (and no other pion) in final state.

• ‘numu_cc_1pim’: Selects νµ CC events with 1 π− (and no other pion) in final state.

• ‘numu_nc_1pip’: Selects νµ NC events with 1 π+ (and no other pion) in final state.

• ‘numu_nc_1pi0’: Selects νµ NC events with 1 π0 (and no other pion) in final state.

• ‘numu_nc_1pim’: Selects νµ NC events with 1 π− (and no other pion) in final state.

• ‘numu_cc_hyperon’: Selects νµ CC events with at least 1 hyperon (Σ+, Σ0, Σ−, Λ0, Ξ0, Ξ−, Ω−)
in the final state.

• ‘numubar_cc_hyperon’: Selects ν̄µ CC events with at least 1 hyperon in the final state.

• ‘cc_hyperon’: Selects CC events with at least 1 hyperon in the final state.

-o Specifies the output file name. This in an optional argument. If unset, the output file name will be
constructed as: ‘gntp.<topology>.ghep.root’ .

Examples

1. Read all events in all ‘/data/pro2010a/*.ghep.root’ files and cherry-pick νµ NC1π0 events:

$ gevpick -i “/data/pro2010a/*ghep.root” -t numu_nc_1pi0

The cherry-picked event sample gets saved in the ‘gntp.numu_nc_1pi0.ghep.root ’ file output (de-
fault name)

Cherry-picking a new topology

More topologies can be trivially added. Please send your request to the GENIE authors.

Chapter 6

Using a Realistic Flux and Detector

Geometry

6.1 Introduction

The main task of GENIE is to simulate the complex physics processes taking place when a neutrino is
scattered off a nuclear target. The generator employs advanced, heavily validated models to describe the
primary scattering process, the neutrino-induced hadronic multiparticle production and the intra-nuclear
hadron transport and re-scattering.

Event generation for realistic experimental setups presents neutrino generators with additional com-
putational challenges. The physics generator is required to handle a large number of nuclear targets
(ranging from as light as H1 to as heavy as Pb208). Moreover, when simulating neutrino interactions
in detectors (such as the JPARC and NuMI near detectors) exposed to a non-uniform neutrino flux
changing rapidly across the detector volume, it is particularly important to take into account both the
detailed detector geometry and the spatial dependencies of the flux. This ensures the proper simulation
of backgrounds and avoids introducing highly non-trivial MC artifacts.

The GENIE framework provides many off-the-shelf components for simulating neutrino interactions in
realistic experimental setups. New components, encapsulating new neutrino fluxes or detector geometry
descriptions, can be trivially added and seamlessly integrated with the GENIE neutrino interaction
physics descriptions.

6.2 Components for building customized event generation appli-
cations

GENIE provides off-the-shelf components for generating neutrino interactions under the most realistic
assumptions integrating the state-of-the-art GENIE neutrino interaction modeling with detailed flux and
detector geometry descriptions. GENIE provides an event generation driver class, GMCJDriver, that can
be used to setup complicated Monte Carlo jobs involving arbitrarily complex, realistic beam flux simula-
tions and detector geometry descriptions. These flux descriptions are typically derived from experiment-
specific beam-line simulations while the detector geometry descriptions are typically derived from CAD
engineering drawings mapped into the Geant4, ROOT or GDML geometry description languages. Obvi-
ously, flux and detector geometry descriptions can take many forms, driven by experiment-specific choices.
GENIE standardizes the geometry navigation and flux driver interfaces. These interfaces define a) the

75

76 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

operations that GENIE needs to perform on the geometry and flux descriptions and b) the information
GENIE needs to extract from these in order to generate events.

Concrete implementations of these interfaces are loaded into the GENIE event generation drivers,
extending GENIE event generation capabilities and allow it to seamlessly integrate new geometry de-
scriptions and beam fluxes.

6.2.1 The flux driver interface

In GENIE every concrete flux driver implements the GFluxI interface. The interface defines what neutrino
flux information is needed by the event generation drivers and how that information is to be obtained.
Each concrete flux driver implements the following methods.

• const PDGCodeList & GFluxI::FluxParticles (void)
Declare the list of flux neutrinos that can be generated. This information is used for initialization
purposes, in order to construct a list of all possible initial states in a given event generation run.

• double GFluxI::MaxEnergy (void)
Declare the maximum energy. Again this information is used for initialization purposes, in order
to calculate the maximum possible interaction probability in a given event generation run. Since
neutrino interaction probabilities are tiny and in order to boost the MC performance, GENIE scales
all interaction probabilities in a particular event generation run so that the maximum possible inter-
action probability is 1. That maximum interaction probability corresponds to the total interaction
probability (summed over nuclear targets and process types) for a maximum energy neutrino fol-
lowing a trajectory that maximizes the density-weighted path-lengths for each nuclear target in
the geometry. GENIE adjusts the MC run normalization accordingly to account for that internal
weighting.

• bool GFluxI::GenerateNext (void)
Generate a flux neutrino and specify its pdg code, its weight (if any), its 4-momentum and 4-
position. The 4-position is given in the detector coordinate system (as specified by the input
geometry). Each such flux neutrino is propagated towards the detector geometry but is not required
to cross any detector volume. GENIE will take that neutrino through the geometry, calculate
density-weighted path-lengths for all nuclear targets in the geometry, calculate the corresponding
interactions probability off each nuclear target and decide whether that flux neutrino should interact.
If it interacts, an appropriate GEVGDriver will be invoked to generate the event kinematics.

• int GFluxI::PdgCode (void)
Returns the PDG code of the flux neutrino generated by the most recent GFluxI::GenerateNext
(void) call.

• double GFluxI::Weight (void)
Returns the weight of the flux neutrino generated by the most recent GFluxI::GenerateNext (void)
call.

• const TLorentzVector & GFluxI::Momentum (void)
Returns the 4-momentum of the flux neutrino generated by the most recent GFluxI::GenerateNext
(void) call.

• const TLorentzVector & GFluxI::Position (void)
Returns the position 4-vector of the flux neutrino generated by the most recent GFluxI::GenerateNext
(void) call.

6.2. COMPONENTS FOR BUILDING CUSTOMIZED EVENT GENERATION APPLICATIONS 77

• bool GFluxI::End(void)
Notify that no more flux neutrinos can be thrown. This flag is typically raised by flux drivers that
simply read-in beam-line simulation outputs (as opposed to run the beam simulation code on the
fly) so as to notify GENIE that the end of the neutrino flux file has been reached (after, probably,
having been recycled N times). The flag allows GENIE to properly terminate the event generation
run at the end-of-flux-file irrespective of the accumulated number of events, protons on target, or
other metric of exposure.

The above correspond the the common set of operations /information that GENIE expects to be able to
perform / extract from all concrete flux drivers. Specialized drivers may define additional information
that can be utilized in the experiment-specific event generation drivers. One typical example of this is
the flux-specific pass-through information, that is information about the flux neutrino parents such as the
parent meson PDG code, its 4-momentum its 4-position at the production and decay points that GENIE
simply attaches to each generated event and passes-through so as to be used in later analysis stages.

6.2.2 The geometry navigation driver interface

In GENIE every concrete geometry driver implements the GeomAnalyzerI interface. The interface spec-
ifies what information about the input geometry is relevant to the event generation and how that infor-
mation is to be obtained. Each concrete geometry driver implements methods to

• const PDGCodeList & GeomAnalyzerI::ListOfTargetNuclei (void)
Declare the list of target nuclei that can be found in the geometry. This information is used for
initialization purposes, in order to construct a list of all possible initial states in a given event
generation run.

• const PathLengthList & GeomAnalyzerI::ComputeMaxPathLengths (void)
Compute the maximum density-weighted path-lengths for each nuclear target in the geometry.
Again, this is information used for initialization purposes. The computed ‘worst-case’ trajectory is
used to calculate the maximum possible interaction probability in a particular event generation run
which is being used internally to normalize all computed interaction probabilities.

• const PathLengthList & GeomAnalyzerI::ComputePathLengths (const TLorentzVector & x, const
TLorentzVector & p)
Compute density-weighted path-lengths for all nuclear targets, for a ‘ray’ of a given 4-momentum
and starting 4-position. This allows GENIE to calculate probabilities for each flux neutrino to be
scattered off every nuclear target along its path through the detector geometry.

• const TVector3 & GeomAnalyzerI::GenerateVertex (const TLorentzVector & x, const TLorentzVec-
tor & p, int tgtpdg)
Generate a vertex along a ‘ray’ of a given 4-momentum and starting 4-position on a volume con-
taining a given nuclear target. This allows GENIE to place a neutrino interaction vertex within
the detector geometry once an interaction of a flux neutrino off a selected nuclear target has been
generated.

6.2.3 Setting-up GENIE MC jobs using fluxes and geometries

{

...

// get flux driver

78 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

GFluxI * flux_driver = new ... ;

// get geometry driver

GeomAnalyzerI * geom_driver = new ... ;

// create the GENIE monte carlo job driver

GMCJDriver* mcjob_driver = new GMCJDriver;

mcjob_driver->UseFluxDriver(flux_driver);

mcjob_driver->UseGeomAnalyzer(geom_driver);

mcjob_driver->Configure();

...

}

6.3 Built-in flux drivers

GENIE currently contains a host of concrete flux drivers that allow GENIE to be used in many realistic,
experiment-specific situations:

• GJPARCNuFlux : An interface to the JPARC neutrino beam simulation [125] used at SK, nd280,
and INGRID.

• GNuMIFlux : An interface to the NuMI beam simulations [126] used at MINOS, NOvA, MINERvA
and ArgoNEUT.

• GBartolAtmoFlux : A driver for the BGLRS atmospheric flux by G. Barr, T.K. Gaisser, P. Lipari,
S. Robbins and T. Stanev [127].

• GFlukaAtmo3DFlux : A driver for the FLUKA 3-D atmospheric neutrino flux by A. Ferrari, P. Sala,
G. Battistoni and T. Montaruli [128].

• GAstroFlux : A driver for astrophysical neutrino fluxes. Handles both diffuse fluxes and point
sources. (Under development.)

• GCylindTH1Flux : A generic flux driver, describing a cylindrical neutrino flux of arbitrary 3-D
direction and radius. The radial dependence of the neutrino flux is configurable (default: uniform
per unit area). The flux driver may be used for describing a number of different neutrino species
whose (relatively normalised) energy spectra are specified as ROOT 1-D histograms. This driver is
being used whenever an energy spectrum is an adequate description of the neutrino flux.

• GSimpleNtpFlux : An interface for a simple ntuple-based flux that can preserve energy-position
correlations without the format being tied to any particular experimental setup (though individual
files are very much so).

• GMonoEnergeticFlux : A trivial flux driver throwing mono-energetic flux neutrinos along the +z
direction. More that one neutrino species can be included, each with its own weight. The driver is
being used in simulating a single initial state at a fixed energy mainly for probing, comparing and
validating neutrino interaction models.

New concrete flux drivers (describing the neutrino flux from other beam-lines) can be easily developed
and they can be effortlessly and seamlessly integrated with the GENIE event generation framework.

6.3. BUILT-IN FLUX DRIVERS 79

6.3.1 JPARC neutrino flux driver specifics

GJPARCNuFlux provides an interface to the JPARC neutrino beam simulations (JNUBEAM [125]) used
at SK, nd280, and INGRID.

[expand]

6.3.2 NuMI neutrino flux driver specific

GNuMIFlux provides an interface to the NuMI beam simulations used at MINOS, NOvA, MINERvA
and ArgoNeut. This interface can handle all three of the formats used so far in simulating the NuMI
beamline: Geant3-based gnumi, g4numi and flugg. It can also handle the FNAL booster flux when that
is formatted into one of the standard ntuple layouts. These beam simulation files record hadron decays
and sufficient information to calculate new weights and energies for different positions relative to the
beam orgin.

The driver generates a flux to cover a user specified detector "window" after undergoing a coordinate
transformation from the beam system to that of a particular detector. The detector specific windows
and transformations are encapsulated in the ‘$GENIE/src/FluxDriver/GNuMINtuple/GNuMIFlux.xml ’
file. Users can extend what is available by modifying this file and putting a copy in a location spec-
ified by GXMLPATH="/path/to/location". Additional "param_set" sections allow new configurations and
these can be based on modifications of select parameters of an existing "param_set" entry. Extensive
documentation of the setable parameters can be found in the XML file itself.

When the GNuMIFlux is invoked it must be configured by passing the method GNuMIFlux::LoadBeamSimData()
an input filename string and a config name. The input file name may include wildcards on the file name
but not the directory path. The config name selects a "param_set" from the XML file. The GNuMIFlux
object will by default declare the list of flux neutrinos that it finds in the input files; this can be overridden
to have it ignore entries for flavors the user is not interested in.

6.3.3 FLUKA and BGLRS atmospheric flux driver specifics

GFlukaAtmo3DFlux and GBartolAtmoFlux provide, respectivelly, an interface to the FLUKA-3D (A.
Ferrari, P. Sala, G. Battistoni and T. Montaruli [128]) and BGLRS (G. Barr, T.K. Gaisser, P. Lipari, S.
Robbins and T. Stanev [127]) atmospheric neutrino flux simulations.

Both classes inherit all their functionallity from the GAtmoFlux base class from which they derive.
GFlukaAtmo3DFlux and GBartolAtmoFlux merely define the appropriate binning for each flux simula-
tion: The FLUKA flux is given in 40 bins of cosθ, where θ is the zenith angle, from -1 to 1 (bin width
= 0.05) and 61 equally log-spaced energy bins (20 bins per decade) with a minimum energy of 100 MeV.
The BGLRS flux is given in 20 bins of cosθ from -1 to 1 (bin width = 0.1) and and 30 equally log-spaced
energy bins (10 bins per decade) with a minimum energy of 10 GeV. For more details please visit the
FLUKA1 and BGLRS2 flux web sites.

Both the FLUKA and BGLRS flux simulations are distributed as ascii data files for various locations
and solar activity levels. There is one data file per atmospheric neutrino flavor. You can specify the input
files for each neutrino flavor using the ‘void GAtmoFlux::SetFluxFile(int neutrino_code, string filename)’
method. The expected input code is the PDG one and the input filename should include the full path
to the file. You can specify flux files for an arbitrary set of flux neutrino flavors. Neutrino flavors for
which you have not specified a flux file will be omitted from the atmospheric neutrino event generation
job. Once you have specified flux files for all neutrino flavors you wish to include you need to call the
‘void GAtmoFlux::LoadFluxData()’ method.

1http://pcbat1.mi.infn.it/~battist/neutrino.html
2http://www-pnp.physics.ox.ac.uk/~barr/fluxfiles/

80 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

By default, the flux neutrino position and momentum 4-vectors are generated in the Topocentric
Horizontal Coordinate System (+z: Points towards the local zenith / +x: On same plane as local
meridian, pointing south . +y: As needed to make a right-handed coordinate system / Origin: Input
geometry centre). A rotation to a user-defined topocentric coordinate system can be enabled by invoking
the ‘void GAtmoFlux::SetUserCoordSystem (TRotation &)’ method. For a given direction, determined
by the zenith angle θ and azimuth angle φ, the flux generation surface is a circular area, with radius RT ,
which is tangent to a sphere of radius RL centered at the coordinate system origin. These two radii can
be set using the ‘void GAtmoFlux::SetRadii (double RL, double RT)’ method. Obviously, RT and RL

must be appropriately chosen so that the flux generation surface is always outside the input geometry
volume and so that, for every given direction, the ‘shadow’ of the generation surface covers the entire
geometry (see Fig. 6.1).

Energy cuts can be specified using the ‘void GAtmoFlux::ForceMinEnergy(double Emin)’ and ‘void
GAtmoFlux::ForceMaxEnergy(double Emax)’ methods. Finally, the atmospheric neutrino flux drivers can
generate both weighted and unweighted flux neutrinos (with the unweighted-mode used as default). In the
weighted-mode the energy is generated logarithmically and the zenith angle cosine is generated uniformly
and, after a neutrino species has been selected, the event weight is set to be the flux histogram bin content
for the given neutrino species and for the given energy and zenith angle cosine. Using a weighted-mode
may be . The user choice can be registered using the ‘void GAtmoFlux::GenerateWeighted(bool option)’
method.

6.3.4 Generic histogram-based flux specifics

The GCylindTH1Flux is generic flux driver, describing a cylindrical neutrino flux of arbitrary 3-D direc-
tion and radius. The direction of the flux rays (in 3-D) can be specified using the ‘void GCylindTH1Flux::SetNuDirection(const
TVector3 &)’ method while the radius of the cylinder is specified using ‘void GCylindTH1Flux::SetTransverseRadius(double)
The flux generation surface is a circular area defined by the intersection of the flux cylinder with a plane
which is perpendicular to the flux ray direction. To fully specify the flux neutrino generation surface
the user needs to specify the centre of that circular area (see ‘beam spot’ in Fig. 6.2) using the ‘void
GCylindTH1Flux::SetBeamSpot(const TVector3 & spot)’ method. Obviously the ‘beam spot’ should be
placed upstream of the detector volume.

The radial dependence of the neutrino flux can be configured using the ‘void GCylindTH1Flux::SetRadialDependence(string
rdep)’ method. The expected input is the functional form of the RT -dependence (with RT denoted as
x). By default, the driver is initialized with SetRadialDependence(“x”), so flux neutrinos are generated
uniformly per unit area.

The flux driver may be used for describing a number of different neutrino species whose (relatively nor-
malised) energy spectra are specified as ROOT 1-D histograms (TH1D). To input the energy distribution
of each neutrino species use GCylindTH1Flux::AddEnergySpectrum (int nu_pdgc, TH1D * spectrum)’.

Obviously, when using GCylindTH1Flux, no energy-position correlation is present. This may or
may-not be a good approximation depending on the specifics of your experimental setup and analysis.
If energy-position correlation is important (and known) then consider using the GSimpleNtpFlux flux
driver. This correlation is also built-in in the specialized JPARC, NuMI and atmospheric flux drivers,
described in this chapter, which you should be utilizing if relevant to your application.

6.3.5 Generic ntuple-based flux specifics

The GSimpleNtpFlux flux driver provides an interface for a simple ntuple-based flux that can preserve
energy-position correlations without the format being tied to any particular experimental setup (though
individual files are very much so). The basic entry consists a TTree branch with the elements:

• px, py, pz, E: 4-momentum components.

6.3. BUILT-IN FLUX DRIVERS 81

x

y

z

TR

φ

θ

detector

flux generation
surface

LR

flux neutrinos

Figure 6.1: Construction of flux generation surface for the atmospheric neutrino flux drivers. For a given
direction, determined by the zenith angle θ and azimuth angle φ, the flux generation surface is a circular
area, with radius RT , which is tangent to a sphere of radius RL centered at the coordinate system origin.
RT and RL must be appropriately chosen so that the flux generation surface is always outside the input
geometry volumes and so that, for every given direction, the ‘shadow’ of the generation surface covers
the entire geometry. See text for more details.

82 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

flux neutrinos

flux generation
surface

x

y

z

detector
TR

beam direction

"beam spot"

Figure 6.2: Geometrical setup for the GCylindTH1Flux flux drivers. The diriver allows you to set the
beam direction (in 3-D), and the radius RT of the flux generation surface. To fully specify the position
of the flux generation surface in 3-D the driver allows you to set the ‘beam spot’ 3-vector. Additionally
the RT -dependence can be configured. Multiple neutrino species can be generated in the flux surface,
each one with its own energy distribution and relative normalization. See text for more details.

6.4. BUILT-IN GEOMETRY NAVIGATION DRIVERS 83

• vtxx, vtxy, vtxz: Neutrino ray origin info (detector coordinates).

• dist: Distance from hadron decay to ray origin.

• wgt: Neutrino weight (generally 1.0).

• metakey: Reference back to meta-data. The "metadata" branch has an entry per file recording
general info such as the list of neutrino flavors found in the entries, the number of protons-on-target
represented by the file (in the case of accelerator based fluxes), the maximum energy, the minimum
and maximum weights, the flux window and a vector of strings for a record of the list of files used
to generate the GSimpleNtp file.

Additional information can be stored in conjunction with the individual entries either by supplemental
classes for branches (ala the optional "numi" branch), or via the flexible "aux" branch which allows
arbitrary vectors of integers and doubles (name info in the metadata allows for keeping track of what
elements represent under the assumption that all entries have identical additions).

When the GSimpleNtpFlux is invoked it needs to be configured by passing the method GSim-
pleNtpFlux::LoadBeamSimData() an input filename string (and a config name that is ignored). The
input file name may include wildcards on the file name but not the directory path. Multiple gsimple flux
files can also be combined into a larger file with the use of the ROOT hadd utility.

The GSimpleNtpFlux is in use by some NuMI experiments as a means of factorizing the computation
necessary for the evaluation of the GNuMIFlux from the actual event generation. Unlike the GNuMIFlux
files, entries can not be positioned for new locations (which would change the entry’s weight and energy)
but they also don’t require the computational burden of doing so. They are meant to be simple and fast.

6.4 Built-in geometry navigation drivers

GENIE currently contains two concrete geometry drivers which are sufficient for all event generation
cases encountered so far:

• ROOTGeomAnalyzer : A geometry driver handling detector geometries specified using ROOT. As
detector geometries specified using Geant4 or GDML can be converted into ROOT geometries, this
driver is being used in all cases where a detailed detector geometry is being passed on to GENIE.

• PointGeomAnalyzer : A trivial geometry corresponding to a single nuclear target or a target mix (a
set of nuclear targets each with its corresponding weight fraction) at a fixed position. This driver
is being used to simulate only given initial states as a means for probing the neutrino interaction
physics modeling or in experimental situations where the detector is being illuminated by a spa-
tially uniform neutrino beam and where the generated interaction vertices do not have any spatial
dependence and can be generated uniformly within volumes of given nuclear targets.

6.4.1 ROOT geometry navigation driver specifics

The ROOTGeomAnalyzer works based on a probing a detailed ROOT geometry to evaluate the mass
distribution seen along individual neutrino ‘rays’ (a starting position in space relative to the detector
geometry and a direction). Each ray is stepped through the geometry from one volume boundary to
the next; each transition to a new volume instantiates a new PathSegment, which are collected into a
PathSegmentList for the ray and which also includes information about the ray itself.

A PathSegment object records the information about the distance from the ray origin to the entrance
of the volume, the step length in the volume, information about the volume (e.g. medium, material),
positions at the boundaries, and (optionally) the ROOT volume path string (the volume hierarchy in the

84 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

geometry). A neutrino ray from the flux is passed through the geometry only once. From the information
recorded in the PathSegmentList the GMCJDriver can be given the density-weighted path-lengths for
all the nuclear targets. If the GMCJDriver decides that an interaction occurred this PathSegmentList is
then used to properly select a vertex position based on the chosen nuclear target.

Defining units

The ROOTGeomAnalyzer can be configured to account for differences in length and density units between
the GENIE defaults and what is assumed in the ROOT geometry.

Defining a fiducial volume

For ROOT geometries that include representations of material that isn’t of interest, such as the rock
surrounding a cavern hall, the ROOTGeomAnalyzer::SetTopVolName() method allows one to consider
only the material within that volume. In more sophisticated circumstances there might not be a volume
in the ROOT geometry representing the region in which one wants to restrict vertices. More refined
limits can be placed by configuring the ROOTGeomAnalyzer with a concrete implementation of the
GeomVolSelectorI interface.

A concrete implementation of the GeomVolSelectorI interface must provide a method for "trimming"
individual PathSegment items based on information in the segment. Trimming futher restricts the region
of the step within the volume; ranges delineate sub-steps and by this means segments within a volume can
be reduced, split or eliminated. The implementation must also provide methods that gets called at the
start of PathSegmentList trimming and upon completion (these can be dummies). If the implementation
needs to know the ROOT geometry volume path hierarchy then it must signal that.

Two useful examples of GeomVolSelectorI are provided: GeomVolSelectorBasic and GeomVolSelec-
torFiducial. The basic class is configurable to select or reject whole segments based on the volume name,
medium, material and (optionally) volume path string. The fiducial class builds on that base and add
the potential for defining a elementary shape (sphere, cylinder, box, convex polyhedron) in space that is
used to trim segments. This shape does not have to correspond to anything represented in the ROOT
geometry. The cut can be to require considering only material within the shape or only that outside of
the shape.

6.5 Built-in specialized event generation applications

This section discusses specialized GENIE-based event generation applications included in GENIE distri-
butions. These applications integrate the GENIE event generation modules with very specific neutrino
flux and detector geometry descriptions.

• gevgen_t2k : A GENIE-based event generation application for T2K. It integrates GENIE with the
JPARC neutrino beam-line simulation (JNUBEAM) and the geometry descriptions of nd280, 2km,
INGRID and Super-K detectors. (See subsection 6.5.1.)

• gevgen_fnal : A GENIE-based event generation application for the Fermilab experiments (including
DUNE, and the experiments in the NuMI and Booster beam-lines). It integrates GENIE with
the Fermilab neutrino beam-line simulations and the geometry descriptions of MINOS, NOvA,
MINERvA, SBND, MicroBooNE, DUNE and other detectors. (See subsection 6.5.2.)

• gevgen_atmo: A GENIE-based atmospherc neutrino event generation application. It integrates the
GENIE with any of the FLUKA 3-D [128] or BGLRS [127] atmospheric neutrino flux simulations.
Events can be generated for either a simple target mix or a detailed ROOT-based detector geometry
(See subsection 6.5.3.)

6.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 85

Although the above applications have common options, each of the following subsections is entirely self-
contained. Please go directly to the subsection describing the application you are interested at.

6.5.1 Event generation application for the T2K experiment

Name

gevgen_t2k – A GENIE-based event generation application for T2K. It integrates GENIE with the
JPARC neutrino beam-line simulation (JNUBEAM) and the detector geometry descriptions of nd280,
2km, INGRID and Super-K.

Source and build options

The source code for this application is in ‘$GENIE/src/support/t2k/EvGen/gT2KEvGen.cxx ’.
To enable it add ‘--enable-t2k’ during the GENIE build configuration step.

Synopsis

$ gevgen_t2k

-f flux [-p POT_normalization_of_flux_file] [-R]

-g geometry [-t geometry_top_volume_name]

[-m max_path_lengths_xml_file]

[-P] [pre_gen_flux_prob_name]

[-S] [output_pre_gen_flux_prob_name]

[-L geometry_length_units] [-D geometry_density_units]

<-n num_of_events, -c num_of_flux_ntuple_cycles, -e, -E exposure_in_POTs>

[-o output_event_file_prefix] [-r run#]

[-seed random_number_seed] [--cross-section xml_file] [--event-generator-list list_name]

[--message-thresholds xml_file] [--unphysical-event-mask mask] [--event-record-print-level level]

[--mc-job-status-refresh-rate rate] [--cache-file root_file]

[-h]

where [] denotes an optional argument and <> denotes a group of arguments out of which only one
can be set.

Description

The following options are available:

-f Specifies the input neutrino flux. This option can be used to specify any of:

• A JNUBEAM beam simulation output file and the detector location. The general sytax is:
‘-f /path/flux_file.root,detector_loc(,neutrino_list)’

For more information on the flux ntuples see the JNUBEAM documentation. The ntuple has to
be in ROOT format and can be generated from the distributed HBOOK ntuples using ROOT’s
h2root utility. The detector location can be any of ‘sk’ or the near detector positions ‘nd1’,...,‘nd6’
simulated by JNUBEAM. The optional neutrino_list is a comma separated list neutrino PDG
codes. It specifies which neutrino flux species to to considered in the event generation job. If no
such neutrino list is specified then, by default, GENIE will consider all neutrino species in the input
flux ntuple. When a JNUBEAM ntuple is used for describing the neutrino flux, GENIE is able to

86 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

calculate the POT exposure for the generated event sample and any one of the exposure setting
methods (‘-e’, ‘-E’, ‘-c’, ‘-n’, see below) can be used.

All JNUBEAM information on the flux neutrino parent (parent PDG code, parent 4-position and
4-momentum at the production and decay points etc) is stored in a ‘flux’ branch of the output
event tree and is associated with the corresponding generated neutrino event.

Example 1:
To use the Super-K JNUBEAM flux ntuple from the ‘/t2k/flux/jnubeam001.root ’ file, type:
‘-f /t2k/flux/jnubeam001.root,sk’

Example 2:
To use the 2km flux ntuple [near detector position ‘nd1’ in the jnubeam flux simulation] from the
‘/t2k/flux/jnubeam001.root ’ file, type:
‘-f /t2k/flux/jnubeam001.root,nd1’

Example 3:
To use the nd280 flux ntuple [near detector position ‘nd5’ in the jnubeam flux simulation] from the
‘/t2k/flux/jnubeam001.root ’ file, type:
‘-f /t2k/flux/jnubeam001.root,nd5’

Example 4:
To the same as above but using only the νe and ν̄e flux ntuple entries, type:
‘-f /t2k/flux/jnubeam001.root,nd5,12,-12’

• A set of flux histograms stored in a ROOT file. The general syntax is:
‘-f /path/file.root,neutrino_code[histo],...’

where neutrino_code is a standard neutrino PDG code3 and histo is the corresponding ROOT his-
togram name.

Multiple flux histograms can be specified for different flux neutrino species (see the example given
below). The relative flux normalization for all neutrino species should be represented correctly
at the input histogram normalization. The absolute flux normalization is not relevant: Unlike
when using JNUBEAM ntuples to describe the flux, no POT calculations are performed when plain
histogram-based flux descriptions are employed. One can only control the MC run exposure via the
number of generated events (‘-n’, see below). In this case the POT normalization of the generated
sample is calculated externally.

Since there is no directional information in histogram-based descriptions of the flux, the generated
neutrino vertex is always set to (0,0,0,0). Then it is the detector MC responsibility to rotate the
interaction vectors and plant the vertex 4 Obviously no flux pass-through branch is written out in
the neutrino event tree since no such information is associated with flux neutrinos selected from
plain histograms.

Example:
To use the histogram ‘h1’ (representing the νµ flux) and the histogram ‘h2’ (representing the νe

3 νe: 12, νµ: 14, ντ : 16, ν̄e: -12, ν̄µ: -14 and ν̄τ : -16
4 This option is used only for the Super-K simulation where vertices are distributed uniformly in volume by the detector

MC (SKDETSIM). For event generation at the more complex near detectors a JNUBEAM ntuple-based flux description
should be used so as the interaction vertex is properly planted within the input geometry by GENIE.

6.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 87

flux) from the ‘/data/flux.root’ file, type:
‘-f /data/flux.root,14[h1],12[h2]’

-p Specifies to POT normalization of the input flux file. This is an optional argument. By
default, it is set to the standard JNUBEAM flux ntuple normalization of 1E+21 POT/detector (for the
near detectors) or 1E+21 POT/cm2 (for the far detector). The input normalization factor will be used to
interpret the flux weights and calculate the POT normalization for the generated neutrino event sample.
The option is irrelevant if a simple, histogram-based description of the neutrino flux is used (see -f option)

-R Instructs the flux driver to start looping over the flux ntuples with a random offset.
This is an optional argument. It may be necessary on some occassions to avoid biases when using very
large input flux files.

-g Specifies the input detector geometry. This option can be used to specify any of:

• A ROOT file containing a ROOT/Geant4-based geometry description (TGeoManager).
This is the standard option for generating events in the nd280, 2km and INGRID detectors.

Example:
To use the ROOT detector geometry description stored in the ‘/data/geo/nd280.root ’ file, type:
‘-g /data/geo/nd280.root’

By default the entire input geometry will be used. Use the ‘-t’ option to allow event generation
only on specific geometry volumes.

• A mix of target materials, each with its corresponding weight.
This is the standard option for generating events in the Super-K detector where the beam profile is
uniform and distributing the event vertices uniformly in the detector volume is sufficient. The tar-
get mix is specified as a comma-separated list of nuclear PDG codes (in the PDG2006 convention:
10LZZZAAAI) followed by their corresponding weight fractions in brackets, as in:
‘-t code1[fraction1],code2[fraction2],...’

Example 1:
To use a target mix of 88.79% (weight fraction) O16 and 11.21% H (i.e. ‘water’) type:
‘-g 1000080160[0.8879],1000010010[0.1121]’

Example 2:
To use a target which is 100% C12, type:
‘-g 1000060120’

-t Specifies the input top volume for event generation. This is an optional argument. By default,
it is set to be the ‘master volume’ of the input geometry resulting in neutrino events being generated over
the entire geometry volume. If the ‘-t’ option is set, event generation will be confined in the specified
detector volume. The option can be used to simulate events at specific sub-detectors.
Example:
To generate events in the P0D only, type:
‘-t P0D’

You can use the ‘-t’ option to switch generation on/off at multiple volumes
Example:

88 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

‘-t +Vol1-Vol2+Vol3-Vol4’, or
‘-t “+Vol1 -Vol2 +Vol3 -Vol4”’

This instructs the GENIE geometry navigation code to switch on volumes ‘Vol1’ and ‘Vo3’ and switch
off volumes ‘Vol2’ and ‘Vol4’. If the very first character is a ’+’, GENIE will neglect all volumes except
the ones explicitly turned on. Vice versa, if the very first character is a ‘-’, GENIE will keep all volumes
except the ones explicitly turned off.

-m Specifies an XML file with the maximum density-weighted path-lengths for each nuclear
target in the input geometry. This is an optional argument. If the option is not set (and also if
the options -P and -S are not set) GENIE will scan the input geometry to determine the maximum
density-weighted path-lengths for all nuclear targets.then, at the MC job initialization, GENIE will scan
the input geometry to determine the maximum density-weighted path-lengths for all nuclear targets. The
computed information is used for calculating the neutrino interaction probability scale to be used in the
MC job (the tiny neutrino interaction probabilities get normalized to a probability scale which is defined
as the maximum possible total interaction probability, corresponding to a maximum energy neutrino in a
worst-case trajectory maximizing its density-weighted path-length, summed up over all possible nuclear
targets). That probability scale is also used to calculate the absolute, POT normalization of a generated
event sample from the POT normalization of the input JNUBEAM flux ntuple.

Feeding-in pre-computed maximum density-weighted path-lengths results in faster MC job initial-
ization and ensures that the same interaction probability scale is used across all MC jobs in a physics
production job (the geometry is scanned by a MC ray-tracing method and the calculated safe maximum
density-weighted path-lengths may differ between MC jobs).

The maximum density-weighted path-lengths for a Geant4/ROOT-based detector geometry can be
pre-computed using GENIE’s gmxpl utility.

-P Specifies a ROOT file with the pre-calculated interaction probability for each flux neu-
trino in the input flux file, for the top volume and the input geometry. This is an optional argument.
This option is intended to replace the maximum density weighted path-lengths option -m. This option is
new in v2.6.2. The pre-calculated interaction probability method is specific to the flux input (JNUBEAM
flux ntuples), and so has been optimised much more than the maximum density weighted path-lengths
method. The interaction probability for each flux neutrino is pre-calcuated before any events are gen-
erated. The maximum interaction probability is now exact (maximally efficient) and means that the
interaction probability does not need to be recalculated, until we have decided there has been an inter-
action. It is especially fast for complicated geometries. This means that this method is up to 300 times
faster than the -m option. The -P option can be used in one of two ways. The first is to pre-calculate the
interaction probabilites in a separate job (using the -S option of gevgen_t2k, see below). This is especially
good for larger flux files with > O(100000) entries, as the time to pre-calculate interaction probabilities
becomes comparable to the event generation time. For small flux files, the amount of bookkeeping when
using pre-calculated interaction probabities means that generating interaction probabilites at the start of
each job is faster (you should run -P with no arguments). Note that if none of -P, -S and -m are set,
then GENIE will scan the input geometry to determine the maximum density-weighted path-lengths for
all nuclear targets, during initalization of the MC job.

-S Specifies a location to save a ROOT file with the calculated interaction probability for
each flux neutrino in the input flux file, for the top volume and the input geometry. This is an optional
argument. It is used to create pre-calculated interaction probabilities for input into the -P option. You
should make sure to use exactly the input flux file, input geometry, top volume name, neutrino flavours,
etc... arguments in your gevgen_t2k submission line for your pre-calculation of interaction probabili-
ties (-S), and your use of the pre-calculated interaction probabilites (-P). The default output name is
[flux_file_name].[top_volume_name].flxprobs.root. This can be overridden by providing an argument
to the -S option. Note that running gevgen_t2k with this option will not generate any events; the only

6.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 89

output will be a ROOT file contaning the pre-calculated interaction probabilites.

-L Specifies the input geometry length units. This is an optional argument. By default, that
option is set to ‘mm’, the length units used for the nd280 detector geometry description. Possible options
include: ‘m’, ‘cm’, ‘mm’, ...

-D Specifies the input geometry density units. This is an optional argument. By default, that
option is set to ‘clhep_def_density_unit’, the density unit used for the nd280 detector geometry descrip-
tion (= ∼1.6E-19 x g/cm3 !). Possible options include: ‘kg_m3’, ‘g_cm3’, ‘clhep_def_density_unit’,...

-c Specifies how many times to cycle a JNUBEAM flux ntuple. This option provides a way to
set the MC job exposure in terms of complete JNUBEAM flux ntuple cycles. On each cycle, every flux
neutrino in the ntuple will be thrown towards the detector geometry.

-e Specifies how many POTs to generate. If this option is set, gevgen_t2k will work out how
many times it has to cycle through the input flux ntuple in order to accumulate the requested statistics.
The program will stop at the earliest complete flux ntuple cycle after accumulating the required statistics.
The generated statistics will slightly overshoot the requested number but the calculated exposure (which
is also stored at the output file) will be exact. This option is only available with JNUBEAM ntuple-based
flux descriptions.

-E Specifies how many POTs to generate. This option is similar to ‘-e’ but the program will
stop immediately after the requested POT has been accumulated, without waiting for the current loop
over the flux ntuple entries to be completed. The generated POT overshoot (with respect to the requested
POT) will be negligible, but the POT calculation within a flux ntuple cycle is only approximate. This
reflects the details of the JNUBEAM beam-line simulation. This option is only available with JNUBEAM
ntuple-based flux descriptions.

-n Specifies how many events to generate. Note that out of the 4 possible ways of setting the
exposure (‘-c’, ‘-e’, ‘-E’, ‘-n’) this is the only available one if a plain histogram-based flux description is
used.

-o Sets the prefix of the output event file. This is an optional argument. It allows you to override
the output event file prefix. In GENIE, the output filename is built as:

prefix.run_number.event_tree_format.file_format where, in gevgen_t2k, by default, prefix: ‘gntp’
and event_tree_format: ‘ghep’ and file_format: ‘root’.

-r Specifies the MC run number. This is an optional argument. By default a run number of
‘1000’ is used.

–seed Specifies the random number seed for the current job.

–cross-sections Specifies the name (incl. full path) of an input XML file with pre-computed neu-
trino cross-sections

–event-generator-list Specifies the list of event generators to use in the MC job. By default,
GENIE is loading a list of of tuned and fully-validated generators which allow comprehensive neutrino
interaction modelling the medium-energy range. Valid settings are the XML block names appearing in
$GENIE/config/EventGeneratorListAssembler.xml ’. Please, make sure you read Sec. 5.4 explaining why,
almost invariantly, for physics studies you should be using a comprehensive collection of event generators.

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be

90 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–unphysical-event-mask Specify a 16-bit mask to allow certain types of unphysical events to be writ-
ten in the output event file. By default, all unphysical events are rejected.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

–cache-file Allows users to specify a ROOT file so that results of calculation cached throughout a
MC job can be re-used in subsequent MC jobs.

-h Prints out the gevgen_t2k syntax and exits.

Examples

1. Generate events (run ‘1001’) using the jnubeam flux ntuple in ‘/data/t2k/flux/07a/jnb001.root ’
and picking up the flux entries for the detector location ‘nd5’ (which corresponds to the ‘nd280m’
location). The job will load the nd280 geometry from ‘/data/t2k/geom/nd280.root ’ and interpret
it assuming the length unit is ‘mm’ and the density unit is the default CLHEP one. The job will
stop on the first complete flux ntuple cycle after generating 5E+17 POT. Read pre-computed cross-
section splines from ‘/data/t2k/xsec/xsec.xml ’. Use seed number 1982199 and, also, use the default
GENIE verbosity level.

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,nd5

-g /data/t2k/geom/nd280.root -L mm -D clhep_def_density_unit

--cross-sections /data/t2k/xsec/xsec.xml -e 5E+17 --seed 1982199

2. As before, but now the job will stop after 100 flux ntuple cycles, whatever POT and number of
events that may correspond to.

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,nd5

-g /data/t2k/geom/nd280.root -L mm -D clhep_def_density_unit

--cross-sections /data/t2k/xsec/xsec.xml -c 100 --seed 1982199

3. As before, but now the job will stop after generating 100000 events, whatever POT and number of
flux ntuple cycles that may correspond to.

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,nd5

-g /data/t2k/geom/nd280.root -L mm -D clhep_def_density_unit

--cross-sections /data/t2k/xsec/xsec.xml -n 100000 --seed 1982199

4. As before, but first pre-calculate interaction probilites, and then use them to generate events.

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,nd5

-g /data/t2k/geom/nd280.root -L mm -D clhep_def_density_unit

--cross-sections /data/t2k/xsec/xsec.xml -n 100000 --seed 1982199

6.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 91

-S jnb001.nd280.global.flxprobs.root

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,nd5

-g /data/t2k/geom/nd280.root -L mm -D clhep_def_density_unit

--cross-sections /data/t2k/xsec/xsec.xml -n 100000 --seed 1982199

-P jnb001.nd280.global.flxprobs.root

5. Generate events (run ‘1001’) using the jnubeam flux ntuple in ‘/data/t2k/flux/07a/jnb001.root ’
and picking up the flux entries for the Super-K detector location. This time, the job will not
use any detailed detector geometry description but just (95% O16 + 5% H) target-mix. The job
will stop after generating 50000 events. As before, read pre-computed cross-section splines from
‘/data/t2k/xsec/xsec.xml ’. This time use production-mode verbosity level (set all message thresh-
olds to ‘warning’).

$ gevgen_t2k -r 1001 -f /data/t2k/flux/07a/jnb001.root,sk

-g 1000080160[0.95],1000010010[0.05] -n 50000 --seed 1982199

--cross-sections /data/t2k/xsec/xsec.xml --message-thresholds Messenger_laconic.xml

6. As before, but now the flux is not described using a JNUBEAM ntuple but a set of 1-D histograms
from the ‘/data/flx.root ’ file: The histogram named ‘h1’ will be used for the νe flux, ‘h2’ will will
be used for the ν̄e flux, and ‘h3’ for the νµ flux.

$ gevgen_t2k -r 1001 -f /data/flx.root,12[h1],-12[h2],14[h3]

-g 1000080160[0.95],1000010010[0.05] -n 50000 --seed 1982199

--cross-sections /data/t2k/xsec/xsec.xml --message-thresholds Messenger_laconic.xml

6.5.2 Event generation application for Fermilab neutrino experiments

Name

gevgen_fnal – A GENIE-based event generation application for Fermilab neutrino experiments. It in-
tegrates the GENIE with the Fermilab neutrino beam-line simulations and the geometry descriptions of
DUNE, MINOS, NOvA, MINERvA, ArgoNEUT, MicroBooNE, SBND and other experiments.

Source and build options

The source code for this application is in ‘$GENIE/src/support/fnal/EvGen/gFNALExptEvGen.cxx ’.
To enable it add ‘--enable-numi’ during the GENIE build configuration step.

Synopsis

$ gevgen_fnal

-f flux

-g geometry [-t top_volume_name_at_geom]

[-F fiducial_cut_string] [-m max_path_lengths_xml_file]

[-L geometry_length_units] [-D geometry_density_units] [-z z_min]

<-n number_of_events, -e exposure_in_POTs>

[-o output_event_file_prefix] [-r run#] [-d debug_flags]

[-seed random_number_seed] [--cross-section xml_file] [--event-generator-list list_name]

[--message-thresholds xml_file] [--unphysical-event-mask mask] [--event-record-print-level level]

[--mc-job-status-refresh-rate rate] [--cache-file root_file]

92 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

[-h]

where [] denotes an optional argument and <> denotes a group of arguments out of which only one
can be set.

Description

The following options are available:

-f Specifies the input neutrino flux. This option can be used to specify any of:

• A gNuMI beam simulation output file and the detector location. The general sytax is:
‘-f /path/flux_file.root,detector_loc(,neutrino_list)’

For more information of the flux ntuples see the gNuMI documentation. The ntuple has to be in
ROOT format and can be generated from the distributed HBOOK ntuples using ROOT’s h2root
utility. See GNuMIFlux.xml for all supported detector locations. The optional neutrino_list is a
comma separated list neutrino PDG codes. It specifies which neutrino flux species to to considered
in the event generation job. If no such neutrino list is specified then, by default, GENIE will
consider all neutrino species in the input flux ntuple. When a gNuMI ntuple is used for describing
the neutrino flux, GENIE is able to calculate the POT exposure for the generated event sample and
any one of the exposure setting methods (‘-e’, ‘-n’, see below) can be used. All gNuMI information
on the flux neutrino parent (parent PDG code, parent 4-position and 4-momentum at the production
and decay points etc) is stored in a ‘flux’ branch of the output event tree and is associated with the
corresponding generated neutrino event.

Example:
To use the gNuMI flux ntuple flux.root at MINOS near detector location ‘/data/flux.root ’ file, type:
‘-f /data/flux.root,MINOS-NearDet’

• A set of flux histograms stored in a ROOT file. The general syntax is:
‘-f /path/file.root,neutrino_code[histo],...’

where neutrino_code is a standard neutrino PDG code5 and histo is the corresponding ROOT
histogram name. Multiple flux histograms can be specified for different flux neutrino species (see the
example given below). The relative flux normalization for all neutrino species should be represented
correctly at the input histogram normalization. The absolute flux normalization is not relevan heret:
Unlike when using gNuMI ntuples to describe the flux, no POT calculations are performed when
histogram-based flux descriptions are employed. One can only control the MC run exposure via the
number of generated events (‘-n’, see below). In this case the POT normalization of the generated
sample is calculated externally.

Since there is no directional information in plain histogram-based descriptions of the flux, the
generated neutrino vertex is always set to (0,0,0,0). Then it is the detector MC responsibility
to rotate the interaction vectors and plant the vertex 6 Obviously no flux pass-through branch is

5 νe: 12, νµ: 14, ντ : 16, ν̄e: -12, ν̄µ: -14 and ν̄τ : -16
6 This option is used only for the Super-K simulation where vertices are distributed uniformly in volume by the detector

MC (SKDETSIM). For event generation at the more complex near detectors a JNUBEAM ntuple-based flux description
should be used so as the interaction vertex is properly planted within the input geometry by GENIE.

6.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 93

written out in the neutrino event tree since no such information is associated with flux neutrinos
selected from plain histograms.

Example:
To use the histogram ‘h1’ (representing the νµ flux) and the histogram ‘h2’ (representing the νe
flux) from the ‘/data/flux.root’ file, type:
‘-f /data/flux.root,14[h1],12[h2]’

-g Specifies the input detector geometry. This option can be used to specify any of:

• A ROOT file containing a ROOT/Geant4-based geometry description (TGeoManager).
Example:
To use the ROOT detector geometry description stored in the ‘/data/geo/nova.root ’ file, type:
‘-g /data/geo/nova.root’

By default the entire input geometry will be used. Use the ‘-t’ option to allow event generation
only on specific geometry volumes.

• A mix of target materials, each with its corresponding weight.
This is the standard option for generating events in the Super-K detector where the beam profile is
uniform and distributing the event vertices uniformly in the detector volume is sufficient. The tar-
get mix is specified as a comma-separated list of nuclear PDG codes (in the PDG2006 convention:
10LZZZAAAI) followed by their corresponding weight fractions in brackets, as in:
‘-t code1[fraction1],code2[fraction2],...’

Example 1:
To use a target mix of 88.79% (weight fraction) O16 and 11.21% H (i.e. ‘water’) type:
‘-g 1000080160[0.8879],1000010010[0.1121]’

Example 2:
To use a target which is 100% C12, type:
‘-g 1000060120’

-t Specifies the input top volume for event generation. This is an optional argument. By default, it
is set to be the ‘master volume’ of the input geometry resulting in neutrino events being generated over
the entire geometry volume. If the ‘-t’ option is set, event generation will be confined in the specified
detector volume. The option can be used to simulate events at specific sub-detectors.
Example:
To generate events in the P0D only, type:
‘-t P0D’

You can use the ‘-t’ option to switch generation on/off at multiple volumes
Example:
‘-t +Vol1-Vol2+Vol3-Vol4’, or
‘-t “+Vol1 -Vol2 +Vol3 -Vol4”’

This instructs the GENIE geometry navigation code to switch on volumes ‘Vol1’ and ‘Vo3’ and switch
off volumes ‘Vol2’ and ‘Vol4’. If the very first character is a ’+’, GENIE will neglect all volumes except
the ones explicitly turned on. Vice versa, if the very first character is a ‘-’, GENIE will keep all volumes
except the ones explicitly turned off.

94 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

-m Specifies an XML file with the maximum density-weighted path-lengths for each nuclear target

in the input geometry. This is an optional argument. If the option is not set then, at the MC job
initialization, GENIE will scan the input geometry to determine the maximum density-weighted path-
lengths for all nuclear targets. The computed information is used for calculating the neutrino interaction
probability scale to be used in the MC job (the tiny neutrino interaction probabilities get normalized to
a probability scale which is defined as the maximum possible total interaction probability, corresponding
to a maximum energy neutrino in a worst-case trajectory maximizing its density-weighted path-length,
summed up over all possible nuclear targets). That probability scale is also used to calculate the absolute,
POT normalization of a generated event sample from the POT normalization of the input flux ntuple.

Feeding-in pre-computed maximum density-weighted path-lengths results in faster MC job initial-
ization and ensures that the same interaction probability scale is used across all MC jobs in a physics
production job (the geometry is scanned by a MC ray-tracing method and the calculated safe maximum
density-weighted path-lengths may differ between MC jobs).

The maximum density-weighted path-lengths for a Geant4/ROOT-based detector geometry can be
pre-computed using GENIE’s gmxpl utility.

-L Specifies the input geometry length units. This is an optional argument. By default it is set
to ‘mm’. Possible options include: ‘m’, ‘cm’, ‘mm’, ...

-D Specifies the input geometry density units. This is an optional argument. By default it is set
to ‘g_cm3’. Possible options include: ‘kg_m3’, ‘g_cm3’, ‘clhep_def_density_unit’ (= ∼1.6E-19 x
g/cm3 !),...

-F Applies a fiducial cut. This is an optional argument. Applies a fiducial cut (for now hard-coded).
Only used with ROOT-based detector geometry descriptions. If the input string starts with "-" then
reverses sense (ie. anti-fiducial).

-S Number of rays to use to scan geometry for max path length. This is an optional argument.
Number of rays to use to scan geometry for max path length. Only used with ROOT-based detector
geometry descriptions (and the gNuMI ntuple-based flux description). If ‘+N’ : Scan the geometry using
N rays generated using flux neutrino directions pulled from the input gNuMI flux ntuple. If ‘-N’ : Scan the
geometry using N rays x N points on each face of a bounding box. Each ray has a uniformly distributed
random inward direction.

-z Z from which to start flux ray in user-world coordinates. This is an optional argument. If
left unset then flux originates on the flux window [No longer attempts to determine z from geometry,
generally got this wrong].

-o Sets the prefix of the output event file. This is an optional argument. It allows you to override the
output event file prefix. In GENIE, the output filename is built as:

prefix.run_number.event_tree_format.file_format where, in gevgen_numi, by default, prefix: ‘gntp’
and event_tree_format: ‘ghep’ and file_format: ‘root’.

-r Specifies the MC run number. This is an optional argument. By default a run number of ‘0’
is used.

–seed Specifies the random number seed for the current job.

–cross-sections Specifies the name (incl. full path) of an input XML file with pre-computed neu-

6.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 95

trino cross-sections

–event-generator-list Specifies the list of event generators to use in the MC job. By default,
GENIE is loading a list of of tuned and fully-validated generators which allow comprehensive neutrino
interaction modelling the medium-energy range. Valid settings are the XML block names appearing in
$GENIE/config/EventGeneratorListAssembler.xml ’. Please, make sure you read Sec. 5.4 explaining why,
almost invariantly, for physics studies you should be using a comprehensive collection of event generators.

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be
seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–unphysical-event-mask Specify a 16-bit mask to allow certain types of unphysical events to be writ-
ten in the output event file. By default, all unphysical events are rejected.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

–cache-file Allows users to specify a ROOT file so that results of calculation cached throughout a
MC job can be re-used in subsequent MC jobs.

-h Prints out the gevgen_fnal syntax and exits.

Examples

6.5.3 Event generation application for atmospheric neutrinos

Name

gevgen_atmo – A GENIE-based atmospheric neutrino event generation application. It integrates GENIE
with any of the FLUKA 3-D [128] or BGLRS [127] atmospheric neutrino flux simulations. Events can be
generated for either a simple target mix or a detailed ROOT-based detector geometry.

Source and build options

The source code for this application is in ‘$GENIE/src/support/atmo/EvGen/gAtmoEvGen.cxx ’.
To enable it add ‘--enable-atmo’ during the GENIE build configuration step.

Synopsis

$ gevgen_atmo

-f flux -g geometry

[-R rotation_from_topocentric_hz_frame]

[-t geometry_top_volume_name] [-m max_path_lengths_xml_file]

[-L geometry_length_units] [-D geometry_density_units]

<-n number_of_events, -e exposure_in_terms_of_kton_x_yrs>

96 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

[-E energy_range] [-o output_event_file_prefix] [-r run#]

[-seed random_number_seed] [--cross-section xml_file] [--event-generator-list list_name]

[--message-thresholds xml_file] [--unphysical-event-mask mask] [--event-record-print-level level]

[--mc-job-status-refresh-rate rate] [--cache-file root_file]

[-h]

where [] denotes an optional argument and <> denotes a group of arguments out of which only one
can be set.

Description

The following options are available:

-f Specifies the input neutrino flux. This option can be used to specify the input flux simulation
data files. The general syntax is: ‘-f simulation:/path/file[neutrino_code],...’. The ‘simulation’

part of the option can be either ‘FLUKA’ or ‘BGLRS’, depending on the origin of your input data files.
GENIE will use the input tag to use the appropriate input file format and to bin the input data according
to the choices of the FLUKA and BGLRS flux simulation authors. See Section 6.3.3 for more details.
The ‘/path/file.data[neutrino_code]’ part of the option can be repeated multiple times (separated by
commas), once for each flux neutrino species you wish to consider.
Example 1:

‘-f FLUKA:/data/sdave_numu07.dat[14],/data/sdave_nue07.dat[12]’

This option will instruct GENIE to use the ‘/data/sdave_numu07.dat’ FLUKA flux simulation file
for νµ and the ‘/data/sdave_nue07.dat’ file for νe. No other flux species will be considered in this MC
job.
Example 2:

‘-f BGLRS:/data/flux10_271003_z.kam_nue[12]’

This option will instruct GENIE to use the ‘/data/flux10_271003_z.kam_nue’ BGLRS flux simula-
tion file for νe. No other flux species will be considered in this MC job.

-g Specifies the input detector geometry. This option can be used to specify any of:

• A ROOT file containing a ROOT/Geant4-based geometry description (TGeoManager).

Example:
To use the ROOT detector geometry description stored in the ‘nd280-geom.root ’ file, type:
‘-g /some/path/nd280-geom.root’

By default the entire input geometry will be used. Use the ‘-t’ option to allow event generation
only on specific geometry volumes.

• A mix of target materials, each with its corresponding weight.
This option should only be used when the beam and/or detector are sufficiently uniform. The tar-
get mix is specified as a comma-separated list of nuclear PDG codes (in the PDG2006 convention:
10LZZZAAAI) followed by their corresponding weight fractions in brackets, as in:
‘-t code1[fraction1],code2[fraction2],...’

Example 1:
To use a target mix of 88.79% (weight fraction) O16 and 11.21% H (i.e. ‘water’) type:

6.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 97

‘-g 1000080160[0.8879],1000010010[0.1121]’

Example 2:
To use a target which is 100% C12, type:
‘-g 1000060120’

-R Specifies a rotation from the default topocentric horizontal coordinate system to a user-defined

frame. The rotation is specified by the 3 Euler angles ϕ, ϑ, ψ. The Euler angles are used for creting
a ROOT TRotation object which gets applied to the flux neutrino position and momentum 4-vectors
before that flux neutrino is fired towards the detector. The user has the option to select between the
X and Y conventions. By default, the X-convention is used. Additionally, the user can request GENIE
to invert the rotation matrix before applying it to the flux neutrino vectors. Please note the following
extract from the ROOT TRotation documentation: “Euler angles usually define the rotation of the new
coordinate system with respect to the original system, however, the TRotation class specifies the rotation
of the object in the original system (an active rotation). To recover the usual Euler rotations (ie. rotate
the system not the object), you must take the inverse of the rotation."

The Euler angles are input as a comma separated list. The general syntax for specifying the rotation is:
‘-R convention:phi,theta,psi’ where ‘convention’ is either X (for X-convention), Y (for Y-convention),
X^-1 or Y^-1 (as previously, but using the inverse rotation matrix instead).

Example 1:
To set the Euler angles ϕ=3.14, ϑ=1.28, ψ=1.0 using the X-convention, type: ‘-R 3.14,1.28,1.0’, or
‘-R X:3.14,1.28,1.0’.

Example 2:
To set the Euler angles ϕ=3.14, ϑ=1.28, ψ=1.0 using the Y-convention, type: ‘-R Y:3.14,1.28,1.0’.

Example 3:
To set the Euler angles ϕ=3.14, ϑ=1.28, ψ=1.0 using the Y-convention, and then use the inverse rotation
matrix, type: ‘-R Y^-1:3.14,1.28,1.0’.

-t Specifies the input top volume for event generation. This is an optional argument. By default, it
is set to be the ‘master volume’ of the input geometry resulting in neutrino events being generated over
the entire geometry volume. If the ‘-t’ option is set, event generation will be confined in the specified
detector volume. The option can be used to simulate events at specific sub-detectors.

-m Specifies an XML file with the maximum density-weighted path-lengths for each nuclear target

in the input geometry. This is an optional argument. If the option is not set then, at the MC job
initialization, GENIE will scan the input geometry to determine the maximum density-weighted path-
lengths for all nuclear targets. The computed information is used for calculating the neutrino interaction
probability scale to be used in the MC job (the tiny neutrino interaction probabilities get normalized to
a probability scale which is defined as the maximum possible total interaction probability, corresponding
to a maximum energy neutrino in a worst-case trajectory maximizing its density-weighted path-length,
summed up over all possible nuclear targets). That probability scale is also used to calculate the absolute
normalization of generated sample in terms of kton*yrs.

Feeding-in pre-computed maximum density-weighted path-lengths results in faster MC job initial-
ization and ensures that the same interaction probability scale is used across all MC jobs in a physics
production job (the geometry is scanned by a MC ray-tracing method and the calculated safe maximum
density-weighted path-lengths may differ between MC jobs).

98 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

The maximum density-weighted path-lengths for a Geant4/ROOT-based detector geometry can be
pre-computed using GENIE’s gmxpl utility.

-L Specifies the input geometry length units. This is an optional argument. By default it is set
to ‘m’. Possible options include: ‘m’, ‘cm’, ‘mm’, ...

-D Specifies the input geometry density units. This is an optional argument. By default it is set
to ‘kg_m3’. Possible options include: ‘kg_m3’, ‘g_cm3’, ‘clhep_def_density_unit’ (= ∼1.6E-19 x
g/cm3 !),...

-n Specifies how many events to generate.

-e Specifies the requested exposure in terms of kton*yrs.

Not implemented yet.

-E Specifies an energy range in GeV. This is an optional argument. Must be a set of comma-separated
values. By default GENIE will generate atmospheric neutrinos between 0.5 and 50 GeV.

Example: To generate events between 1 and 100 GeV type: ‘-E 1,100’

-o Sets the prefix of the output event file. This is an optional argument. It allows you to override the
output event file prefix. In GENIE, the output filename is built as:

prefix.run_number.event_tree_format.file_format where, in gevgen_atmo, by default, prefix: ‘gntp’
and event_tree_format: ‘ghep’ and file_format: ‘root’.

-r Specifies the MC run number. This is an optional argument. By default a run number of ‘100000000’
is used.

–seed Specifies the random number seed for the current job.

–cross-sections Specifies the name (incl. full path) of an input XML file with pre-computed neu-
trino cross-sections

–event-generator-list Specifies the list of event generators to use in the MC job. By default,
GENIE is loading a list of of tuned and fully-validated generators which allow comprehensive neutrino
interaction modelling the medium-energy range. Valid settings are the XML block names appearing in
$GENIE/config/EventGeneratorListAssembler.xml ’. Please, make sure you read Sec. 5.4 explaining why,
almost invariantly, for physics studies you should be using a comprehensive collection of event generators.

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be
seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–unphysical-event-mask Specify a 16-bit mask to allow certain types of unphysical events to be writ-
ten in the output event file. By default, all unphysical events are rejected.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

6.5. BUILT-IN SPECIALIZED EVENT GENERATION APPLICATIONS 99

–cache-file Allows users to specify a ROOT file so that results of calculation cached throughout a
MC job can be re-used in subsequent MC jobs.

-h Prints out the gevgen_atmo syntax and exits.

Examples

1. Generate 100k events (run number ‘100000013’) using the FLUKA 3-D flux simulation output files
‘/data/flux/atmo/sdave_numu07.dat’, for νµ, and ‘/data/flux/atmo/sdave_nue07.dat’, for νe. Do
not consider any other flux neutrino species. Generate events for water (weight fraction: 88.79%
O16 and 11.21% H) and only in the 1-15 GeV energy range. Read pre-computed cross-section
splines from ‘/data/xsec/xsec.xml ’. Use seed number 87218 and production mode verbosity level
(all message thresholds set to warning).
$ gevgen_atmo -n 100000 -r 100000013 -e 1,15

-f FLUKA:/data/flux/atmo/sdave_numu07.dat[14],/data/flux/atmo/sdave_nue07.dat[12]

-g 1000080160[0.8879],1000010010[0.1121]

--cross-sections /data/xsec/xsec.xml

--seed 87218 --message-thresholds Messenger_laconic.xml

2. Like above but, instead of generating events in water, generate events using the detailed ROOT-
based detector geometry description in file ‘/data/geo/HyperKamionande.root’. Let GENIE know
that the geometry file expresses length in ‘mm’ and densities in ‘gr/cm3’. Don’t generate events
over the the entire volume but only within the volume named ‘InnerDetector’.
$ gevgen_atmo -n 100000 -r 100000013 -e 1,15

-f FLUKA:/data/flux/atmo/sdave_numu07.dat[14],/data/flux/atmo/sdave_nue07.dat[12]

-g /data/geo/HyperKamiokande.root -t InnerDetector -L mm -D g_cm3

--cross-sections /data/xsec/xsec.xml

--seed 87218 --message-thresholds Messenger_laconic.xml

100 CHAPTER 6. USING A REALISTIC FLUX AND DETECTOR GEOMETRY

Chapter 7

Analyzing Output Event Samples

7.1 Introduction

[to be added in future revision]

7.2 The GHEP event structure

Events generated by GENIE are stored in a custom, STDHEP -like, event record called GHEP. Each
GHEP event record, an instance of the GHepRecord class, is a ROOT TClonesArray container of GHep-
Particle objects representing individual particles. Other than being a container for the generated particles,
the event record holds additional information with event-, rather than particle-, scope such as the cross
sections for the selected event and the differential cross section for the selected event kinematics, the
event weight, a series of customizable event flags and an interaction summary. Additionally, the event
record includes a host of methods for querying / setting event properties including many methods that
allow querying for specific particles within the event (such as for example methods to return the target
nucleus, the final state primary lepton or a list of all the stable descendants of any intermediate particle).

The event record features a ‘spontaneous re-arrangement’ feature which maintains the compactness of
the daughter lists at any given time. This is necessary for the correct interpretation of the stored particle
associations as the daughter indices correspond to a contiguous range. The particle mother and daughter
indices for all particles in the event record are automatically updated as a result of any such spontaneous
particle rearrangement.

The GHEP structure is highly compatible with the event structures used in most HEP generators.
That allows us to call other generators (such as for example PYTHIA / JETSET) as part of an event
generation chain and convert / append their output into the current GHEP event. Additionally the GHEP
events can be converted to many other formats for facilitating the GENIE interface with experiment-
specific offline software systems and cross-generator comparisons.

7.2.1 GHEP information with event-wide scope

[to be added in future revision]

7.2.2 Interaction summary

All particles generated by GENIE for each simulated event are stored into a GHEP record which represents
the most complete description of a generated event. Certain external heavy-weight applications such

101

102 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

as specialized event-reweighing schemes or realistic, experiment-level MC simulation chains using the
generator as the physics front-end require that detailed particle-level information.

However, many of the actual physics models employed by the generator, such as cross section, form
factor or structure function models, require a much simpler event description. An event description based
on simple summary information, typically including a description of the initial state, the process type
and the scattering kinematics, is sufficient for driving the algorithmic objects implementing these physics
models. In the interest of decoupling the physics models from event generation and the particle-level event
description, GENIE uses an Interaction object to store summary event information. Whenever possible,
algorithmic objects implementing physics models accept a single Interaction object as their sole source
of information about an event. That enables the use of these models both within the event generation
framework but also within a host of external applications such as model validation frameworks, event
re-weighting tools and user physics analysis code.

An Interaction objects is an aggregate, hierarchical structure, containing many specialised objects
holding information for the initial state (InitialState object), the event kinematics (Kinematics object),
the process type (ProcessInfo object) and potential additional information for tagging exclusive channels
(XclsTag object).

Users can easily instantiate Interaction objects and use them to drive physics models. Creating this
aggregate hierarchical structure is streamlined using the ‘named constructor’ C++ idiom. For example,
in order to define a 5 GeV QELCC νµ + neutron interaction, where the neutron is bound in a Fe56

nucleus, (νµ PDG code = 14, neutron PDG code = 2112, Fe56 PDG code = 1000260560), one needs to
instantiate an Interaction object as in:
Interaction * qelcc = Interactions::QELCC(1000260560, 2112, 14, 5.0);

That interaction definition can be used as is to drive a QELCC cross section algorithm.

The Interaction objects can serialize themselves as a unique string codes which, within the GENIE
framework, play the role of the ‘reaction codes’ of the old procedural systems. These string codes
are used extensively whenever there is a need to map information to or from interaction types (as for
example, mapping interaction types to pre-computed cross section splines, or mapping interaction types
to specialized event generation code)

Each generated event has an Interaction summary object attached to it and written out in the output
event trees. Despite the implications of having a certain amount of redundancy (in the sense that this
summary information can be recreated entirely from the information at the GHEP record) this strategy
presents many advantages during both event generation and analysis of generated events.

7.2.3 GHEP particles

The basic output unit of the event generation process is a ‘particle’. This is an overloaded term used to
describe both particles and nuclei appearing in the initial, intermediate or final state, or generator-specific
pseudo-particles used for facilitating book-keeping of the generator actions.

Each such ’particle’ generated by GENIE is an instance of the GHepParticle class. These objects
contain information with particle-scope such as its particle and status codes, its pdg mass, charge and
name, the indices of its mother and daughter particles marking possible associations with other particles in
the same event, its 4-momentum and 4-position (in the target nucleus coordinate system), its polarization
vector, and other properties. The GHepParticle class includes methods for setting and querying these
properties.

GENIE has adopted the standard PDG particle codes. For ions it has adopted a PDG extension,
using the 10-digit code 10LZZZAAAI where AAA is the total baryon number, ZZZ is the total charge,
L is the number of strange quarks and I is the isomer number (I=0 corresponds to the ground state).
GENIE-specific pseudo-particles have PDG code >= 2000000000 and can convey important information
about the underlying physics model. Pseudo-particles generated by other specialized MCs that may be

7.2. THE GHEP EVENT STRUCTURE 103

called by GENIE (such as PYTHIA) are allowed to retain the codes specified in that MC.
GENIE marks each particle with a status code. This signifies the position of an particle in an event

and helps navigating within the event record. Most generated particles are typically marked as one of
the following:

• ‘initial state’ typically the first two particles of the event record corresponding to the incoming
neutrino and the nuclear target.

• ‘nucleon target’ , corresponding to the hit nucleon (if any) within the nuclear target.

• ‘intermediate state’ , typically referring to the remnant nucleus, fragmentation intermediates
such as quarks, diquarks, some intermediate pseudo-particles etc.

• ‘hadron in the nucleus’ , referring to a particle of the primary hadronic system, that is the
particles emerging from the primary interaction vertex before their possible re-interactions during
their intranuclear hadron transport.

• ‘decayed state’ , such as for example unstable particles that have been decayed.

• ‘stable final state’ for the relatively long-lived particles emerging from the nuclear targets

All particles generated by GENIE during the simulation of a single neutrino interaction are stored in a
dynamic container representing an ‘event’.

7.2.4 Mother / daughter particle associations

[to be added in future revision]

Idx Name ISt PDG Mom Kids E px py ...
0 nu_mu 0 14 -1 4 4

1 Fe56 0 1000260560 -1 2 3

2 neutron 11 2112 1 5 7

3 Fe55 2 1000260550 1 10 10

4 mu- 1 13 0 -1 -1

5 HadrSyst 12 2000000001 2 -1 -1

6 proton 14 211 2 -1 -1

7 pi0 14 111 2 8 9

8 proton 1 22 7 -1 -1

9 pi- 1 -211 7 -1 -1

10 HadrBlob 15 2000000002 3 -1 -1

Table 7.1: []

104 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

Idx Name ISt PDG Mom Kids E px py ...
0 nu_mu 0 14 -1 5 5

1 Fe56 0 1000260560 -1 2 3

2 proton 11 2212 1 4 4

3 Mn55 2 1000250550 1 12 12

4 Delta++ 3 2224 2 6 7

5 mu- 1 13 0 -1 -1

6 proton 14 2112 4 8 8

7 pi+ 14 211 4 11 11

8 proton 3 2212 6 9 10

9 proton 1 2212 8 -1 -1

10 proton 1 2212 8 -1 -1

11 pi+ 1 211 7 -1 -1

12 HadrBlob 15 2000000002 3 -1 -1

Table 7.2:

Idx Name ISt PDG Mom Kids E px py ...
0 nu_mu 0 14 -1 4 4

1 Fe56 0 1000260560 -1 2 3

2 neutron 11 2112 1 5 5

3 Fe55 2 1000260550 1 22 22

4 mu 1 13 0 -1 -1

5 HadrSyst 12 2000000001 2 6 7

6 u 12 2 5 88

7 ud_1 12 2103 5 -1-1

8 string 12 92 6 9 11

9 pi0 14 111 8 1414

10 proton 14 2212 8 15 15

11 omega 12 223 8 12 13

12 pi- 14 -211 11 16 16

13 pi+ 14 211 11 21 21

14 pi0 1 111 9 -1 -1

15 proton 1 2212 10 -1 -1

16 pi- 3 -211 12 17 20

17 neutron 1 2112 16 -1 -1

18 neutron 1 2112 16 -1 -1

19 proton 1 2212 16 -1 -1

20 proton 1 2212 16 -1 -1

21 pi+ 1 211 13 -1 -1

22 HadrBlob 15 2000000002 3 -1 -1

Table 7.3:

7.3. PRINTING-OUT EVENTS 105

7.3 Printing-out events

7.3.1 The gevdump utility

Name

gevdump - A GENIE utility printing-out GENIE GHEP event records.

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/ gEvDump.cxx’.

Synopsis

$ gevdump -f filename [-n n1[,n2]]

where [] denotes an optional argument.

Description

The following options are available:

• -f Specifies a GENIE GHEP event file.

• -n Specifies an event number or a range of event numbers. This is an optional argument. By default
all events will be printed-out.

Notes

You can fine-tune the amount of information that gets printed-out by tweaking the ‘GHEPPRINTLEVEL’
environmental variable (see Appendix ??)

Examples

1. To print-out all events from ‘/data/sample.ghep.root ’, type:

$ gevdump -f /data/sample.ghep.root

2. To print-out the first 500 events from ‘/data/sample.ghep.root ’, type:

$ gevdump -f /data/sample.ghep.root -n 0,499

3. To print-out event 178 from ‘/data/sample.ghep.root ’, type:

$ gevdump -f /data/sample.ghep.root -n 178

106 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

7.4 Event loop skeleton program

An‘event loop’ skeleton is given below. You may insert your event analysis code where is indicated be-
low. Please look at the next section for information on how to extract information from the ‘event’ object.

{

...

// Open the GHEP/ROOT file

string filename = /data/sample.ghep.root;

TFile file(filename.c_str(), READ);

// Get the tree header & print it

NtpMCTreeHeader * header =

dynamic_cast<NtpMCTreeHeader*> (file.Get("header"));

LOG(test, pINFO) << *header;

// Get the GENIE GHEP tree and set its branch address

TTree * tree = dynamic_cast<TTree*> (file.Get(gtree));

NtpMCEventRecord * mcrec = 0;

tree->SetBranchAddress(gmrec, &mcrec);

// Event loop

for(Long64_t i=0; i<tree->GetEntries(); i++){

tree->GetEntry(i);

// print-out the event

EventRecord & event = *(mcrec->event);

LOG(test, pINFO) << event;

// put your event analysis code here

...

...

mcrec->Clear();

}

...

}

An‘event loop’ skeleton can be found in ‘$GENIE/src/test/testEveltLoop.cxx’. Copy this file and use
it as a starting point for your event loop.

7.5. EXTRACTING EVENT INFORMATION 107

7.5 Extracting event information

The readers are instructed to spend some time browsing the GENIE doxygen documentation, especially
the classes defined in the Interaction and GHEP packages, and familiarize themselves with the public
methods. Some examples on how to extract information from an ‘event’ objects are given below.

Examples

1. Extract the interaction summary for the given event and check whether it is a QEL CC event
(excluding QEL CC charm production):

{

...

Interaction * in = event.Summary();

const ProcessInfo & proc = in->ProcInfo();

const XclsTag & xclsv = in->ExclTag();

bool qelcc = proc.IsQuasiElastic() && proc.IsWeakCC();

bool charm = xclsv.IsCharm();

if (qelcc && !charm)

{

...

}

...

}

2. Get the energy threshold for the given event:

{

...

Interaction * in = event.Summary();

double Ethr = in->PhaseSpace().Threshold();

...

}

3. Get the momentum transfer Q2 and hadronic invariant mass W , as generated during kinematical
selection, for RES CC event:

{

...

const ProcessInfo & proc = in->ProcInfo();

const Kinematics & kine = in->Kine();

108 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

bool selected = true;

if (proc.IsResonant() && proc.IsWeakCC())

{

double Q2s = kine.Q2(selected);

double Ws = kine.W (selected);

}

...

}

4. Calculate the momentum transfer Q2, the energy transfer ν, the Bjorken x variable, the inelasticity
y and the hadronic invariant mass Wdirectly from the event record:

{

...

// get the neutrino, f/s primary lepton and hit

// nucleon event record entries

//

GHepParticle * neu = event.Probe();

GHepParticle * fsl = event.FinalStatePrimaryLepton();

GHepParticle * nuc = event.HitNucleon();

// the hit nucleon may not be defined

// (eg. for coherent, or ve- events)

//

if(!nuc) return;

// get their corresponding 4-momenta (@ LAB)

//

const TLorentzVector & k1 = *(neu->P4());

const TLorentzVector & k2 = *(fsl->P4());

const TLorentzVector & p1 = *(nuc->P4());

// calculate the kinematic variables

// (eg see Part.Phys. booklet, page 191)

//

double M = kNucleonMass;

TLorentzVector q = k1 - k2;

double Q2 = -1 * q.M2();

double v = q.Energy();

double x = Q2 / (2*M*v);

double y = v / k1.Energy();

double W2 = M*M - 2*M*v - Q2;

double W = TMath::Sqrt(TMath::Max(0., W2));

...

7.6. EVENT TREE CONVERSIONS 109

}

5. Loop over particles and count the number of final state pions:

{

...

int npi = 0;

TObjArrayIter iter(&event);

GHepParticle * p = 0;

// loop over event particles

for((p = dynamic_cast<GHepParticle *>(iter.Next()))) {

int pdgc = p->Pdg();

int status = p->Status();

if(status != kIStStableFinalState) continue;

bool is_pi = (pdgc == kPdgPiP ||

pdgc == kPdgPi0 ||

pdgc == kPdgPiM);

if(is_pi) npi++;

}

...

}

6. Get the corresponding NEUT reaction code for a GENIE event:

{

...

int neut_code = utils::ghep::NeutReactionCode(&event);

...

}

7.6 Event tree conversions

You do not need to convert the GENIE GHEP trees in order to analyze the generated samples or pass
them on to a detector-level Monte Carlo. But you can do so if:

• you need to pass GENIE events to legacy systems using already standardized formats,

110 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

• you want to be able to read-in GENIE events without loading any GENIE libraries (eg bare-ROOT,
or XML formats),

• you want to extract just summary information and write it out in simpler ntuples.

7.6.1 The gntpc ntuple conversion utility

Name

gntpc – A utility tp converts the native GENIE GHEP event file to a host of plain text, XML or bare-
ROOT formats.

Source

The source code can be found in ‘$GENIE/src/stdapp/gNtpConv.cxx’ .

Synopsis

$ gntpc

-i input_file_name

-f format_of_output_file

[-v format_version_number]

[-c copy_MC_job_metadata?]

[-o output_file_name]

[-n number_of_events_to_convert]

where [] denotes an optional argument.

Description

The following options are available:

-i Specifies the name of the GENIE GHEP file to convert.

-f Specifies the output file format.

This can be any of the following:

• ‘gst’: The standard GENIE Summary Tree (gst) format (see subsection 7.6.2).

• ‘gxml’: The GENIE XML event format (see subsection 7.6.2).

• ‘ghep_mock_data’: Identical format as the input GHEP file but all information other than final
state particles is hidden.

• ‘rootracker’: A bare-ROOT STDHEP-like event tree. Very similar to the native GHEP tree but
with no dependency on GENIE classes (see subsection 7.6.2).

• ‘rootracker_mock_data’: Like ‘rootracker’ but with all information other than final state particles
hidden.

7.6. EVENT TREE CONVERSIONS 111

• ‘t2k_rootracker’: A variation of the ‘rootracker’ format used by some T2K detector MC chains
(nd280). Includes, in addition, tree branches storing JNUBEAM flux simulation ‘pass-through
info’1 (see subsection 7.6.2).

• ‘numi_rootracker’: A variation of the ‘rootracker’ format used by some NuMI beamline experi-
ments. Includes, in addition, tree branches storing gNuMI flux simulation pass-through info (see
subsection 7.6.2).

• ‘t2k_tracker’: A tracker-type format with tweaks required by the SuperK MC (SKDETSIM) (see
subsection 7.6.2).

• ‘nuance_tracker’: [Depreciated] The original tracker format (see subsection 7.6.2).

• ‘ghad’: [Depreciated] NEUGEN-style text-based format for hadronization studies.

• ‘ginuke’: A summary ntuple for intranuclear-rescattering studies using simulated hadron-nucleus
samples.

-v Specifies the output file format version number.

This is an optional arument. It defaults to the latest version of each specified format. The option
exists to maintain ability to generate old versions of certain formats.

-o Specifies the output file name.

This is an optional argument. By default, the output file name is constructed from the input GHEP
file name by removing the ‘.ghep.root’ (or just the ‘.root’ one if ‘.ghep’ is not present) extension and by
appending:

• ‘gst’ format files: ‘.gst.root ’

• ‘gxml’ format files: ‘.gxml ’

• ‘ghep_mock_data’ format files: ‘.mockd.ghep.root ’

• ‘rootracker’ format files: ‘.gtrac.root ’

• ‘rootracker_mock_data’ format files: ‘.mockd.gtrac.root ’

• ‘t2k_rootracker’ format files: ‘.gtrac.root ’

• ‘numi_rootracker’ format files: ‘.gtrac.root ’

• ‘t2k_tracker’ format files: ‘.gtrac.dat ’

• ‘nuance_tracker’ format files: ‘.gtrac_legacy.dat ’

• ‘ghad’ format files: ‘.ghad.dat ’

• ‘ginuke’ format files: ‘.ginuke.root ’

-n Specifies the number of events to convert.

This is an optional argument. By default, gntpc will convert all events in the input file.

1This refers to parent meson information for every flux neutrino for which GENIE generated an interaction.

112 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

Examples:

1. To convert all events in the input GHEP file ‘myfile.ghep.root ’ into the
‘t2k_rootracker’ format, type:

$ gntpc -i myfile.ghep.root -f t2k_rootracker

The output file is automatically named ‘myfile.gtrac.root ’

2. To convert the first 20,000 events in the GHEP file ‘myfile.ghep.root ’ into the ‘gst’ format and name
the output file ‘out.root ’, type:

$ gntpc -i myfile.ghep.root -f gst -n 20000 -o out.root

7.6.2 Formats supported by gntpc

The ‘gst’ format

The ‘gst’ is a GENIE summary ntuple format. It is a simple, plain ntuple that can be easily used for
plotting in interactive ROOT sessions. The stored ROOT TTree contains the following branches:

• iev (int): Event number.

• neu (int): Neutrino PDG code.

• tgt (int): Nuclear target PDG code (10LZZZAAAI).

• Z (int): Nuclear target Z.

• A (int): Nuclear target A.

• hitnuc (int): Hit nucleon PDG code (not set for coherent, inverse muon decay and ve- elastic
events).

• hitqrk (int): Hit quark PDG code (set for deep-inelastic scattering events only).

• sea (bool): Hit quark is from sea (set for deep-inelastic scattering events only).

• resid (bool): Produced baryon resonance id (set for resonance events only).

• qel (bool): Is it a quasi-elastic scattering event?

• res (bool): Is it a resonanec neutrino-production event?

• dis (bool): Is it a deep-inelastic scattering event?

• coh (bool): Is it a coherent meson production event?

• dfr (bool): Is it a diffractive meson production event?

• imd (bool): Is it an invese muon decay event?

• nuel (bool): Is it a ve- elastic event?

• cc (bool): Is it a CC event?

7.6. EVENT TREE CONVERSIONS 113

• nc (bool): Is it a NC event?

• charm (bool): Produces charm?

• neut_code (int): The equivalent NEUT reaction code (if any).

• nuance_code (int): The equivalent NUANCE reaction code (if any).

• wght (double): Event weight.

• xs (double): Bjorken x (as was generated during the kinematical selection / off-shell kinematics).

• ys (double): Inelasticity y (as was generated during the kinematical selection / off-shell kinematics).

• ts (double): Energy transfer to nucleus (nucleon) at coherent (diffractive) production events (as
was generated during the kinematical selection).

• Q2s (double): Momentum transfer Q2 (as was generated during the kinematical selection / off-shell
kinematics) (in GeV 2).

• Ws (double): Hadronic invariant mass W (as was generated during the kinematical selection /
off-shell kinematics).

• x (double): Bjorken x (as computed from the event record).

• y (double): Inelasticity y (as computed from the event record).

• t (double): Energy transfer to nucleus (nucleon) at coherent (diffractive) production events (as
computed from the event record).

• Q2 (double): Momentum transfer Q2 (as computed from the event record) (in GeV 2).

• W (double): Hadronic invariant mass W (as computed from the event record).

• Ev (double): Incoming neutrino energy (in GeV).

• pxv (double): Incoming neutrino px (in GeV).

• pyv (double): Incoming neutrino py (in GeV).

• pzv (double): Incoming neutrino pz (in GeV).

• En (double): Initial state hit nucleon energy (in GeV).

• pxn (double): Initial state hit nucleon px (in GeV).

• pyn (double): Initial state hit nucleon py (in GeV).

• pzn (double): Initial state hit nucleon pz (in GeV).

• El (double): Final state primary lepton energy (in GeV).

• pxl (double): Final state primary lepton px (in GeV).

• pyl (double): Final state primary lepton py (in GeV).

• pzl (double): Final state primary lepton pz (in GeV).

• nfp (int): Number of final state p and p̄ (after intranuclear rescattering).

114 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

• nfn (int): Number of final state n and n̄.

• nfpip (int): Number of final state π+.

• nfpim (int): Number of final state π−.

• nfpi0 (int): Number of final state π0.

• nfkp (int): Number of final state K+.

• nfkm (int): Number of final state K−.

• nfk0 (int): Number of final state K0 and K̄0.

• nfem (int): Number of final state γ, e−and e+.

• nfother (int): Number of heavier final state hadrons (D+/-,D0,Ds+/-,Lamda,Sigma,Lamda_c,Sigma_c,...).

• nip (int): Number of ‘primary’ (‘primary’ : before intranuclear rescattering) p and p̄.

• nin (int): Number of ‘primary’ n and n̄.

• nipip (int): Number of ‘primary’ π+.

• nipim (int): Number of ‘primary’ π−.

• nipi0 (int): Number of ‘primary’ π0.

• nikp (int): Number of ‘primary’ K+.

• nikm (int): Number of ‘primary’ K−.

• nik0 (int): Number of ‘primary’ K0 and K̄0.

• niem (int): Number of ‘primary’ γ, e−and e+ (eg from nuclear de-excitations or from pre-
intranuked resonance decays).

• niother (int): Number of other ‘primary’ hadron shower particles.

• nf (int): Number of final state particles in hadronic system.

• pdgf (int[kNPmax]): PDG code of kth final state particle in hadronic system.

• Ef (double[kNPmax]): Energy of kth final state particle in hadronic system (in GeV).

• pxf (double[kNPmax]): Px of kth final state particle in hadronic system (in GeV).

• pyf (double[kNPmax]): Py of kth final state particle in hadronic system (in GeV).

• pzf (double[kNPmax]): Pz of kth final state particle in hadronic system (in GeV).

• ni (int): Number of particles in the ‘primary’ hadronic system (‘primary’ : before intranuclear
rescattering).

• pdgi (int[kNPmax]): PDG code of kth particle in ‘primary’ hadronic system.

• Ei (double[kNPmax]): Energy of kth particle in ‘primary’ hadronic system (in GeV).

• pxi (double[kNPmax]): Px of kth particle in ‘primary’ hadronic system (in GeV).

7.6. EVENT TREE CONVERSIONS 115

• pyi (double[kNPmax]): Py of kth particle in ‘primary’ hadronic system (in GeV).

• pzi (double[kNPmax]): Pz of kth particle in ‘primary’ hadronic system (in GeV).

• vtxx (double): Vertex x in detector coord system (in SI units).

• vtxy (double): Vertex y in detector coord system (in SI units).

• vtxx (double): Vertex z in detector coord system (in SI units).

• vtxt (double): Vertex t in detector coord system (in SI units).

• calresp0 (double): An approximate calorimetric response to the generated hadronic vertex actibity,
calculated by summing up: the kinetic energy for generated {π+, π−, p, n}, the energy+mass for
generated {p̄, n̄}, the (e/h)*energy for generated {π0, γ, e−, e+} (with an e/h = 1.3) and the
kinetic energy for any other generated particle.

Using ROOT to plot quantities stored in a ‘gst’ ntuple The ‘gst’ summary ntuples make it
especially easy to plot GENIE information in a ROOT/CINT session. Some examples are given below:

1. To draw a histogram of the final state primary lepton energy for all νµ CC DIS interactions with
an invariant mass W > 3 GeV, then type:
root[0] gst->Draw(“El”,”dis&&cc&&neu==14&&Ws>3”);

2. To draw a histogram of all final state π+ energies in CC RES interactions, then type:
root[0] gst->Draw(“Ef”,”pdgf==211&&res&&cc”);

The ‘gxml’ format

The ‘gxml’ format is a GENIE XML-based event format2.

Each event is included within <ghep> </ghep> tags as in:

<ghep np = "{number of particles; int}"

unphysical = "{is it physical?; boolean (T/F)}">

</ghep>

Both information with event-wide scope such as:

<wght> {event weight; double} </wght>

<xsec_evnt> {event cross section; double} </xsec_evnt>

<xsec_kine> {cross section for event kinematics; double} </xsec_kine>

<vx> {vertex x in detector coord system (SI); double} </vx>

<vy> {vertex y in detector coord system (SI); double} </vy>

<vz> {vertex z in detector coord system (SI); double} </vz>

<vt> {vertex t (SI); double} </vt>

2In the format description that follows, the curly braces within tags are to be ‘viewed’ as a single value of the specified
type with the specified semantics. For example ‘{number of particles; int}’ is to be thought of as an integer value describing
a number particles.

116 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

and a full list of the generated particles is included between the <ghep> tags. The information for
each generated particle is expressed as:

<p idx = "{particle index in event record; int}"

type = "{particle type; char (F[ake]/P[article]/N[uleus])}">

<pdg> {pdg code; int} </pdg>

<ist> {status code; int} </ist>

<mother>

<fst> {first mother index; int} </fst>

<lst> {last mother index; int} </lst>

</mother>

<daughter>

<fst> {first daughter index; int} </fst>

<lst> {last daughter index; int} </lst>

</daughter>

<px> {Px in GeV; double} </px>

<py> {Py in GeV; double} </py>

<pz> {Pz in GeV; double} </pz>

<E> {E in GeV; double} </E>

<x> {x in fm; double} </x>

<y> {y in fm; double} </y>

<z> {z in fm; double} </z>

<t> {t; always set to 0} </t>

<ppolar> {polarization, polar angle; in rad} </ppolar>

<pazmth> {polarization, azimuthal angle; in rad} </pazmth>

</p>

The ‘rootracker’ formats

The ‘rootracker’ format is a standardized bare-ROOT GENIE event tree format evolved from work on
integrating the GENIE simulations with the nd280, INGRID and 2km detector-level simulations. In
recent versions of GENIE that format was renamed to ‘t2k_rootracker’, with ‘rootracker’ now being a
more generic, stripped-down (excudes pass-through JPARC flux info etc.) version of the T2K variance.

The ‘rootracker’ tree branch names, leaf types and a short description is given below. For the JNUBEAM
branches please consult the corresponding documentation:

• EvtNum (int): Event number

• EvtFlags (TBits*): [GENIE] Event flags.

• EvtCode (TObjString*): [GENIE] A string event code.

• EvtXSec (double): [GENIE] Event cross section (in 1038cm2).

7.6. EVENT TREE CONVERSIONS 117

• EvtDXSec (double): [GENIE] Differential cross section for the selected kinematics in the Kn space
(in 1038cm2/ [Kn]). Typically, Kn is: {Q2} for QEL, {Q2,W} for RES, {x, y} for DIS and COH,
{y} for ve− etc.

• EvtWght (double): [GENIE] Event weight.

• EvtProb (double): [GENIE] Event probability (given cross section, density-weighted path-length,
etc).

• EvtVtx (double[4]): [GENIE] Event vertex position (x, y, z, t) in the detector coordinate system
(in SI).

• StdHepN (int): [GENIE] Number of entries in the particle array.

• StdHepPdg (int): [GENIE] kth particle PDG code.

• StdHepStatus (int): [GENIE] kth particle status code (Generator-specific: For GENIE see GHep-
Status_t).

• StdHepRescat (int): [GENIE] kth particle intranuclear rescattering code (Hadron-transport model
specific: For INTRANUKE/hA see INukeFateHA_t).

• StdHepX4 (double [kNPmax][4]): [GENIE] kth particle 4-position (x, y, z, t) in the hit nucleus
rest frame (in fm)

• StdHepP4 (double [kNPmax][4]): [GENIE] kth particle 4-momentum (px, py, pz, E) in the LAB
frame (in GeV).

• StdHepPolz (double [kNPmax][3]): [GENIE] kth particle polarization vector.

• StdHepFd (int [kNPmax]): [GENIE] kth particle first-daughter index.

• StdHepLd (int [kNPmax]): [GENIE] kth particle last-daughter index.

• StdHepFm (int [kNPmax]): [GENIE] kth particle first-mother index.

• StdHepLm (int [kNPmax]): [GENIE] kth particle last-mother index.

The following branches exist only in the ‘t2k_rootracker’ variance:

• NuParentPdg (int): [JNUBEAM] Parent PDG code.

• NuParentDecMode (int): [JNUBEAM] Parent decay mode.

• NuParentDecP4 (double [4]): [JNUBEAM] Parent 4-momentum at decay.

• NuParentDecX4 (double [4]): [JNUBEAM] Parent 4-position at decay.

• NuParentProP4 (double [4]): [JNUBEAM] Parent 4-momentum at production.

• NuParentProX4 (double [4]): [JNUBEAM] Parent 4-position at production.

• NuParentProNVtx (int): [JNUBEAM] Parent vertex id.

118 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

• G2NeutEvtCode (int): corresponding NEUT reaction code for the GENIE event.

The following branches exist only in the ‘numi_rootracker’ variance3:

• NumiFluxRun (int): [GNUMI] Run number.

• NumiFluxEvtno (int): [GNUMI] Event number (proton on target).

• NumiFluxNdxdz (double): [GNUMI] Neutrino direction slope (dx/dz) for a random decay.

• NumiFluxNdydz (double): [GNUMI] Neutrino direction slope (dy/dz) for a random decay.

• NumiFluxNpz (double): [GNUMI] Neutrino momentum (GeV/c) along z direction (beam axis).

• NumiFluxNenergy (double): [GNUMI] Neutrino energy (GeV/c) for a random decay.

• NumiFluxNdxdznea (double): [GNUMI] Neutrino direction slope (dx/dz) for a decay forced at
center of near detector.

• NumiFluxNdydznea (double): [GNUMI] Neutrino direction slope (dy/dz) for a decay forced at
center of near detector.

• NumiFluxNenergyn (double): [GNUMI] Neutrino energy for a decay forced at center of near
detector.

• NumiFluxNwtnear (double): [GNUMI] Neutrino weight for a decay forced at center of near
detector.

• NumiFluxNdxdzfar (double): [GNUMI] Neutrino direction slope (dx/dz) for a decay forced at
center of far detector.

• NumiFluxNdydzfar (double): [GNUMI] Neutrino direction slope (dy/dz) for a decay forced at
center of far detector.

• NumiFluxNenergyf (double): [GNUMI] Neutrino energy for a decay forced at center of far
detector.

• NumiFluxNwtfar (double): [GNUMI] Neutrino weight for a decay forced at center of far detector.

• NumiFluxNorig (int): [GNUMI] Obsolete

• NumiFluxNdecay (int): [GNUMI] Decay mode that produced neutrino4

3More details on the GNuMI beam simulation outputs can be found at
http://www.hep.utexas.edu/~zarko/wwwgnumi/v19/

4

– 1: K0L -> nue pi- e+

– 2: K0L -> nuebar pi+ e-

– 3: K0L -> numu pi- mu+

– 4: K0L -> numubar pi+ mu-

– 5: K+ -> numu mu+

– 6: K+ -> nue pi0 e+

– 7: K+ -> numu pi0 mu+

– 8: K- -> numubar mu-

7.6. EVENT TREE CONVERSIONS 119

• NumiFluxNtype (int): [GNUMI] Neutrino flavor.

• NumiFluxVx (double): [GNUMI] Position of hadron/muon decay, X coordinate.

• NumiFluxVy (double): [GNUMI] Position of hadron/muon decay, Y coordinate.

• NumiFluxVz (double): [GNUMI] Position of hadron/muon decay, Z coordinate.

• NumiFluxPdpx (double): [GNUMI] Parent momentum at decay point, X - component.

• NumiFluxPdpy (double): [GNUMI] Parent momentum at decay point, Y - component.

• NumiFluxPdpz (double): [GNUMI] Parent momentum at decay point, Z - component.

• NumiFluxPpdxdz (double): [GNUMI] Parent dx/dz direction at production.

• NumiFluxPpdydz (double): [GNUMI] Parent dy/dz direction at production.

• NumiFluxPppz (double): [GNUMI] Parent Z momentum at production.

• NumiFluxPpenergy (double): [GNUMI] Parent energy at production.

• NumiFluxPpmedium (int): [GNUMI] Tracking medium number where parent was produced.

• NumiFluxPtype (int): [GNUMI] Parent particle ID (PDG)

• NumiFluxPpvx (double): [GNUMI] Parent production vertex, X coordinate (cm).

• NumiFluxPpvy (double): [GNUMI] Parent production vertex, Y coordinate (cm).

• NumiFluxPpvz (double): [GNUMI] Parent production vertex, Z coordinate (cm).

• NumiFluxMuparpx (double): [GNUMI] Repeat of information above, but for muon neutrino
parents.

• NumiFluxMuparpy (double): [GNUMI] -//-.

• NumiFluxMuparpz (double): [GNUMI] -//-.

• NumiFluxMupare (double): [GNUMI] -//-.

• NumiFluxNecm (double): [GNUMI] Neutrino energy in COM frame.

• NumiFluxNimpwt (double): [GNUMI] Weight of neutrino parent.

• NumiFluxXpoint (double): [GNUMI] Unused.

• NumiFluxYpoint (double): [GNUMI] Unused.

• NumiFluxZpoint (double): [GNUMI] Unused.

– 9: K- -> nuebar pi0 e-

– 10: K- -> numubar pi0 mu-

– 11: mu+ -> numubar nue e+

– 12: mu- -> numu nuebar e-

– 13: pi+ -> numu mu+

– 14: pi- -> numubar mu-

120 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

• NumiFluxTvx (double): [GNUMI] Exit point of parent particle at the target, X coordinate.

• NumiFluxTvy (double): [GNUMI] Exit point of parent particle at the target, Y coordinate.

• NumiFluxTvz (double): [GNUMI] Exit point of parent particle at the target, Z coordinate.

• NumiFluxTpx (double): [GNUMI] Parent momentum exiting the target, X - component.

• NumiFluxTpy (double): [GNUMI] Parent momentum exiting the target, Y- component.

• NumiFluxTpz (double): [GNUMI] Parent momentum exiting the target, Z - component.

• NumiFluxTptype (double): [GNUMI] Parent particle ID exiting the target.

• NumiFluxTgen (double): [GNUMI] Parent generation in cascade5.

• NumiFluxTgptype (double): [GNUMI] Type of particle that created a particle flying of the target.

• NumiFluxTgppx (double): [GNUMI] Momentum of a particle, that created a particle that flies
off the target (at the interaction point), X - component.

• NumiFluxTgppy (double): [GNUMI] Momentum of a particle, that created a particle that flies
off the target (at the interaction point), Y - component.

• NumiFluxTgppz (double): [GNUMI] Momentum of a particle, that created a particle that flies
off the target (at the interaction point), Z - component.

• NumiFluxTprivx (double): [GNUMI] Primary particle interaction vertex, X coordinate.

• NumiFluxTprivy (double): [GNUMI] Primary particle interaction vertex, Ycoordinate.

• NumiFluxTprivz (double): [GNUMI] Primary particle interaction vertex, Z coordinate.

• NumiFluxBeamx (double): [GNUMI] Primary proton origin, X coordinate.

• NumiFluxBeamy (double): [GNUMI] Primary proton origin, Y coordinate.

• NumiFluxBeamz (double): [GNUMI] Primary proton origin, Z coordinate.

• NumiFluxBeampx (double): [GNUMI] Primary proton momentum, X - component.

• NumiFluxBeampy (double): [GNUMI] Primary proton momentum, Y - component.

• NumiFluxBeampz (double): [GNUMI] Primary proton momentum, Z - component.

The ‘tracker’ formats

The ‘tracker’-type format is a legacy event format used by some fortran-based event generators (eg.
NUANCE) and detector-level simulations (eg. SuperK’s Geant3-based SKDETSIM). GENIE includes a
number of ‘tracker’ format variations:

5

– 1: Primary proton,

– 2: Particles produced by proton interaction,

– 3: Particles produced by interactions of the 2’s,

– ...

7.6. EVENT TREE CONVERSIONS 121

* ‘t2k_tracker’:

This is tracker-type format with all the tweaks required for passing GENIE events into the Geant3-based
SuperK detector MC. In the ‘t2k_tracker’ files:

• The begging of event file is marked with a $begin line, while the end of the file is marked by an
$end line.

• Each new event is marked with a $genie line. What follows is a reaction code. Since GENIE
doesn’t use integer reaction codes, it is writting-out the corresponding NEUT reaction code for the
generated GENIE event. This simplifies comparisons between the GENIE and NEUT samples in
SuperK physics analyses.

• The $vertex line is being used to pass the interaction vertex position in the detector coordinate
system in SI units

• The $track lines are being used to pass minimal information on (some) initial / intermediate state
particles (as expected by SKDETSIM) and all final state particles to be tracked by the detector
simulation. Each $track line includes the particle PDG code, its energy, its direction cosines and a
‘status code’ (Not to be confused with GENIE’s status code. The ‘tracker’ file status code expected
by SKDETSIM is ‘-1’ for initial state particles, ‘0’ for stable final states and ‘-2’ for intermediate
particles).

Some further clarifications are in order here:

• K0, K̄0 generated by GENIE are converted to K0
L, K0

S (as expected by SKDETSIM)

• Since no mother / daughter associations are stored in $track lines only one level of intermediates
can exist (the ‘primary’ hadronic system). Any intermediate particles corresponding to states
evolved from the ‘primary’ hadronic state but before reaching the ‘final state’ are neglected.

• The $track line ordering is the one expected by SKDETSIM with all the primaries, intermediates
and final states grouped together.

The ‘t2k_tracker’ format includes a set of $info lines. They include the exact same information as the
one stored ‘t2k_rootracker’ format files (complete event information generated by GENIE and JPARC
/ JNUBEAM flux pass-through information). This is partially redundant information (some of it was
included in the minimal $track lines) that is not intended for pushing particles through the detector
simulation. The $info lines are read-in by SKDETSIM and are passed-through to the DST stage so that
the identical, full MC information is available for events simulated on both SuperK and the near detector
complex (thus enabling global systematic studies).

A complete event in ‘t2k_tracker’ format looks-like:

$begin

$genie {neut_like_event_type}

$vertex {vtxx} {vtxy} {vtxz} {vtxt}

$track {pdg code} {E} {dcosx} {dcosy} {dcosz} {status}

$track {pdg code} {E} {dcosx} {dcosy} {dcosz} {status}

...

$track {pdg code} {E} {dcosx} {dcosy} {dcosz} {status}

122 CHAPTER 7. ANALYZING OUTPUT EVENT SAMPLES

$info {event_num} {error_code} {genie_event_type}

$info {event_xsec} {event_kinematics_xsec} {event_weight} {event_probability}

$info {vtxx} {vtxy} {vtxz} {vtxt}

$info {nparticles}

$info {idx}{pdg}{status}{fd}{ld}{fm}{lm}{px}{py}{pz}{E}{x}{y}{z}{t}{polx}{poly}{polz}

$info {idx}{pdg}{status}{fd}{ld}{fm}{lm}{px}{py}{pz}{E}{x}{y}{z}{t}{polx}{poly}{polz}

...

$info {idx}{pdg}{status}{fd}{ld}{fm}{lm}{px}{py}{pz}{E}{x}{y}{z}{t}{polx}{poly}{polz}

$info (jnubeam_parent_pdg) (jnubeam_parent_decay_mode)

$info (jnubeam_dec_px) (jnubeam_dec_py) (jnubeam_dec_pz) (jnubeam_dec_E)

$info (jnubeam_dec_x) (jnubeam_dec_y) (jnubeam_dec_z) (jnubeam_dec_t)

$info (jnubeam_pro_px) (jnubeam_pro_py) (jnubeam_pro_pz) (jnubeam_pro_E)

$info (jnubeam_pro_x) (jnubeam_pro_y) (jnubeam_pro_z) (jnubeam_pro_t)

$info (jnubeam_nvtx)

$end

7.7 Units

GENIE is using the natural system of units (~ = c = 1) so (almost) everything is expressed in [GeV]n.
Notable exceptions are the event vertex (in SI units, in the detector coordinate system) and particle po-
sitions (in fm, in the hit nucleus coordinate system). Additionally, although internally all cross sections
are expressed in the natural system units, values copied to certain files (eg ‘rootracker’- or ‘tracker’-format
files) are converted to 1038cm2 (See the corresponding documentation for these file formats).

GENIE provides an easy way for converting back and forth between its internal, natural system of
units and other units. The conversion factors are included in ‘$GENIE/src/Conventions/Units.h’.

For exampe, in order to convert a cross section value returned by ‘a_function()’ from the natural system
of units to 1038cm2, type:

double xsec = a_function() / (1E-38 * units::cm2);

Chapter 8

Non-Neutrino Event Generation Modes

8.1 Introduction

[to be added in future revision]

8.2 Hadron (and Photon) - Nucleus scattering

[to be added in future revision]

8.2.1 The gevgen_hadron event generation application

Name

gevgen_hadron - A GENIE hadron+nucleus event generation application.

Source

The source code for this utility may be found in ‘$GENIE/src/stdapp/ gEvGenHadronNucleus.cxx’.

Synopsis

$ gevgen_hadron

[-n number_of_events] -p probe_pdg_code -t target_pdg_code
-k kinetic_energy [-m mode]

[-f flux] [-o output_file_prefix][-r run#]
[-seed random_number_seed] [--message-thresholds xml_file]

[--event-record-print-level level] [--mc-job-status-refresh-rate rate]

Description

The following options are available:

-n Specifies the number of events to generate. This is an optional argument. By default it is
set to ‘10000’.

123

124 CHAPTER 8. NON-NEUTRINO EVENT GENERATION MODES

-p Specifies the incoming hadron PDG code. The choice is limited to the hadrons that can
be handled by the intranuclear cascade code that is invoked by the application (choice made via the -m
option).

-t Specifies the nuclear target PDG code. As usual the PDG2006 convention is used (10LZZZA-
AAI). So, for example, O16 code = 1000080160, Fe56 code = 1000260560. For more details see Appendix
D.

-k Specifies the incoming hadron’s kinetic energy (range). This option can be use to specify
either a single kinetic energy value (eg ‘-k 0.5’) or a kinetic energy range as a comma-separated set of
numbers (eg ‘-k 0.1,1.2’). The input values are taken to be in GeV. If no flux is specified then hadrons
will be fired towards the nucleus with a uniform kinetic energy distribution within the specified range. If
a kinetic energy spectrum is supplied then the hadron kinetic energies will be generated using the input
spectrum within the specified range.

-f Specifies the incoming hadron’s kinetic energy spectrum. This is an optional argument.
It can be either: a) a function, eg ‘x*x+4*exp(-x)’, or b) a text file containing 2 columns corresponding
to (kinetic energy {GeV}, ’flux’). If you do specify a flux then you need to specify a kinetic energy range
(not kust a single value).

-o Specifies the output filename prefix. This is an optional argument. It allows you to override the
output event file prefix. In GENIE, the output filename is built as:

‘prefix.run_number.event_tree_format.file_format’ where, in gevgen_hadro, by default, prefix:
‘gntp’ and event_tree_format: ‘ghep’ and file_format: ‘root’.

-m Specifies which intranuclear cascade model to use. This is an optional argument. Possi-
ble options are ‘hA’ (for the INTRANUKE hA model), ‘hN’ (for the INTRANUKE hN model). By
default it is set to ‘hA’.

-r Specifies the run number. This is an optional argument. By default it is set to ‘0’.

–seed Specifies the random number seed for the current job.

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be
seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

Examples

1. Generate 100k π+ + Fe56 events with a π+ kinetic energy of 165 MeV. Use seed number 10010.

$ gevgen_hadron -n 100000 -p 211 -t 1000260560 -k 0.165 --seed 10010

8.3. CHARGED LEPTON - NUCLEUS SCATTERING 125

ID Decay channel Current limit (×1034 yrs)

0 p→ e+π0 1.3
1 p→ µ+π0 1.1
2 p→ e+η0 0.42
3 p→ µ+η0 0.13
4 p→ e+ρ0 0.07
5 p→ µ+ρ0 0.02
6 p→ e+ω0 0.03
7 p→ µ+ω0 0.08
8 n→ e+π− 0.2
9 n→ µ+π− 0.1
10 p→ ν̄K+ 0.4

Table 8.1: Nucleon decay modes simulated in GENIE.

2. Generate 100k π++Fe56 events with the π+ kinetic energy distributed uniformly in the [165 MeV,
1200 MeV] range. Use default seed number.

$ gevgen_hadron -n 100000 -p 211 -t 1000260560 -k 0.165,1.200

3. Generate 100k π++Fe56 events with the π+ kinetic energy distributed as f(KE) = 1/KE in the [165
MeV, 1200 MeV] range. Use seed number 10010 and production-mode verbosity level (all message
thresholds set to warning).

$ gevgen_hadron -n 100000 -p 211 -t 1000260560 -k 0.165,1.200 -f ’1/x’

--seed 10010 --message-thresholds Messenger_laconic.xml

8.3 Charged Lepton - Nucleus scattering

[to be added in future revision]

8.4 Nucleon decay

The simulated nucleon decay modes are given in Tab.8.1. The primary decay is simulated using a
phase-space-decay generator. For bound nucleons, the nuclear environment is simulated as in neutrino
scattering. The nucleon is assigned a Fermi momentum and removal energy and it is off the mass shell.
The propagation of decay products is simulated using an intranuclear cascade Monte Carlo.

[expand]

8.4.1 The gevgen_ndcy event generation application

Name

gevgen_ndcy - A GENIE-based nucleon decay event generation application.

126 CHAPTER 8. NON-NEUTRINO EVENT GENERATION MODES

Source and build options

The source code for gevgen_ndcy may be found in
‘$GENIE/src/support/ndcy/EvGen/gNucleonDecayEvGen.cxx’.
To enable it add ‘--enable-nucleon-decay’ during the GENIE build configuration.

Synopsis

$ gevgen_ndcy

-n number_of_events -m nucleon_decay_mode
-g geometry [-t geometry_top_volume_name]
[-L geometry_length_units] [-D geometry_density_units]
[-o output_event_file_prefix] [-r run#]
[-seed random_number_seed] [--message-thresholds xml_file]

[--event-record-print-level level] [--mc-job-status-refresh-rate rate]

[-h]

where [] denotes an optional argument.

Description

The following options are available:

-n Specifies the number of events to generate.

-m Specifies the nucleon decay channel ID. The list of decay channels and the corresponding
ID is given in Tab. 8.1

-g Specifies the input detector geometry. This option can be used to specify any of:

• A ROOT file containing a ROOT / Geant4-based geometry description (TGeoManager).

Example:
To use the ROOT detector geometry description stored in the ‘/data/geo/laguna.root ’ file, type:
‘-g /data/geo/laguna.root’

By default the entire input geometry will be used. Use the ‘-t’ option to allow event generation
only on specific geometry volumes.

• A mix of target materials, each with its corresponding weight.
The target mix is specified as a comma-separated list of nuclear PDG codes (in the PDG2006 con-
vention: 10LZZZAAAI) followed by their corresponding weight fractions in brackets, as in:
‘-t code1[fraction1],code2[fraction2],...’

Example 1:
To use a target mix of 88.79% (weight fraction) O16 and 11.21% H (aka ‘water’) type:
‘-g 1000080160[0.8879],1000010010[0.1121]’

Example 2:
To use a target which is 100% C12, type:
‘-g 1000060120’

8.4. NUCLEON DECAY 127

-t Specifies the input top volume for event generation. This is an optional argument, relevant only
for ROOT-based detector geometry descriptions. By default, it is set to be the ‘master volume’ of the
input geometry resulting in neutrino events being generated over the entire geometry volume. If the ‘-t’
option is set, event generation will be confined in the specified detector volume. The option can be used
to simulate events at specific sub-detectors.
You can use the ‘-t’ option to switch generation on / off at multiple volumes. For further details, see
similar discussion in the description of other event generation applications (eg. gevgen_t2k).

-L Specifies the input geometry length units. This is an optional argument, relevant only for ROOT-
based detector geometry descriptions. By default, that option is set to ‘mm’. Possible options include:
‘m’, ‘cm’, ‘mm’, ...

-D Specifies the input geometry density units. This is an optional argument, relevant only for ROOT-
based detector geometry descriptions. By default, that option is set to ‘g_cm3’. Possible options include:
‘kg_m3’, ‘g_cm3’, ‘clhep_def_density_unit’,...

-o Specifies the output filename prefix. This is an optional argument. It allows you to override the
output event file prefix. In GENIE, the output filename is built as:

‘prefix.run_number.event_tree_format.file_format’ where, in gevgen_hadro, by default, prefix:
‘gntp’ and event_tree_format: ‘ghep’ and file_format: ‘root’.

-r Specifies the run number. This is an optional argument. By default it is set to ‘0’.

–seed Specifies the random number seed for the current job.

–message-thresholds Specifies the GENIE verbosity level. The verbosity level is controlled with
an XML file allowing users to customize the threshold of each message stream. The XML schema can be
seen in ‘$GENIE/config/Messenger.xml ’. The ‘Messenger.xml’ file contains the default thresholds used by
GENIE. The ‘Messenger_laconic.xml’ and ‘Messenger_rambling.xml’ files define, correspondingly, less
and more verbose configurations.

–event-record-print-level Allows users to set the level of information shown when the event 94 record
is printed in the screen. See GHepRecord::Print() for allowed settings.

–mc-job-status-refresh-rate Allows users to customize the refresh rate of the status file.

128 CHAPTER 8. NON-NEUTRINO EVENT GENERATION MODES

Chapter 9

Event Reweighting

9.1 Introduction

This chapter describes strategies for propagating neutrino interaction uncertainties. The reweighting
schemes described here are tied to the default physics choices made in GENIE and they have been imple-
mented in the GENIE ReWeight package. As GENIE evolves, by including better-motivated theoretical
models and integrating new data in its effective models1, the reweighting schemes need to be updated.
This evolution can not always be transparent but, to aid the user, we strive to keep this part of the user
and physics manual up to date. Also, as our understanding and the systematic analysis of the GENIE
model improves, new reweighting schemes are added.

For each neutrino-generator input physics quantity P , whose uncertainty is taken into account in
this work, we introduce a systematic parameter2 xP . Tweaking this systematic parameter modifies the
corresponding physics parameter P as follows:

P → P ′ = P (1 + xP ∗
δP

P
) (9.1)

where δP is the estimated standard deviation of P . Setting the systematic parameter to zero corresponds
to using the nominal value of the physics parameter. Tweaking the systematic parameter by ±1 modifies
the corresponding physics quantity P by ±δP . In this section, we provide a summary of all the sys-
tematic parameters included in this work, and a brief description of the corresponding tweaked physics
quantities P and, wherever possible, the assumed fractional errors δP/P . The quantity P may be a single
configurable parameter (eg. CCQE axial mass), or it may be a simple function of a kinematical parame-
ter (eg. a hadron-nucleus cross-section as a function of the hadron energy), or, more generally, it may be
any nominal MC prediction, which can not be easily expressed analytically or tabulated. For that reason,
it is always preferable to formulate the problem (eg. oscillation fits in presence of neutrino-interaction
nuisance parameters) in terms of xP .

A number of neutrino cross section systematics are considered in this chapter, and a complete list of
these is given in Tab. 9.1. The dominant systematics, for neutrino interactions in the few-GeV energy
range, include the axial mass for charged-current quasi-elastic scattering and the axial and vector masses
for both charged-current and neutral-current resonance neutrino production. Uncertainties in nuclear
effects (Pauli supression) in charged-current quasi-elastic reactions are taken into account by modifying
the Fermi momentum level kF . Uncertainties in the choice of vector form factors (dipole vs BBA2005) for

1 The GENIE development roadmap is outlined at: http://releases.genie-mc.org
2 The terms ‘systematic parameter’, ‘nuisance parameter’, ‘tweaking dial’ may be used interchangeably in this paper

and our presentations/discussions of this work.

129

130 CHAPTER 9. EVENT REWEIGHTING

charged-current quasi-elastic reactions are also taken into account. Charged-current and neutral-current
coherent pion production uncertainties are taken into account by modifying the corresponding axial mass
and the nuclear size parameter R0, which controls the pion absorption factor in the Rein-Sehgal (RS)
model. Uncertainties in the level of the non-resonance background are considered for all neutrino charged-
current and neutral-current 1π- and 2π-production channels. Finally, in order to consider uncertainties
in charged-current and neutral-current deep inelastic scattering, the most important parameters of the
Bodek-Yang (BY) model are taken into account. These BY uncertainties are considered only for events
in the ‘safe’ deep-inelastic kinematic regime (Q2 > 1 GeV 2/c2 and W > 2 GeV/c2) to avoid double
counting uncertainties in the resonance / transition region that have already been taken into account.

We consider a number of uncertainties in neutrino-induced hadronization and resonance decays. We
include uncertainties in the assignment of pion kinematics in Nπ hadronic states generated by the
Andreopoulos-Gallagher-Kehayias-Yang (AGKY) GENIE hadronization model, as well as uncertainties
in the in-medium modifications of the hadronization process. Uncertainties in the pion angular distribu-
tion in ∆ → πN decays and uncertainties in certain resonance-decay branching ratios are also taken into
account. The complete list is given in Tab. 9.2.

Finally, we consider two kinds of uncertainties affecting the INTRANUKE (hA) intranuclear hadron
transport model: Uncertainties in the total rescattering probability (mean free path) for hadrons within
the target nucleus and uncertainties in the conditional probability of each hadron rescattering mode
(elastic, inelastic, charge exchange, pion production and absorption / multi-nucleon knock-out), given
that a rescattering did occur. These physics uncertainties are considered separately for nucleons and
pions. The complete list of systematic parameters is given in Tab. 9.3.

9.1. INTRODUCTION 131

xP Description of P δP/P

xMNCEL
A

Axial mass for NC elastic ±25%

xηNCEL Strange axial form factor η for NC elastic ±30%

xMCCQE

A
Axial mass for CC quasi-elastic -15% +25%

xCCQE−Norm Normalization factor for CCQE

xCCQE−PauliSup CCQE Pauli suppression (via changes in Fermi level kF) ±35%

xCCQE−V ecFF Choice of CCQE vector form factors (BBA05 ↔ Dipole) -

xCCRES−Norm Normalization factor for CC resonance neutrino production

xNCRES−Norm Normalization factor for NC resonance neutrino production

xMCCRES
A

Axial mass for CC resonance neutrino production ±20%

xMCCRES
V

Vector mass for CC resonance neutrino production ±10%

xMNCRES
A

Axial mass for NC resonance neutrino production ±20%

xMNCRES
V

Vector mass for NC resonance neutrino production ±10%

xMCOHpi

A

Axial mass for CC and NC coherent pion production ±50%

xRCOHpi
0

Nuclear size param. controlling π absorption in RS model ±10%

xRνp,CC1π

bkg

Non-resonance bkg in νp CC1π reactions ±50%

xRνp,CC2π

bkg

Non-resonance bkg in νp CC2π reactions ±50%

xRνn,CC1π

bkg

Non-resonance bkg in νn CC1π reactions ±50%

xRνn,CC2π

bkg

Non-resonance bkg in νn CC2π reactions ±50%

xRνp,NC1π

bkg

Non-resonance bkg in νp NC1π reactions ±50%

xRνp,NC2π

bkg

Non-resonance bkg in νp NC2π reactions ±50%

xRνn,NC1π

bkg

Non-resonance bkg in νn NC1π reactions ±50%

xRνn,NC2π

bkg

Non-resonance bkg in νn NC2π reactions ±50%

xABY
HT

AHT higher-twist param in BY model scaling variable ξw ±25%

xBBY
HT

BHT higher-twist param in BY model scaling variable ξw ±25%

xCBY
V 1u

CV 1u u valence GRV98 PDF correction param in BY model ±30%

xCBY
V 2u

CV 2u u valence GRV98 PDF correction param in BY model ±40%

xCCDIS Inclusive CC cross-section normalization factor

xCCν̄/ν ν̄/ν CC ratio

xDIS−NuclMod DIS nuclear modification (shadowing, anti-shadowing, EMC)

Table 9.1: Neutrino interaction cross-section systematic parameters considered in GENIE. For some of
the above parameters there are two reweighting implementations: One which includes the full effect of
the systematic (shape + normalization) and one which includes only its effect on the shape of observable
distributions (maintains normalization). Note that some systematics have overlapping effects so care is
needed to avoid double counting.

132 CHAPTER 9. EVENT REWEIGHTING

xP Description of P δP/P

xpT1π
AGKY Pion transverse momentum (pT) for Nπ states in AGKY -

xxF1π
AGKY Pion Feynman x (xF) for Nπ states in AGKY -

xfz Hadron formation zone ±50%

x∆→πN
θπ

Pion angular distribution in ∆ → πN (isotropic ↔ RS) -

xR→X+1γ
BR Branching ratio for radiative resonance decays ±50%

xR→X+1η
BR Branching ratio for single-η resonance decays ±50%

Table 9.2: Neutrino-induced hadronization and resonance-decay systematic parameters considered in
this work.

xP Description of P δP/P

xNmfp Nucleon mean free path (total rescattering probability) ±20%

xNcex Nucleon charge exchange probability ±50%

xNel Nucleon elastic reaction probability ±30%

xNinel Nucleon inelastic reaction probability ±40%

xNabs Nucleon absorption probability ±20%

xNπ Nucleon π-production probability ±20%

xπmfp π mean free path (total rescattering probability) ±20%

xπcex π charge exchange probability ±50%

xπel π elastic reaction probability ±10%

xπinel π inelastic reaction probability ±40%

xπabs π absorption probability ±20%

xππ π π-production probability ±20%

Table 9.3: Intranuclear hadron transport systematic parameters considered in this work.

9.2. PROPAGATING NEUTRINO-CROSS SECTION UNCERTAINTIES 133

9.2 Propagating neutrino-cross section uncertainties

Unlike the propagation of hadronic simulation uncertainties (to be discussed later), which is challenging
as the probability for a generated multi-particle configuration is difficult to calculate analytically, the
propagation of neutrino interaction cross-section modelling uncertainties is relatively straightforward
using a generic reweighing scheme less strongly tied to the details of the physics modeling. Cross section
reweighing is modifying the neutrino interaction probability directly and, therefore the considerations on
unitarity conservation developed in the hadron transport reweighing section are not relevant here.

The neutrino event weight, wevt
σ , to account for changes in physics parameters controlling neutrino

cross sections is calculated as

wevt
σ = (dnσ′

ν/dK
n)/(dnσν/dK

n) (9.2)

where dnσ/dKn is the nominal differential cross section for the process at hand, dnσ′/dKn is the differ-
ential cross section computed using the modified input physics parameters. The differential cross section
is evaluated at the kinematical phase space {Kn}3. A critical point in implementing the cross section
reweighing scheme for scattering off nuclear targets, is that the correct off-shell kinematics, as used in
the original simulation, must be recreated before evaluating the differential cross sections. This is trivial
as long as detailed information for the bound nucleon target has been maintained by the simulation.

)
Bjorken

(x
10

log

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

)2
/1

G
eV

2
(Q

10
lo

g

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

-410

-310

-210

W
 = 1.

0 G
eV

W
 =

 1.
2 G

eV
W

 = 2.0 G
eV

2 = 1 GeV2Q

Figure 9.1: JPARC neutrino beam kinematic coverage at the nd280. Cross section uncertainties of
different magnitude are appropriate for different parts of the kinematic phase space.

3 In GENIE, typically, the Kn kinematical phase space is {Q2} for CC quasi-elastic and NC elastic, {Q2,W} for
resonance neutrino production, {x, y} for deep inelastic scattering and coherent or diffractive meson production, {y} for
νe− elastic scattering or inverse muon decay where Q2 is the momentum transfer, W the hadronic invariant mass, x is
Bjorken scaling variable and y the inelasticity. The choice is not significant. The differential cross section calculation can
be mapped from the Kn to the Kn′ kinematic phase space through the Jacobian for the Kn → Kn′ transformation.

134 CHAPTER 9. EVENT REWEIGHTING

W (GeV)
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

310×

Figure 9.2: True hadronic invariant mass, W, distribution for inelastic events in nd280 (shown with
the black solid line). The red hatched area shows the resonance contributions while the blue hatched
area shows the contributions from the type of inelastic events dubbed in GENIE as ‘transition-DIS’.
The remaining contributions are coming from the ‘safe-DIS’ and ‘low Q2 DIS’ components. Different
uncertainties are associated with each component: The resonance uncertainty is of the order of 20%, while
the ‘transition-DIS’ uncertainty is of the order of 50%. The uncertainty associated with the remaining
DIS component at higher invariant masses is significantly lower (of the order of 5% at an energy of 5
GeV and lower at higher energies) and have not been included at this first iteration of deploying the
reweighing tools.

9.3 Propagating hadronization and resonance decay uncertainties

Significant uncertainties exist in the modelling of neutrino-induced hadronization for neutrinos in the few-
GeV energy range. In the energy range of T2K, possibly the most important hadronization uncertainty
is that in the assignment of pion kinematics for Nπ hadronic states. In GENIE, low invariant-mass
hadronization is handled exclusively by the KNO-based model included in AGKY. This model uses
target-fragment Feynman x (xF) and transverse momentum (p2T) pdfs extracted from bubble chamber
data. The pdf used for xF has a particularly large effect on the characteristics of the generated hadronic
system since a preferentially backward-going (in the hadronic CM frame) heavy target-fragment (nucleon)
leads to a preferentially forward-going fast current-fragment (pion). This allows GENIE to reproduce the
experimental data on the backward/forward xF asymmetry. There is, however, experimental ambiguity
on whether this backward/forward asymmetry also exists for lower-multiplicity events. The xF and p2T
pdfs used in GENIE (v2.6.0) are shown in Figs. 9.3 and 9.4 respectively. They are parametrized as

f(xF) = Ae0.5(xF−<xF>)2/σ2

xF (9.3)

and

f(p2T) = Be−p2

T /<p2

T> (9.4)

In the reweighting scheme employed in this work, the systematic parameter xxF1π
AGKY (xpT1π

AGKY) is used
to tweak < xF > (< p2T >) in Eqs. 9.3 (9.4). This modifies the xF and p2T pdfs as shown in Figs. 9.5

9.3. PROPAGATING HADRONIZATION AND RESONANCE DECAY UNCERTAINTIES 135

and 9.6. Our reweighting code identifies events with a Nπ hadronic state produced by the AGKY model
and extracts the pion xF , p2T and the hadronic invariant mass W . For each such event, 2 × 104 Nπ
hadronic decays, with invariant mass W , are performed for both the default and tweaked values of the
xxF1π
AGKY and xpT1π

AGKY systematic parameters. The generated decays are analysed to obtain the default and
tweaked 2-dimensional pion-kinematics pdfs fdef

π (xF , p
2
T ;W) and f twk

π (xF , p
2
T ;W). The event weight is

computed as
w = f twk

π (xF , p
2
T ;W)/fdef

π (xF , p
2
T ;W) (9.5)

Fx
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

F
d

xd
N

)
0

(1
/N

0

0.02

0.04

0.06

0.08

0.1 Constant 0.004168± 0.08296

Mean 0.01943± -0.3845

Sigma 0.01602± 0.3617

Constant 0.004168± 0.08296

Mean 0.01943± -0.3845

Sigma 0.01602± 0.3617

Constant 0.004168± 0.08296

Mean 0.01943± -0.3845

Sigma 0.01602± 0.3617

Constant 0.004168± 0.08296

Mean 0.01943± -0.3845

Sigma 0.01602± 0.3617

data from Cooper
Neutrino 1982 proceedings

Figure 9.3: Nucleon Feynman x (xF) pdf used
in the GENIE AGKY model for generating the
kinematics of 2-body N + π primary hadronic
systems.

)2 (GeV2
T

p
0.05 0.1 0.15 0.2 0.25 0.3

)
-2

 (
G

eV
2 T

d
pd
N

)
0

(1
/N

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Constant 0.1369± -0.2134

Slope 1.155± -6.625

Constant 0.1369± -0.2134

Slope 1.155± -6.625

Constant 0.1369± -0.2134

Slope 1.155± -6.625

Constant 0.1369± -0.2134

Slope 1.155± -6.625

data from Derrick et al., PRD17, 1978

)2

T
(Constant+Slope*p

) = e2

T
f(p

Figure 9.4: Nucleon transverse momentum
(p2T) pdf used in the GENIE AGKY model for
generating the kinematics of 2-body N + π pri-
mary hadronic systems.

Formation-zone uncertainties

It is well established that hadrons produced in the nuclear environment do not immediately reinteract
with their full cross section. Initially quarks propagate through the nucleus with a dramatically reduced
probability of interaction as they have not yet materialized as hadrons. This is implemented in GENIE
as a ‘free step’ for all hadrons produced in deep-inelastic reactions. The ‘free step’, fz, which comes from
a formation time of τ0 = 0.342 fm/c, is calculated as

fz = pcτ0/m (9.6)

where p is the hadron momentum, m is the hadron mass and c is the speed of light.
In the reweighting scheme employed in this work, the original formation zone assigned to each hadron

during event generation is recovered from the distance between the intranuclear event vertex and the
hadron position as recorded at the beginning of the intranuclear cascade step. As usual, the systematic
parameter xfz modifies the formation zone:

fz → f ′
z = fz(1 + xfz ∗ δfz/fz) (9.7)

Weights are calculated in a way similar to that used when modifying the hadron mean free path (see
section 9.4). When the formation zone is tweaked, it alters the amount of nuclear matter through
which the hadron must propagate before it exits the target nucleus. The nominal and tweaked survival
probabilities are calculated as in Eq. 9.12 and a hadron weight is assigned as in Eq. 9.15. An event
weight is calculated as the product of particle weights for all particles in the primary hadronic system.

136 CHAPTER 9. EVENT REWEIGHTING

Fx
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

F
(1

/N
o)

dN
/d

x

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 9.5: Default xF pdf (solid line) and
tweaked pdfs (dotted lines) resulting from mod-
ifying the xxF1π

AGKY systematic parameter by ±1.

)2 (GeV2
T

p
-310 -210 -110

2 T
(1

/N
o)

dN
/d

p

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 9.6: Default p2T pdf (solid line) and
tweaked pdfs (dotted lines) resulting from mod-

ifying the xpT1π
AGKY systematic parameter by ±1.

Pion angular distribution uncertainties in ∆ → Nπ decay

In general, the pion angular distribution Wπ(cosθ) in ∆ → Nπ decay can be expressed as

Wπ(cosθ) = 1− p(
3

2
)P2(cosθ) + p(

1

2
)P2(cosθ) (9.8)

where θ is the pion production angle in the ∆ center of mass frame with respect to the ∆ angular
momentum quantization axis, P2 is the 2nd order Legendre polynomial and p(32), p(

1
2) are coefficients

for each state of ∆ angular momentum projection (32 , 1
2).

For simplicity, GENIE decays baryon resonances isotropically during event generation. Isotropy re-
quires p(32) = p(12) = 0.5 but the Rein-Sehgal (RS) model predicts p(32) = 0.75 and p(12) = 0.25. In
this work, we employ a reweighting scheme to quantify the uncertainty over the π angular momentum
distribution. A measure of this uncertainty is taken to be the difference between the isotropic and RS
predictions. The reweighting code identifies events with a ∆ + +(1232) decaying to a Nπ state. In a
nuclear environment, where hadronic rescattering is possible, the Nπ state produced may not necessarily
be the final hadronic state. Once the event is identified, the daughter π and parent ∆ 4-momenta in
the LAB frame are used to calculate the π 4-momentum in the ∆ center-of-mass frame. Then the π
production angle θ is calculated with respect to an arbitrarily-defined angular momentum quantization
axis (+z). Let W iso

π (cosθ) and WRS
π (cosθ) be, respectively, the π production-angle probability density

for the isotropic and RS cases, computed from Eq. 9.8. An event weight is constructed as follows:

w =
(
x∆→πN
θπ WRS

π (cosθ) + (1− x∆→πN
θπ)W iso

π (cosθ)
)
/W iso

π (cosθ) (9.9)

where x∆→πN
θπ

is the corresponding nuisance parameter. For x∆→πN
θπ

= 0, all weights are equal to 1,

i.e. this setting corresponds to the default case of isotropic ∆ decays. For x∆→πN
θπ

= 1, the calculated

weight is equal to WRS
π (cosθ)/W iso

π (cosθ); this reweights the isotropic pion angular distributions to those
predicted by RS. For values of x∆→πN

θπ
between 0 and 1, there is a linear transition between the isotropic

and RS angular distributions.

9.3. PROPAGATING HADRONIZATION AND RESONANCE DECAY UNCERTAINTIES 137

πθcos
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

) πθ
W

(c
os

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
RS

isotropy

Figure 9.7: Angular distributions for pions from ∆ → πN decays for various values of the x∆→πN
θπ

nuisance parameter between -1 and 1. The isotropic distribution (GENIE simulation default) is obtained
for x∆→πN

θπ
= 0. The RS model prediction is obtained for x∆→πN

θπ
= 1.

Branching ratio uncertainties

Reweighting events to account for changes in decay branching ratios is straightforward. It is important
to ensure that the sum of all branching ratios for each unstable particle remains unchanged.

Let xpd be a nuisance parameter which affects the branching ratio fp
d for the decay channel d which is

available to particle p. As usual in this work, the nuisance parameter modifies the corresponding physics
parameter (branching ratio) as fp

d → f ′p
d = fp

d (1 + xpd ∗ σfp

d
/fp

d), where σfp

d
is the uncertainty in the

branching ratio. In the reweighting scheme employed in this work, if any branching ratio of a given
particle is tweaked, then all decays of that particle are reweighted so that the sum of all branching ratios
remains unchanged. If xpd is tweaked, the weight for decay d is computed as follows:

wp
d =

f ′p
d

fp
d

(9.10)

For every other decay d′ 6= d of that particle a weight is computed as:

wp
d′ =

1− f ′p
d

1− fp
d

(9.11)

The above weight is assigned to a single unstable particle for which the branching ratio of any decay
channel has been altered. The event weight is the product of weights for all such particles.

138 CHAPTER 9. EVENT REWEIGHTING

9.4 Propagating intranuclear hadron transport uncertainties

Hadrons produced in the nuclear environment may rescatter on their way out of the nucleus, and these
reinteractions significantly modify the observable distributions. The simulated effect of hadronic reiniter-
actions is illustrated in Tab. 9.4 and Fig. 9.8. The sensitivity of a particular experiment to intranuclear
rescattering depends strongly on the detector technology, the energy range of the neutrinos, and the
physics measurement being made.

 KE (GeV)+π
0.0 0.1 0.2 0.3 0.4 0.5 0.6

ev
en

ts
 /

10
 M

eV

0.0

0.2

0.4

0.6

0.8

1.0

3
10×

+πfinal state

+πprimary

 KE (GeV)+π

0.0 0.1 0.2 0.3 0.4 0.5 0.6

fin
al

 s
ta

te
 /

pr
im

ar
y

0.5

1.0

1.5

Figure 9.8: Kinetic energy spectrum of final state and primary (before rescattering) π+ produced in
νµFe

56 interactions at 1 GeV.

Neutrino generators typically use intranuclear cascade simulations to handle the propagation of
hadronic multi-particle states. At each simulation step a large number of outcomes is accessible with
the probabilities of those outcomes being conditional upon the hadron transport history up to that point.
The complexity of intranuclear hadron transport makes it difficult to evaluate the probability for a gen-
erated multi-particle final state, given a primary hadronic multi-particle system, without resorting to a
Monte Carlo method. Subsequently, is not possible to evaluate how that probability ought to be modified
in response to changes in the fundamental physics inputs. As a result it is generally not possible to build
comprehensive reweighing schemes for intranuclear hadron-transport simulations.

In this regard GENIE’s INTRANUKE/hA model is unique by virtue of the simplicity of the simulation
while, at the same time, it exhibiting very reliable aspects by being anchored to key hadron-nucleon and
hadron-nucleus data. Its simplicity allows a rather straightforward probability estimate for the generated
final state making it amenable to reweighing. A full systematic analysis of the model is therefore possible
making it a unique tool in the analysis of neutrino data. The event reweighing strategy to be presented
here is specific to GENIE’s INTRANUKE/hA model. The current reweighing implementation has been
tied to the physics choices made in the GENIE v2.4.04.

4 The validity of the current reweighing implementation in future versions of GENIE is dependent upon the IN-
TRANUKE/hA changes that may be installed. The T2KReWeight package will always be updated and kept in sync
with GENIE. In case of important updates a follow-up internal note will be posted.

9
.4

.
P

R
O

P
A

G
A
T

IN
G

IN
T

R
A

N
U

C
L
E

A
R

H
A

D
R

O
N

T
R

A
N

S
P

O
R
T

U
N

C
E

R
T
A

IN
T

IE
S

1
3
9

Final- Primary Hadronic System

State 0πX 1π0X 1π+X 1π−X 2π0X 2π+X 2π−X π0π+X π0π−X π+π−X

0πX 293446 12710 22033 3038 113 51 5 350 57 193

1π0X 1744 44643 3836 491 1002 25 1 1622 307 59

1π+X 2590 1065 82459 23 14 660 0 1746 5 997

1π−X 298 1127 1 12090 16 0 46 34 318 1001

2π0X 0 0 0 0 2761 2 0 260 40 7

2π+X 57 5 411 0 1 1999 0 136 0 12

2π−X 0 0 0 1 0 0 134 0 31 0

π0π+X 412 869 1128 232 109 106 0 9837 15 183

π0π−X 0 0 1 0 73 0 8 5 1808 154

π+π−X 799 7 10 65 0 0 0 139 20 5643

Table 9.4: Occupancy of primary and final state hadronic systems for interactions offO16 computed with GENIE v2.4.0. The off-diagonal
elements illustrate and quantify the topology changing effect of intranuclear rescattering.

140 CHAPTER 9. EVENT REWEIGHTING

Any intranuclear hadron-transport reweighing strategy should, by virtue of construction, have no
effect on the inclusive leptonic distributions of the reweighted sample, as illustrated in Fig. 9.9. In this
paper we will be referring to that probability conservation condition as the ‘unitarity constraint’. We
emphasize the fact that the constraint needs to hold only for unselected samples. It does not need to hold
for selected samples, where the normalization is expected to vary due to the effect of the cut acceptance.

The unitarity constraint is obviously very difficult to satisfy by virtue of construction and has had a
significant role in determining the reweighing strategy. Additionally, the constraint played an important
role in validating the reweighing scheme and in matching exactly all physics assumptions of the original
simulation. The most profound effect of weighting artifacts is to cause the unitarity constraint to be
violated. We will revisit the issue of the unitarity constraint in later sections and, particularly, on the
discussion of the reweighing validation.

ν

l

N

Figure 9.9: Consider the effect of modifying the intranuclear hadron-transport physics (affecting the
particles within the box) from the perspective of an observer who is blind to the hadronic system emerging
from the nucleus and measures only the primary lepton. One can easily assert that, from the perspective
of that observer, the hadron-transport reweighing scheme should have no effect on the leptonic system
characteristics of samples that have not been selected for hadronic system characteristics. The event
weights must cancel each other so as the sum of weights is conserved, therefore maintaining the sample
normalization. We will be referring to that condition as the ‘unitarity constraint’. As we will see in
the reweighing validation section, the scheme discussed in this note satisfies the unitarity constraint, by
virtue of construction, to better than 1 part in 5000.

In the reweighing strategy developed here we consider 2 kinds of physics uncertainties:

9.4. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 141

• Uncertainties in the total rescattering probability for hadrons within the target nucleus.

• Uncertainties in the relative probability of rescattering modes available to each hadron once it
interacts.

These physics uncertainties are considered separately for nucleons and pions. The determination of
simulation parameters linked with these physics uncertainties and the prescription for calculating event
weights to account for variations in these parameters is discussed next.

Reweighting the rescattering rate

During event generation, for each hadron being propagated within the nuclear environment its rescattering
probability, P h

rescat (or, equivalently the survival probability, P h
surv) is calculated as

P h
rescat = 1− P h

surv = 1−

∫
e−r/λh(~r,h,Eh)dr (9.12)

where λh is the mean free path and the integral is evaluated along the hadron trajectory. The mean free
path is a function of the hadron type, h, the hadron energy, Eh, and its position, ~r, within the target
nucleus and is computed as

λh = 1/(ρnucl(r) ∗ σ
hN (Eh)) (9.13)

where ρnucl(r) is the nuclear density profile and σhN (Eh) the corresponding hadron-nucleon total cross
section.

During the reweighing procedure, using the positions and 4-momenta of the simulated primary
hadronic system particles (that is the hadrons emerging from the primary interaction vertex before
any intranuclear rescattering ever took place) we calculate the exact same hadron survival probabilities
as in the original simulation. In doing so we match exactly the physics choices of the hadron transport
simulation code so as to avoid weighting artifacts. More importantly:

• The reweighing code accesses the same hadron-nucleon cross section and nuclear density profile
functions as the simulation code. The nuclear density profiles for 12C, 16O and 56Fe and the
nucleon-nucleon and pion-nucleon cross sections used by INTRANUKE/hA in GENIE v2.4.0 are
shown in Figs. 9.10 and 9.11 respectively.

• The hadrons are being transported in steps of 0.05 fm as in the original simulation.

• Each hadron is traced till it reaches a distance of r = N ∗ Rnucl = N ∗R0 ∗ A
1/3, where R0 = 1.4

fm and N = 3.0. This allows taking into account the effect the nuclear density distribution tail
has on the hadron survival probability. (For example, the nuclear radius, Rnucl for C12, O16 and
Fe56 is 3.20 fm, 3.53 fm and 5.36 fm respectively. The reweighing, as the actual simulation code,
integrates Eq. 9.12 for distances up to 9.62 fm, 10.58 fm and 16.07 fm respectively. Compare these
values with the nuclear density profiles shown in Fig. 9.10.)

• The nuclear density distribution through which the hadron is tracked is increased by n ∗λB , where
λB is the de Broglie wave-length of the hadron and n is a tunable parameter (in GENIE v2.4.0,
INTRANUKE/hA uses n = 1 for nucleons and n = 0.5 for pions). As explained earlier, this empir-
ical approach is an important feature of the INTRANUKE/hA mean free path tuning, accounting
for the effects of wave-like processes to the hadron survival probability which are typically not well
described within the context of an INC model. The reweighing code matches that feature so as
to emulate the hadron survival probabilities calculated during event generation. The effect on the
nuclear density profile is shown in Fig. 9.12.

142 CHAPTER 9. EVENT REWEIGHTING

The reweighing scheme allows the mean free path, λh, for a hadron type h to be modified in terms of its
corresponding error, δλh:

λh → λh′ = λh(1 + xhmfp ∗ δλ
h/λh) (9.14)

where λh′ is the modified mean free path and xmfp is a tweaking knob. Then, by re-evaluating the integral
in Eq. 9.12, we are able to compute the hadron survival probabilities that the simulation code would
have computed, had it been using the modified mean free path. The nominal, P h

surv, and tweaked, P h′
surv,

survival probabilities can be used to calculate the weight that accounts for that change in the hadron
mean free path. The choice of how to weight each hadron depends critically on its intranuclear transport
history. Consider the case illustrated in Fig. 9.13 where a neutrino event has 2 primary hadrons, h1 and
h2, one of which (h1) re-interacts while the other (h2) escapes. Had the mean free path been larger than
the one used in the simulation (and therefore, had the the interaction probability been lower) then h1’s
history would have been more unlikely while, on the other hand, h2’s history would have been more likely.
Therefore, in order to account for an increase in mean free path, h1 has to be weighted down while h2
has to be weighted up (and vice versa for a mean free path decrease). The desired qualitative behavior
of single-hadron weights in response to mean free path changes is summarized in Tab. 9.5. The following
weighting function exhibits the desired qualitative characteristics:

wh
mfp =

1−Ph′

surv

1−Ph
surv

if hre-interacts

Ph′

surv

Ph
surv

if hescapes

(9.15)

where P h
surv is the hadron survival probability corresponding to mean free path λh and P h′

surv is the
hadron survival probability corresponding to the tweaked mean free path λh′.

r (fm)
1 2 3 4 5 6 7

)
-3

de
ns

ity
 (

(g
r/

m
ol

)*
fm

0

20

40

60

80

100

120

140

160

180
-310×

12C
16O

56Fe

Figure 9.10: Nuclear density profiles for C12, O16 and Fe56.

9.4. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 143

hadron kinetic energy (MeV)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

3
10×

 (
m

b)
hNσ

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18
3

10×
GENIE v2.4.0, hN cross sections

Figure 9.11: The nucleon-nucleon (dashed line) and pion-nucleon (solid line) cross sections used in IN-
TRANUKE/hA (GENIE v2.4.0) for determining the hadron mean free path.

r (fm)
0 2 4 6 8 10

)
-3

de
ns

ity
 (

(g
r/

m
ol

)*
fm

0

20

40

60

80

100

120

140

160

180
-310×

default

0.1

0.5

1.0

Figure 9.12: Nuclear density profiles for Fe56 ‘stretched’ by the de-Broglie wave-length corresponding to
hadrons with a momentum of 0.1 GeV, 0.5 GeV and 1.0 GeV. The default nuclear density distribution is
also shown.

144 CHAPTER 9. EVENT REWEIGHTING

ν

l

N
1h

2h

Figure 9.13: An example event with two primary hadrons, h1 and h2, one of which (h1) re-interacts
within the target nucleus while the other escapes (h2). See text for a description of the weights to be
assigned to each hadron if the mean free path has been tweaked.

9.4. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 145

λh change P h
rescatchange Weight Weight

(hadrons interacting) (hadrons escaping)

⇑ ⇓ ⇓ ⇑

⇓ ⇑ ⇑ ⇓

Table 9.5: The intended qualitative behavior of hadron weights in response to mean free path, λh, changes
depending on whether the simulated hadron had been rescattered or escaped. Had the mean free path been
larger in reality than the one used in the simulation (and therefore, had the the interaction probability,
P h
rescat, been lower) then rescattered hadrons would have been over-represented in the generated sample

and they would need to be weighted-down to match reality, while escaping hadrons would have been
under-represented and they would need to be weighted-up. Vice versa for a mean free path decrease. See
text for description of the hadron weighting functions.

Reweighting the rescattering fates

Once INTRANUKE/hA determines that a particular hadron is to be rescattered, then a host of scattering
modes are available to it. We will be referring to these scattering modes as the hadron fates. Many fates
are considered for both pions and nucleons. The fates considered here are: elastic, inelastic, charge
exchange5, absorption6, and pion production. Each such fate may include many actual rescattering
channels 7.

In order to calculate the probability of each fate INTRANUKE/hA, being an effective data-driven
hadron transport MC, switches to a more macroscopic description of hadron rescattering: Rather than
building everything up from hadron-nucleon cross sections, at this point in event simulation, INTRANUKE/hA
determines the probability for each fate using built-in hadron-nucleus cross sections coming primarily from
data. The probability for a hadron fate f is

P h
f = σhA

f /σhA
total (9.16)

where σhA
f is the hadron-nucleus cross section for that particular fate and σhA

total is the total hadron-
nucleus cross section. The calculated probabilities are conditional upon a hadron being rescattered and
the sum of these probabilities over all possible fates should always add up to 1. The default probability
fractions for pions and nucleons in INTRANUKE/hA (GENIE v2.4.0) are shown in Fig. 9.14 and 9.15.

The generation strategy leads to a conceptually simple and technically straight-forward fate reweigh-
ing strategy: The hadron-nucleus cross section for a particular fate may be modified in terms of its
corresponding error, δσhA

f as in:

σhA
f → σ′hA

f = σhA
f (1 + xhf ∗ δσhA

f /σhA
f) (9.17)

where xf is a fate tweaking knob.
It follows that the single-hadron fate weight is

wh
fate =

∑

f

δf ;f ′ ∗ xhf ∗ δσhA
f /σhA

f (9.18)

5Only single charge exchange is considered
6 Followed by emission of 2 or more nucleons with no pions in the final state. The term ‘absorption’ is usually used

for pions while the term ‘multi-nucleon knock-out’ is used for nucleons. Here, for simplicity and in the interest of having
common fate names for both pions and nucleons we will be using the term ‘absorption’ for both.

7 For example, the ‘pion absorption’ fate includes rescattering modes with any of the np, pp, npp, nnp, nnpp final states

146 CHAPTER 9. EVENT REWEIGHTING

where f runs over all possible fates {elastic, inelastic, charge exchange, absorption, pion production}, f ′
is the actual fate for that hadron as it was determined during the simulation and δf ;f ′ is a factor which
is 1 if f = f ′ and 0 otherwise.

Not all 5 hadron fates may be tweaked simultaneously. Since the sum of all fractions should add
up to 1 then, at most, at most 4 out of the 5 fates may be tweaked directly. The fates not tweaked
directly (cushion terms) are adjusted automatically to conserve the sum. The choice of which fates act
as a cushion terms is configurable.

In Fig. 9.16 we show the tweaked pion fate fraction (dashed lines) obtained by simultaneously in-
creasing the pion production, absorption, charge exchange and inelastic cross sections by 10%. In this
example the elastic component is being used as a cushion term absorbing the changes in all other terms
so as to maintain the total probability. The default pion fate fractions (solid lines) are superimposed for
reference.

 kinetic energy (MeV)π
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

310×

fr
ac

tio
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

elastic

inelastic

cex

absorption

 productionπ

A fate fractionsπGENIE v2.4.0,

Figure 9.14: The default fate fractions for rescattered pions in INTRANUKE/hA (GENIE v2.4.0). The
area that corresponds to each pion fate represents the probability for that fate as a function of the pion
kinetic energy. The probabilities shown here conditional upon the pion interacting so they always add
up to 1.

Computing event weights

The scheme outlined above, provides a detailed prescription for calculating single-hadron weights so as to
take into account the effect that modified hadron-nucleon and hadron-nucleus cross sections would have
had on that hadron (wh

mfp and wh
fate respectively). The total single-hadron weight is

wh = wh
mfp ∗w

h
fate (9.19)

9.4. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 147

nucleon kinetic energy (MeV)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

310×

fr
ac

tio
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

elastic

inelastic

cex

absorption

 productionπ

GENIE v2.4.0, NA fate fractions

Figure 9.15: The default fate fractions for rescattered nucleons in INTRANUKE/hA (GENIE v2.4.0).
The area that corresponds to each nucleon fate represents the probability for that fate as a function of
the nucleon kinetic energy. The probabilities shown here conditional upon the nucleon interacting so they
always add up to 1.

The corresponding hadron transport (HT) related weight for a neutrino interaction event, wevt
HT , is,

obviously, the product of single-hadron weights

wevt
HT =

∏

j

wh
j (9.20)

where the index j runs over all the primary hadronic system particles in the event.

Computing penalty terms

A penalty term can easily be calculated from the physics tweaking knobs which can be included as
nuisance parameters in physics fits. The penalty has components, penalizing deviations from the default
total rescattering rate and from the default fractions of rescattering modes. It can be written as

χ2
penalty =

∑

h=π,N

{(xhmfp)
2 +

∑

f 6=fc

(xhf)
2 + (x̂hfc)

2} (9.21)

where the x′s correspond to mean free path and fate tweaking knobs for pions and nucleons The sum
over fates, f , excludes the cushion term, fc, which is added separately. The reason is technical: All
directly tweaked hadron-nucleus cross sections are tweaked in units of their own (typically hadron energy-
dependent) uncertainty, therefore having a corresponding contribution to penalty term which is energy
independent. The change in the cushion term, being forced to absorb the other changes, is not well

148 CHAPTER 9. EVENT REWEIGHTING

 kinetic energy (MeV)π
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

310×

fr
ac

tio
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

elastic

inelastic

cex

absorption

 productionπ

A fate fractionsπGENIE v2.4.0,

Figure 9.16: The default (solid lines) and tweaked (dashed lines) pion fate fractions. The tweaked pion
fate fractions are shown for a case where the pion production, absorption, charge exchange and inelastic
cross sections have been increased by 10%. Here it is the elastic cross section term that is being used as
the cushion term. See text for details.

defined in terms of its own uncertainty. Therefore, its contribution in the penalty term, x̂hfc
2

, is averaged
over the hadron energy range.

Unitarity expectations

This section demonstrates why both the intranuclear reweighting schemes presented earlier are expected
to maintain unitarity. In general, when reweighting an event, we multiply by a weight w

w =
P ′

P
. (9.22)

where P and P ′ are the probabilities for getting that event8, for the nominal and tweaked cases
respectively, and they depend on the particular event being reweighted.

When describing processes where multiple discrete outcomes are possible then the analytical form of
the above probabilities will change depending on the outcome. An example of this is the case of mean
free path (rescattering rate) reweighting where the fate of an event can be divided into two categories:
Those that rescattered and those that escaped the nucleus. The two forms of P in this case are,

Prescat = 1− e
−x
λ (9.23)

and

8In this section an event is defined as the transport of a single hadron.

9.4. PROPAGATING INTRANUCLEAR HADRON TRANSPORT UNCERTAINTIES 149

Psurv = e
−x
λ . (9.24)

Thus a hadron that rescattered will receive a weight, reflecting a change in mean free path of λ→ λ′,
of

wrescat =
1− e

−x

λ′

1− e
−x
λ

(9.25)

whereas one that escaped the nucleus will get a weight

wsurv =
e

−x

λ′

e
−x
λ

(9.26)

Take the general case where there are n possible outcomes and where the i’th outcome occurs with a
probability Pi. For a set of Ntot events one expects

Ni = Ntot ×
Pi∑n
j=1 Pj

(9.27)

events corresponding to the i’th outcome.
Now consider reweighting all Ntot events. Events corresponding to the i’th outcome get weighted by

wi so that the after reweighting the number of events for the i’th outcome is given by

N ′
i = wi ×Ni. (9.28)

Note that Eq. 9.28 holds only if we consider just the functional dependance of the weights on the weighting
parameters9. The number of events in the new reweighted sample is given by

N ′
tot =

Ntot∑

j=1

wevt
j

=

n∑

i=1

woutcome
i ×Ni

=

n∑

i=1

P ′
i

Pi
×Ni.

Substituting Eq. 9.27 we get,

N ′
tot = Ntot ×

∑n
i=1 P

′
i∑n

j=1 Pj
.

So if
n∑

i=1

Pi =

n∑

i=1

P ′
i (9.29)

then N ′
tot = Ntot and unitarity is conserved.

In the case of rescattering,

9We neglect any functional dependance on kinematical quantities. This is a valid assumption if the density of events,
defined as the number in a given volume of kinematical phase space, is high enough such that a statistically significant
number of neighboring events cover a small enough volume in the kinematical phase space over which the effect of the
variation in kinematical quantities is negligible.

150 CHAPTER 9. EVENT REWEIGHTING

n∑

i=1

Pi = Prescat + Psurv

= 1− e
−x
λ + e

−x
λ

= 1− e
−x

λ′ + e
−x

λ′

= P ′
rescat + P ′

surv

=

n∑

i=1

P ′
i

So for the rescattering scheme we expect unitarity to be a built in feature. This is also true for the
fate reweighting where the cushion term ensures Eq. 9.29 is satisfied. It is worth highlighting that the
unitarity constraint is sensitive to any differences between the generator and the reweighting scheme.
This is also why a particular implementation of a reweighting scheme is not generator agnostic.

9.5 Event reweighting applications

9.5.1 Built-in applications

The grwght1scan utility

Name

grwght1scan - Generates weights given an input GHEP event file and for a given systematic parameter
(supported by the ReWeight package). It outputs a ROOT file containing a tree with an entry for every
input event. Each such tree entry contains a TArrayF of all computed weights and a TArrayF of all used
tweak dial values.

Source and build options

The source code for this application is in ‘$GENIE/src/support/rwght/gRwght1Scan.cxx ’.
To enable this application (and, also, to build the ReWeight package library) add ‘--enable-rwght’ during
the GENIE build configuration step.

Synopsis

grwght1scan

-f input_filename

[-n number_of_events]

-s systematic_name

-t number_of_tweaking_diall_values

[-p neutrino_codes]

where [] is an optional argument.

Description

The following options are available:

-f Specifies an input GHEP event file.

9.5. EVENT REWEIGHTING APPLICATIONS 151

-n Specifies the number of events to process.

This is an optional argument. By default GENIE will process all events.

-s Specifies the name of the systematic param to tweak.

-t Specifies the number of the systematic parameter tweaking dial values between -1 and 1.

Note: This must be an odd number so as to include al; -1, 0 and 1. If it is an even number then it
will be incremented by 1.

-p If set, specifies which neutrino species to reweight.

This is an optional argument. By default GENIE will reweight all neutrino species. The expected
input is a comma separated list of PDG codes.

Examples

9.5.2 Writing a new reweighting application

Writing a new reweighting application is relatively trivial. The built-in applications described above can
be used as a template and be modified accordingly. A GReWeight object provides an interface between
the user and the GENIE event reweighting objects (weight calculators). GReWeight holds both a list of
weight calculators (GReWeightI subclasses), each one referred-to by a user-specified name, and a set of
tweaked systematic parameters (GSystSet object).

Typically, in an event reweighting application one would have to include at least the following steps:

• Instantiate a GReWeight object and add to it a set of concrete weight calculators. For example
(modify accordingly by adding / removing weight calculators from this list):

GReWeight rw;

rw.AdoptWghtCalc("xsec_ccqe", new GReWeightNuXSecCCQE);

rw.AdoptWghtCalc("xsec_ccqe_vec", new GReWeightNuXSecCCQEvec);

rw.AdoptWghtCalc("xsec_ccres", new GReWeightNuXSecCCRES);

rw.AdoptWghtCalc("xsec_ncres", new GReWeightNuXSecNCRES);

rw.AdoptWghtCalc("xsec_nonresbkg", new GReWeightNonResonanceBkg);

rw.AdoptWghtCalc("xsec_dis", new GReWeightNuXSecDIS);

rw.AdoptWghtCalc("xsec_coh", new GReWeightNuXSecCOH);

rw.AdoptWghtCalc("nuclear_qe", new GReWeightFGM);

rw.AdoptWghtCalc("nuclear_dis", new GReWeightDISNuclMod);

rw.AdoptWghtCalc("hadro_res_decay", new GReWeightResonanceDecay);

rw.AdoptWghtCalc("hadro_fzone", new GReWeightFZone);

rw.AdoptWghtCalc("hadro_intranuke", new GReWeightINuke);

rw.AdoptWghtCalc("hadro_agky", new GReWeightAGKY);

• Retrieve and fine-tune weight calculators. This is an optional step. Each calculator is retrieved
from GReWeight using the user-defined name specified in the previous step. Fine-tuning methods

152 CHAPTER 9. EVENT REWEIGHTING

are specific to each weight calculator, so please refer to the documentation for each individual cal-
culator. For example, to disable νe, ν̄e and ν̄µ reweighting in GReWeightNuXSecCCQE stored with
the “xsec_calc” name, type:

GReWeightNuXSecCCQE * rwccqe =

dynamic_cast<GReWeightNuXSecCCQE *> (

rw.WghtCalc("xsec_ccqe"));

rwccqe -> RewNue (false);

rwccqe -> RewNuebar (false);

rwccqe -> RewNumubar(false);

• Get the GSystSet object held by GReWeight and tweak all systematic params you wish to consider
(complete list to be found in ‘$GENIE/src/ReWeight/GSyst.h’). What you are actually setting is the
value d of a tweaking dial (default value: 0) which modifies a corresponding physics parameter p
as p → p′ = p× (1 + d× (dp/p)). Setting a tweaking dial to +/−1 modifies a physics quantity by
+/− 1 σ respectivelly. The default fractional errors dp/p are defined in GSystUncertainty and can
be overriden. The following example sets non-default values to a series of systematics parameters
handled by the weight calculators included in the previous step. After all parameters have been
tweaked, invoke GReWeight::Reconfigure() so that tweaked parameters can be propagated across
GENIE. You probably need to be setting these parameters and reconfiguring GENIE inside a ‘pa-
rameter loop’ or a ‘minimization function’.

GSystSet & syst = rw.Systematics();

syst.Set(kXSecTwkDial_NormCCQE, +1.0);

syst.Set(kXSecTwkDial_MaCCQEshape, +1.0);

syst.Set(kXSecTwkDial_NormCCRES, -1.0);

syst.Set(kXSecTwkDial_VecFFCCQEshape, -1.0);

syst.Set(kXSecTwkDial_MaCCRESshape, -1.0);

syst.Set(kXSecTwkDial_MvCCRESshape, +0.5);

syst.Set(kXSecTwkDial_NormNCRES, +1.0);

syst.Set(kXSecTwkDial_MaNCRESshape, -0.7);

syst.Set(kXSecTwkDial_MvNCRESshape, +0.3);

syst.Set(kXSecTwkDial_RvpCC1pi, +0.5);

syst.Set(kXSecTwkDial_RvnCC1pi, +0.5);

syst.Set(kXSecTwkDial_MaCOHpi, -0.5);

syst.Set(kINukeTwkDial_MFP_pi, +1.0);

syst.Set(kINukeTwkDial_MFP_N, -1.0);

syst.Set(kINukeTwkDial_FrPiProd_pi, -0.7);

syst.Set(kHadrAGKYTwkDial_xF1pi, -1.0);

syst.Set(kHadrAGKYTwkDial_pT1pi, +1.0);

syst.Set(kHadrNuclTwkDial_FormZone, +1.0);

syst.Set(kRDcyTwkDial_Theta_Delta2Npi, +1.0);

rw.Reconfigure();

9.6. ADDING A NEW EVENT REWEIGHTING CLASS 153

• Calculate an event weight by invoking GReWeight::CalcWeight(). The function expects an Even-
tRecord object as input. The return value is the calculated weight and is computed as the product
of the weights computed by all included weight calculators for the current set of systematics /
tweaking dial values stored in GSystSet. You can also calculate a penalty factor, χ2

penalty , for the
current set of systematic tweaking dial values by invoking GReWeight::CalcChisq().

Important notes The reweighting package includes a large number of weight calculators handling
a large numbers of systematic parameters. Alternative reweighting schemes may exist for the same
systematic parameter. It is the user’s responsibilty to make sure that all parameters tweaked in GSystSet
are handled by exactly one weight calculator added via GReWeight::AdoptWeightCalc(). Additionally,
certain systematic parameters should not be combined together. For example, you should tweak either
kXSecTwkDial_MaCCQE (tweakes the axial mass used in the CCQE cross section model and allows it to
change both the shape and the normalization of the output dσ/dQ2 distribution at fixed energy), OR
kXSecTwkDial_NormCCQE and kXSecTwkDial_MaCCQEshape (where the normalization and shape-effects have
been separated) and you should never mix them all together. All in all, a good understanding of the
effect of each included systematic parameter and weight calculator (see this Chapter) is imperative in
order to get meaningfull results.

9.6 Adding a new event reweighting class

A large number of event reweighting classes (weight calculators) exist within GENIE and can serve as
examples. One can easily add a new concrete weight calculator which can be integrated with the existing
reweighting framework. This new calculator should subclass GReWeightI and implement, at least, the
following methods:

• ‘bool IsHandled(genie::GSyst_t syst)’ :
Declare whether the weight calculator handles the input systematic parameter.

• ‘void SetSystematic(genie::GSyst_t syst, double val)’ :
Update the current value for the specified systematic parameter.

• ‘void Reset(void)’ :
Set all handled systematic parameters to default values.

• ‘void Reconfigure(void)’ :
Propagate updated systematic parameter values to actual GENIE MC code, if needed.

• ‘double CalcWeight(const genie::EventRecord & event)’ :
Calculate a weight for the input event using the current values of all handled systematic parameters.

• ‘double CalcChisq(void)’ :
Calculate a penalty factor for the current deviation of all handled systematic params from their
default values.

This is the minimum set of methods required by GENIE itself. More methods, specific to each weight
calculator, can be added and used in the user’s event reweighting application so as to fine-tune the
behaviour of each calculator.

Note that if you are adding a weight calculator to quantify the effect of a new systematic parameter,
one which is not already included in ‘$GENIE/src/ReWeight/GSyst.h’, then also you need to:

• add the new parameter in ‘$GENIE/src/ReWeight/GSyst.h’, and

• define a default 1 σ error in ‘$GENIE/src/ReWeight/GSystUncertainty.cxx ’.

154 CHAPTER 9. EVENT REWEIGHTING

Appendix A

Copyright Notice and Citation

Guidelines

(c) 2003-2015, GENIE Collaboration

For all communications:
Dr. Constantinos Andreopoulos < costas.andreopoulos@stfc.ac.uk >

University of Liverpool STFC Rutherford Appleton Laboratory

Physics Department Department of Particle Physics

Liverpool L69 7ZE, UK Harwell Oxford Campus, Oxfordshire OX11 0QX, UK

TEL: +44-(0)1517-943201 TEL: +44-(0)1235-445091

FAX: +44-(0)1235-446733

The license conditions may be found in http://copyright.genie-mc.org

A.1 Guidelines for Fair Academic Use

The authors of GENIE endorse the MCNET guidelines1 for fair academic use. In particular, users are
invited to consider which GENIE components are important for a particular analysis and cire them, in
addition to the main references.

A.2 Main references

All derivative works should cite:

C.Andreopoulos et al., ‘The GENIE Neutrino Monte Carlo Generator’, Nucl.Instrum.Meth. A614:87-
104,2010.

1Full text may be found at http://www.montecarlonet.org/GUIDELINES

155

http://copyright.genie-mc.org

156 APPENDIX A. COPYRIGHT NOTICE AND CITATION GUIDELINES

Corresponding BibTEX entry:

@Article{Andreopoulos:2009rq,

author = "Andreopoulos, C. and others",

title = "{The GENIE Neutrino Monte Carlo Generator}",

journal = "Nucl. Instrum. Meth.",

volume = "A614",

year = "2010",

pages = "87-104",

eprint = "0905.2517",

archivePrefix = "arXiv",

primaryClass = "hep-ph",

doi = "10.1016/j.nima.2009.12.009",

SLACcitation = "%%CITATION = 0905.2517;%%"

}

Appendix B

Special Topics, FAQs and

Troubleshooting

B.1 Installation / Versioning

B.1.1 Making user-code conditional on the GENIE version

User-code can be made conditional upon the GENIE version number, in similar way as with ROOT, by
including ‘$GENIE/src/Conventions/GVersion.h’. This header file is automatically generated during the
GENIE installation. If, for example, one wishes to do something different before / after version 2.16.22,
then simply type:

#if __GENIE_RELEASE_CODE__ >= GRELCODE(2,16,22)

...

<your code here>
...

#else

...

<your code here>
...

#endif

B.2 Software framework

B.2.1 Calling GENIE algorithms directly

GENIE provides a host of event generation applications and utilities and most users will only ever interact
with these. It is only for the most advanced GENIE uses-cases that one may need to access and run
algorithms directly. This is typically a 4-step process, as outlined below:

1. Get an algorithm factory (AlgFactory) instance. The algorithm factory provides access to config-
ured instances of all GENIE algorithms.

AlgFactory * algf = AlgFactory::Instance();

157

158 APPENDIX B. SPECIAL TOPICS, FAQS AND TROUBLESHOOTING

2. Request a concrete algorithm from the factory. Each algorithm is uniquely specified by its name
and the name of its configuration parameter set.

const Algorithm * alg_base = algf->GetAlgorithm(“name”, “config”);

3. Type-cast Algorithm to the specific algorithmic interface (XyzI) being implemented. For example,
for cross section algorithms type-cast to XSecAlgorithmI, for hadronization models to Hadroniza-
tionModelI, for strucrure function models to DISStructureFuncModelI, for event generation modules
to EventRecordVisitorI etc (please consult the GENIE doxygen code reference for a full list of pos-
sibilities).

const XzyI * alg = dynamic_cast<const XyzI *>(alg_base);

4. Prepare the algorithm inputs and run it (please consult GENIE doxygen code reference for docu-
mentation on each algorithmic interface).

Example 1

The following example shows how to get the Rein-Sehgal resonance neutrino-production model, calculate
the differential cross section d2σ/dWdQ2 for νµ+n (bound in Fe56) → µ−+P11(1440) at Eν =2.4 GeV ,
W=1.35 GeV , Q2=1.1 GeV 2 and then calculate the integrated cross section at the same energy:

{

...

// get the algorithm factory

AlgFactory * algf = AlgFactory::Instance();

// get the cross section algorithm

const Algorithm * algbase =

algf->GetAlgorithm("genie::ReinSeghalRESPXSec", "Default"));

const XSecAlgorithmI * xsec_model =

dynamic_cast<const XSecAlgorithmI *> (algbase);

// prepare the cross section algorithm inputs

Interaction * interaction

= Interaction::RESCC(kPdgTgtFe56,kPdgNeutron,kPdgNuMu);

interaction->InitStatePtr()->SetProbeE(2.4);

interaction->KinePtr()->SetW(1.35);

interaction->KinePtr()->SetQ2(1.1);

interaction->ExclTagPtr()->SetResonance(kP11_1440);

// calculate d2sigma/dWdQ2 differential cross section

// (in 1E-38 cm^2 / GeV^3)

double diff_xsec = xsec_model->XSec(

interaction, kPSWQ2fE) / (1E-38 * units::cm2);

// get the integrated cross section

// (in 1E-38 cm^2)

B.3. PARTICLE DECAYS 159

double intg_xsec = xsec_model->Integral(

interaction) / (1E-38 * units::cm2);

...

}

B.2.2 Plugging-in to the message logging system

The message logging system is based on the log4cpp library. GENIE provides the Messenger class which
enforces common formatting for messages emitted by GENIE classes and provides an easier interface to
the log4cpp library. Messages are sent using one of the

• LOG(stream, priority),

• LOG_FATAL(stream),

• LOG_ALERT(stream),

• LOG_CRIT(stream),

• LOG_ERROR(stream),

• LOG_WARN(stream),

• LOG_NOTICE(stream),

• LOG_INFO(stream)

• LOG_DEBUG(stream)

Messenger macros as shown in B.1. Each message is assigned a priority level (see Table B.1) that can be
used for message filtering using the

void genie::Messenger::SetPriorityLevel(const char * stream log4cpp::Priority::Value priority)

method as shown in B.1. Each message is ’decorated’ with its time stamp, its priority level, its stream
name and the name space / class name / method name / line of code from where it was emitted

time priority stream name : <method signature (line of code)> : actual message

For example:

10891167 ERROR Config:<bool genie::ConfigPool::LoadXMLConfig() (100)>: Parsing failed

B.3 Particle decays

B.3.1 Deciding which particles to decay

GENIE attempts to simulate the complex physics within the nuclear environment and, by default, it
considers that every particle which escapes the target nucleus has left its realm. It is the responsibility
of the detector simulation to handle particles that propagate more than a few fermis before decaying.

160 APPENDIX B. SPECIAL TOPICS, FAQS AND TROUBLESHOOTING

Message Priority Levels

pFATAL

pALERT

pCRIT

pERROR

pWARN

pNOTICE

pINFO

pDEBUG

Table B.1: Priority levels in GENIE / log4cpp shown in decreasing importance.

Algorithm B.1 Example use of the GENIE / log4cpp message logging.

{
...
LOG(“stream-name”, pFATAL) << “ a fatal message”;
LOG(“stream-name”, pERROR) << “ an error message”;
LOG(“stream-name”, pWARN) << “ a warning”;

// alternative ways to send messages
LOG_ERROR(“stream-name”) << “ another error message”;
LOG_WARN(“stream-name”) << “ another warning”;

...
Messenger * msg = Messenger::Instance(); // get a messenger instance

...
msg->SetPriorityLevel(“stream-name”,pERROR); // set message threshold to ’ERROR’

...
LOG(“stream-name”, pALERT) << “ an alert – passes the message thershold”;
LOG(“stream-name”, pDEBUG) << “ a debug message – filtered / not shown”;

...
}

B.4. NUMERICAL ALGORITHMS 161

GENIE, for example, in its default mode, will not decay charmed hadrons. If, like many others, you think
that these are “short-lived” particles GENIE ought to decay then consider this: If a C12 nucleus was as
big as the Earth, then these particles would decay more than a light year away (cτ0(Λ

+
c)/(C

12radius) ∼
2 × 1010, cτ0(Ds)/(C

12radius) ∼ 5 × 1010, etc). Similarly, GENIE won’t decay τ leptons. The default
GENIE settings are appropriate as we do not want to be making any assumption regarding the user’s
detector technology and its ability to detect these short tracks. (Decaying τ leptons is obviously not
desirable for an emulsion detector.) By default, GENIE does not inhibit any kinematically allowed
channel. Users can modify these options (see next chapter).

B.3.2 Setting particle decay flags

The default particle decay flag choices were described in the previous chapter. One can easily override the
default GENIE choices by setting a series of “DecayParticleWithCode=i” flags at the ‘$GENIE/config/UserPhysicsOptions.xml’
configuration file, where i is the particle’s PDG code.

For example, to enable decays of τ− leptons (PDG code = 15), one needs to change:
<param type=”bool” name=”DecayParticleWithCode=15”> false </param>

to:
<param type=”bool” name=”DecayParticleWithCode=15”> true </param>

B.3.3 Inhibiting decay channels

By default, GENIE does not inhibit any kinematically allowed channel. However, for certain studies,
a user may wish to inhibit certain uninteresting decay channels in order to speed up event generation.
This can be done by setting a series of “InhibitDecay/Particle=i,Channel=j” configuration options at
the ‘$GENIE/config/UserPhysicsOptions.xml’ file, where i is the particle’s PDG code and j the decay
channel ID. To figure out the decay channel code numbers use the print_decay_channels.C script in
‘$GENIE/src/contrib/misc/’ (GENIE uses the ROOT ‘TDecayChannel ’ IDs).

For example, to inbibit the τ− lepton (PDG code = 15) τ− → ντe
−ν̄e decay channel (decay channel

ID = 0), one needs to type:

<param type=”bool” name=InhibitDecay/Particle=15,Channel=0”> true </param>

B.4 Numerical algorithms

B.4.1 Random number periodicity

GENIE is using ROOT’s Mersenne Twistor random number generator with periodicity of 106000. See the
ROOT TRandom3 class for details. In addition GENIE is structured to use several random number gen-
erator objects each with its own "independent" random number sequence (see discussion in ROOT TRan-
dom class description). GENIE provides different random number generators for different types of GENIE
modules: As an example, RandomGen::RndHadro() returns the generator to by used in hadronization
models, RandomGen::RndDec() returns the generator to be used by decayers, RandomGen::RndKine()
returns the generator to be used by kinematics generators, RandomGen::RndFsi() returns the generator
to be used by intranuclear rescattering MCs and so on... (see RandomGen for the list of all generators).
This is an option reserved for the future as currently all modules are passed the same random number
generator (no problems with the generator periodicity have been found or reported so far).

162 APPENDIX B. SPECIAL TOPICS, FAQS AND TROUBLESHOOTING

B.4.2 Setting required numerical accurancy

...

Appendix C

Summary of Important Physics

Parameters

Physics Parameter Default value GENIE parameter name

CKM element Vud 0.97377 CKM-Vud

CKM element Vus 0.2257 CKM-Vus

CKM element Vcd 0.230 CKM-Vcd

CKM element Vcs 0.957 CKM-Vcs

Cabbibo angle, θc 0.22853207 CabbiboAngle

Fermi coupling constant, GF 1.16639E-5 GeV −2

Fine structure constant, αem

Weinberg angle, θw 0.49744211 WeinbergAngle

Charm mass, mcharm 1.430 GeV

Anomalous magnetic moment of the proton, µp 2.7930 AnomMagnMoment-P

Anomalous magnetic moment of the neutron, µn -1.913042 AnomMagnMoment-N

Nucleon e/m f/f, BBA2005 - Gep(a0) 1.

Nucleon e/m f/f, BBA2005 - Gep(a1) -0.0578

Nucleon e/m f/f, BBA2005 - Gep(a2) 0.

Nucleon e/m f/f, BBA2005 - Gep(b1) 11.100

Nucleon e/m f/f, BBA2005 - Gep(b2) 13.60

163

164 APPENDIX C. SUMMARY OF IMPORTANT PHYSICS PARAMETERS

Physics Parameter Default value GENIE parameter name

Nucleon e/m f/f, BBA2005 - Gep(b3) 33.00

Nucleon e/m f/f, BBA2005 - Gep(b4) 0.

Nucleon e/m f/f, BBA2005 - Gµp(a0) 1.

Nucleon e/m f/f, BBA2005 - Gµp(a1) 0.1500

Nucleon e/m f/f, BBA2005 - Gµp(a2) 0.

Nucleon e/m f/f, BBA2005 - Gµp(b1) 11.100

Nucleon e/m f/f, BBA2005 - Gµp(b2) 19.600

Nucleon e/m f/f, BBA2005 - Gµp(b3) 7.540

Nucleon e/m f/f, BBA2005 - Gµp(b4) 0.

Nucleon e/m f/f, BBA2005 - Gen(a0) 0.

Nucleon e/m f/f, BBA2005 - Gen(a1) 1.250

Nucleon e/m f/f, BBA2005 - Gen(a2) 1.30

Nucleon e/m f/f, BBA2005 - Gen(b1) -9.86

Nucleon e/m f/f, BBA2005 - Gen(b2) 305.0

Nucleon e/m f/f, BBA2005 - Gen(b3) -758.0

Nucleon e/m f/f, BBA2005 - Gen(b4) 802.0

Nucleon e/m f/f, BBA2005 - Gµn(a0) 1.

Nucleon e/m f/f, BBA2005 - Gµn(a1) 1.810

Nucleon e/m f/f, BBA2005 - Gµn(a2) 0.

Nucleon e/m f/f, BBA2005 - Gµn(b1) 14.100

Nucleon e/m f/f, BBA2005 - Gµn(b2) 20.70

Nucleon e/m f/f, BBA2005 - Gµn(b3) 68.7

Nucleon e/m f/f, BBA2005 - Gµn(b4) 0.

P 33(1232) resonance mass 1.232 GeV

S11(1535) resonance mass 1.535 GeV

D13(1520) resonance mass 1.520 GeV

165

Physics Parameter Default value GENIE parameter name

S11(1650) resonance mass 1.650 GeV

D13(1700) resonance mass 1.700 GeV

D15(1675) resonance mass 1.675 GeV

S31(1620) resonance mass 1.620 GeV

D33(1700) resonance mass 1.700 GeV

P11(1440) resonance mass 1.440 GeV

P13(1720) resonance mass 1.720 GeV

F15(1680) resonance mass 1.680 GeV

P31(1910) resonance mass 1.910 GeV

P33(1920) resonance mass 1.920 GeV

F35(1905) resonance mass 1.905 GeV

F37(1950) resonance mass 1.950 GeV

P11(1710) resonance mass 1.710 GeV

P 33(1232) resonance width 0.120 GeV

S11(1535) resonance width 0.150 GeV

D13(1520) resonance width 0.120 GeV

S11(1650) resonance width 0.150 GeV

D13(1700) resonance width 0.100 GeV

D15(1675) resonance width 0.150 GeV

S31(1620) resonance width 0.150 GeV

D33(1700) resonance width 0.300 GeV

P11(1440) resonance width 0.350 GeV

P13(1720) resonance width 0.150 GeV

F15(1680) resonance width 0.130 GeV

P31(1910) resonance width 0.250 GeV

P33(1920) resonance width 0.200 GeV

166 APPENDIX C. SUMMARY OF IMPORTANT PHYSICS PARAMETERS

Physics Parameter Default value GENIE parameter name

F35(1905) resonance width 0.350 GeV

F37(1950) resonance width 0.300 GeV

P11(1710) resonance width 0.100 GeV

NCEL axial mass,MA 0.990 GeV EL-Ma

NCEL vector mass,MV 0.840 GeV EL-Mv

NCEL strange axial form factor,ηaxial 0.12 EL-Axial-Eta

CCQE axial mass,MA 0.990 GeV QEL-Ma

CCQE vector mass,MV 0.840 GeV QEL-Mv

FA(Q
2 = 0) -1.2670 QEL-FA0

CC/NC resonance (Rein-Sehgal), Ω 1.05

CC/NC resonance (Rein-Sehgal), Z 0.762

CC/NC resonance axial mass (Rein-Sehgal), MA 1.120 GeV

CC/NC resonance vector mass (Rein-Sehgal),MV 0.840 GeV

CC/NC DIS (Bodek-Yang), A 0.538

CC/NC DIS (Bodek-Yang), B 0.305

CC/NC DIS (Bodek-Yang), Cu
s 0.363

CC/NC DIS (Bodek-Yang), Cd
s 0.621

CC/NC DIS (Bodek-Yang), Cu
v1 0.291

CC/NC DIS (Bodek-Yang), Cu
v2 0.189

CC/NC DIS (Bodek-Yang), Cd
v1 0.202

CC/NC DIS (Bodek-Yang), Cd
v2 0.255

CC/NC DIS (Bodek-Yang), X0 -0.00817

CC/NC DIS (Bodek-Yang), X1 0.0506

CC/NC DIS (Bodek-Yang), X2 0.0798

CC/NC DIS (Bodek-Yang), PDF Q2
min 0.800 GeV 2

CC/NC DIS (Bodek-Yang), Uncorr. PDF set GRV98LO

167

Physics Parameter Default value GENIE parameter name

CC/NC DIS (Bodek-Yang), Nuclear mod.? true

CC/NC DIS (Bodek-Yang), Whitlow R (FL)? true

CC/NC coherent π (Rein-Sehgal), MA 1.000 GeV

CC/NC coherent π (Rein-Sehgal), R0 1.000 fm

CC/NC coherent π (Rein-Sehgal), Re/ImAmpl 0.300

CC/NC coherent π (Rein-Sehgal), Mod. PCAC? true

Transition region modeling (neugen3), RνpCC1π
bkg 0.100

Transition region modeling (neugen3), RνpCC2π
bkg 1.000

Transition region modeling (neugen3), RνpNC1π
bkg 0.100

Transition region modeling (neugen3), RνpNC2π
bkg 1.000

Transition region modeling (neugen3), RνnCC1π
bkg 0.300

Transition region modeling (neugen3), RνnCC2π
bkg 1.000

Transition region modeling (neugen3), RνnNC1π
bkg 0.300

Transition region modeling (neugen3), RνnNC2π
bkg 1.000

Transition region modeling (neugen3), Rν̄pCC1π
bkg 0.300

Transition region modeling (neugen3), Rν̄pCC2π
bkg 1.000

Transition region modeling (neugen3), Rν̄pNC1π
bkg 0.300

Transition region modeling (neugen3), Rν̄pNC2π
bkg 1.000

Transition region modeling (neugen3), Rν̄nCC1π
bkg 0.100

Transition region modeling (neugen3), Rν̄nCC2π
bkg 1.000

Transition region modeling (neugen3), Rν̄nNC1π
bkg 0.100

Transition region modeling (neugen3), Rν̄nNC2π
bkg 1.000

Transition region modeling (neugen3), Wcut 1.7 GeV

Average chg. hadron multiplicity factor (KNO), aνp 0.4

Average chg. hadron multiplicity factor (KNO), aνn -0.2

Average chg. hadron multiplicity factor (KNO, aν̄p 0.02

168 APPENDIX C. SUMMARY OF IMPORTANT PHYSICS PARAMETERS

Physics Parameter Default value GENIE parameter name

Average chg. hadron multiplicity factor (KNO), aν̄n 0.80

Average chg. hadron multiplicity factor (KNO), bνp 1.42

Average chg. hadron multiplicity factor (KNO), bνn 1.42

Average chg. hadron multiplicity factor (KNO), bν̄p 1.28

Average chg. hadron multiplicity factor (KNO), bν̄n 0.95

Average strange baryon multiplicity factor (KNO), ahyp 0.021951447

Average strange baryon multiplicity factor (KNO), bhyp 0.041969985

KNO parameterization (Levy), cνp 7.93

KNO parameterization (Levy), cνn 5.22

KNO parameterization (Levy), cν̄p 5.22

KNO parameterization (Levy), cν̄n 7.93

π0π0 probability (AGKY/KNO) 0.3133

π+π− probability (AGKY/KNO) 0.6267

K0K̄0 probability (AGKY/KNO) 0.03

K+K− probability (AGKY/KNO) 0.03

Phase-space pT reweighting factor (AGKY/KNO) 3.5

ss̄ suppression factor (PYTHIA6) 0.30

Gaussian p2T (PYTHIA6) 0.44

Non-gaussian p2T tail (PYTHIA6) 0.01

Remaining energy cut-off (PYTHIA6) 0.20

Formation time, cτ0 0.342 fm

Binding energy (RFG), Eb(Li6) 0.017 GeV

Binding energy (RFG), Eb(C
12) 0.025 GeV

Binding energy (RFG), Eb(O
16) 0.027 GeV

Binding energy (RFG), Eb(Mg24) 0.032 GeV

Binding energy (RFG), Eb(Ca40) 0.028 GeV

169

Physics Parameter Default value GENIE parameter name

Binding energy (RFG), Eb(Fe56) 0.036 GeV

Binding energy (RFG), Eb(Ni58) 0.036 GeV

Binding energy (RFG), Eb(Pb208) 0.044 GeV

Fermi momentum (RFG), kF (Li6, p) 0.169 GeV

Fermi momentum (RFG), kF (Li6, n) 0.169 GeV

Fermi momentum (RFG), kF (C12, p) 0.221 GeV

Fermi momentum (RFG), kF (C12, n) 0.221 GeV

Fermi momentum (RFG), kF (O16, p) 0.225 GeV

Fermi momentum (RFG), kF (O16, n) 0.225 GeV

Fermi momentum (RFG), kF (Mg24, p) 0.235 GeV

Fermi momentum (RFG), kF (Mg24, n) 0.235 GeV

Fermi momentum (RFG), kF (Si28, p) 0.239 GeV

Fermi momentum (RFG), kF (Si28, n) 0.239 GeV

Fermi momentum (RFG), kF (Ar40, p) 0.242 GeV

170 APPENDIX C. SUMMARY OF IMPORTANT PHYSICS PARAMETERS

Appendix D

Common Status and Particle Codes

D.1 Status codes

Description GHepStatus_t As int

Undefined kIStUndefined -1

Initial state kIStInitialState 0

Stable final state kIstStableFinalState 1

Intermediate state kIStIntermediateState 2

Decayed state kIStDecayedState 3

Nucleon target kIStNucleonTarget 11

DIS pre-fragm. hadronic state kIStDISPreFragmHadronicState 12

Resonant pre-decayed state kIStPreDecayResonantState 13

Hadron in the nucleus kIStHadronInTheNucleus 14

Final state nuclear remnant kIStFinalStateNuclearRemnant 15

Nucleon cluster target kIStNucleonClusterTarget 16

D.2 Particle codes

See PDG ‘Monte Carlo Particle Numbering Scheme’ for a complete list.http://pdg.lbl.gov/2008/
mcdata/mc_particle_id_contents.shtml

171

http://pdg.lbl.gov/2008/mcdata/mc_particle_id_contents.shtml
http://pdg.lbl.gov/2008/mcdata/mc_particle_id_contents.shtml

172 APPENDIX D. COMMON STATUS AND PARTICLE CODES

νe (ν̄e) 12 (-12) p 2212 π0 111 uu (s = 1) 2203 g 21

νµ (ν̄µ) 14 (-14) n 2112 π+ (π−) 211 (-211) ud (s = 0) 2101 γ 22

ντ (ν̄τ) 16 (-16) Λ0 3122 ρ0 113 ud (s = 1) 2103 Z0 23

e− (e+) 11 (-11) Σ+ 3222 ρ+ (ρ−) 213 (-213) su (s = 0) 3201 W+ (W−) 24 (-24)

µ− (µ+) 13 (-13) Σ0 3212 η 221 su (s = 1) 3203

τ− (τ+) 15 (-15) Σ− 3112 η′ 331 sd (s = 0) 3101

d (d̄) 1 (-1) Ξ0 3322 ω 223 sd (s = 1) 3103

u (ū) 2 (-2) Ξ− 3312 φ 333 ss (s = 1) 3303

s (s̄) 3 (-3) Ω− 3332 ηc 441

c (c̄) 4 (-4) Λ+
c 4122 J/ψ 443

b (b̄) 5 (-5) Σ0
c 4112 K0 (K̄0) 311 (-311)

t (t̄) 6 (-6) Σ+
c 4212 K+ (K−) 321 (-321)

Σ++
c 4222 K0

L 130

Ξ0
c 4132 K0

S 310

Ξ+
c 4232 D0 (D̄0) 421 (-421)

Ω0
c 4332 D+ (D−) 411 (-411)

D+
s (D−

s) 431 (-431)

D.3. BARYON RESONANCE CODES 173

D.3 Baryon resonance codes

P33(1232); ∆
− 1114 S11(1650); N

0 32112 D13(1700); N
0 21214 P31(1910); ∆

− 21112

P33(1232); ∆
0 2114 S11(1650); N

+ 32212 D13(1700); N
+ 22124 P31(1910); ∆

0 21212

P33(1232); ∆
+ 2214 D15(1675); N

0 2116 P11(1710); N
0 42112 P31(1910); ∆

+ 22122

P33(1232); ∆
++ 2224 D15(1675); N

+ 2216 P11(1710); N
+ 42212 P31(1910); ∆

++ 22222

P11(1440); N
0 12112 F15(1680); N

0 12116 P13(1720); N
0 31214 P33(1920); ∆

− 21114

P11(1440); N
+ 12212 F15(1680); N

+ 12216 P13(1720); N
+ 32124 P33(1920); ∆

0 22114

D13(1520); N
0 1214 D33(1700); ∆

− 11114 F35(1905); ∆
− 1116 P33(1920); ∆

+ 22214

D13(1520); N
+ 2124 D33(1700); ∆

0 12114 F35(1905); ∆
0 1216 P33(1920); ∆

++ 22224

S11(1535); N
0 22112 D33(1700); ∆

+ 12214 F35(1905); ∆
+ 2126 F37(1950); ∆

− 1118

S11(1535); N
+ 22212 D33(1700); ∆

++ 12224 F35(1905); ∆
++ 2226 F37(1950); ∆

0 2118

S31(1620); ∆
− 11112 F37(1950); ∆

+ 2218

S31(1620); ∆
0 1212 F37(1950); ∆

++ 2228

S31(1620); ∆
+ 2122

S31(1620); ∆
++ 2222

D.4 Ion codes

GENIE has adopted the standard PDG (2006) particle codes. For ions it has adopted a PDG extension,
using the 10-digit code 10LZZZAAAI where AAA is the total baryon number, ZZZ is the total charge, L
is the number of strange quarks and I is the isomer number (I=0 corresponds to the ground state).

So, for example:

1000010010 → H1

1000060120 → C12 :
1000080160 → O16 :
1000260560 → Fe56 :

and so on.

D.5 GENIE pseudo-particle codes

GENIE-specific pseudo-particles have PDG codes >= 2000000000.

174 APPENDIX D. COMMON STATUS AND PARTICLE CODES

Appendix E

3rd Party Softw. Installation

Instructions

The following dependencies need to be installed, in the following order.

LOG4CPP

Before installing log4cpp

Check whether log4cpp is already installed at your system. The library filename contains liblog4cpp, so if
you cannot find a file with a filename containing liblog4cpp, then you probably do not have the software
installed.

Getting the source code

Download the source code from the sourceforge anonymous CVS repository (when prompted for a pass-
word, simply hit enter):
$ cd /dir/for/external/src/code
$ cvs -d :pserver:anonymous@log4cpp.cvs.sourceforge.net:/cvsroot/log4cpp login

$ cvs -d :pserver:anonymous@log4cpp.cvs.sourceforge.net:/cvsroot/log4cpp -z3 co log4cpp

Configuring and building

Enter the log4cpp directory and run ‘autogen’ and ‘configure’. Replace [location] with the installation
directory of your choice; you cannot install it in the same directory as the source (where you are now).
You can choose not to use the ‘--prefix’ tag, in which case the default install directory is ‘/usr/local ’.
$ cd log4cpp

$./autogen.sh

$./configure --prefix=[location]

What’s left is to run ‘make’ and ‘make install’. If make install gives you an error while copying or
moving files stating that the files are identical, then you probably choose the source folder as your in-
stall folder in the above configure step. Rerun configure with a different location (or simply leave the
‘--prefix’ option out for the default).
$ make

$ make install

175

176 APPENDIX E. 3RD PARTY SOFTW. INSTALLATION INSTRUCTIONS

Notes:

• Alternatively, you may install pre-compiled binaries. For example, if you are using ‘yum’ on LINUX
then just type:
$ yum install log4cpp

On MAC OS X you can do the same using ‘DarwinPorts’:
$ sudo port install log4cpp

LIBXML2

Before installing libxml2

Check whether libxml2 is already installed at your system - most likely it is. Look for a libxml2.* library
(typically in ‘/usr/lib’) and for a libxml2 include folder (typically in ‘/usr/include’).

Getting the source code

Download the source code from the GNOME subversion repository:
$ cd /dir/for/external/src/code

$ svn co https://svn.gnome.org/svn/libxml2/trunk libxml2

Alternatively, you download the code as a gzipped tarball from:
http://xmlsoft.org/downloads.html.

Configuring and building

$ cd libxml2

$./autogen.sh --prefix=[location]

$ make

$ make install

Notes:

• Alternatively, you may install pre-compiled binaries. For example, if you are using ‘yum’ on LINUX
then just type:
$ yum install libxml2

On MAC OS X you can do the same using ‘DarwinPorts’:
$ sudo port install libxml2

LHAPDF

Getting the source code

Get the LHAPDF code (and PDF data files) from http://projects.hepforge.org/lhapdf/. The tarball
corrsponding to version ‘x.y.z’ is named ‘lhapdf-x.y.z.tar.gz ’.
$ mv lhapdf-x.y.z.tar.gz /dir/for/external/src/code

$ cd /directory/to/download/external/code

$ tar xzvf lhapdf-x.y.z.tar.gz

177

Configuring and building

$ cd lhapdf-x.y.z/

$./configure --prefix=[location]

$ make

$ make install

PYTHIA6

Installation of PYTHIA6 is simplified by using a script provided by Robert Hatcher (‘build_pythia6.sh’).
The file is included in the GENIE source tree (see ‘$GENIE/src/scripts/build/ext/build_pythia6.sh’). You
can also get a copy from the web1:

You can run the script (please, also read its documentation) as:
$ source build_pythia6.sh [version]

For example, in order to download and install version 6.4.12, type:
$ source build_pythia6.sh 6412

ROOT

Getting the source code

Get the source code from the ROOT subversion repository. To get the development version, type:
$ cvs co http://root.cern.ch/svn/root/trunk root

To get a specific version ‘x.y.z ’, type:
$ cvs co http://root.cern.ch/svn/root/tags/vx-y-z root

$ cvs co http://root.cern.ch/svn/root/tags/v5-22-00 root

See http://root.cern.ch/drupal/content/downloading-root/

Configuring and building

$ export ROOTSYS=/path/to/install_root

$ cd $ROOTSYS

$./configure [arch] [other options] --enable-pythia6 --with-pythia6-libdir=$PYTHIA6 --enable-mathmore

$ make

Testing

Accessing root is an easy test to see if it has installed correctly. If you are not familiar with root, use “.q”
in root prompt to quit.

$ root -l

1Visit: http://projects.hepforge.org/genie/trac/browser/trunk/src/scripts/build/ext/
Click on the file and then download it by clicking on ‘Download in other formats / Original format’ towards the end of the
page.

178 APPENDIX E. 3RD PARTY SOFTW. INSTALLATION INSTRUCTIONS

root [0] .q

See http://root.cern.ch/root/Install.html for more information on installing ROOT from source.

Appendix F

Finding More Information

F.1 The GENIE web page

The GENIE web page, hosted at HepForge is the exclusive official source of information on GENIE. The
page can be reached at http://www.genie-mc.org

F.2 Subscribing at the GENIE mailing lists

The GENIE mailing lists are hosted at JISCmail, UK’s National Academic Mailing List Service. We
currently maintain two mailing lists

• neutrino-mc-support@jiscmail.ac.uk : This is the GENIE support mailing list and is open to all
users.

• neutrino-mc-core@jiscmail.ac.uk : This is the GENIE developers mailing list and is open only to
members of the GENIE collaboration.

To register at the GENIE support mailing list go to
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=NEUTRINO-MC-SUPPORT
(or follow the link the GENIE web page) and click on ‘Join or Leave NEUTRINO-MC-SUPPORT’. In
the registration page specify your name, preferred e-mail address and subscription type and click on ‘Join
NEUTRINO-MC-SUPPORT’. This will generate a request that has to be approved by a member of the
GENIE collaboration. Upon approval a notification and the JISCmail Data Protection policy will be
forwarded at your nominated e-mail address.

F.3 The GENIE document database (DocDB)

The GENIE internal note repository is hosted at Fermilab at the Projects Document Database. Most
documents are internal to the GENIE collaboration. However certain documents are made publicly
available. The Fermilab Projects Documents Database can be reached at:
http://projects-docdb.fnal.gov:8080/cgi-bin/ListBy?groupid=30

179

180 APPENDIX F. FINDING MORE INFORMATION

F.4 The GENIE issue tracker

The issue tracker hosted at HepForge is a useful tool for monitoring tasks and milestones, for submitting
bug reports and getting information about their resolution. It is available at:
http://projects.hepforge.org/genie/trac/report/

Non-developers can also submit tickets. A general ‘guest’ account has been setup (the password is
available upon request).

F.5 The GENIE Generator repository browser

http://projects.hepforge.org/genie/trac/browser/generator

F.6 The GENIE doxygen documentation

http://doxygen.genie-mc.org/

Appendix G

Glossary

• A

– AGKY: A home-grown neutrino-induced hadronic multiplarticle production model developed
by C.Andreopoulos, H.Gallagher, P.Kehayias and T.Yang.

• B

– BGLRS: An atmospheric neutrino simulation developed by G. Barr, T.K. Gaisser, P. Lipari,
S. Robbins and T. Stanev.

– BY: Bodek-Yang.

• C

– COH:

– CVS:

• D

– DIS: Deep Inelastic Scattering.

• E

• F

– FGM: Fermi Gas Model.

– FLUKA:

• G

– GEF: Geocentric Earth-Fixed Coordinate System (+z: Points to North Pole / xy: Equatorial
plane / +x: Points to the Prime Meridian / +y: As needed to make a right-handed coordinate
system).

– Geant4:

– GDML:

181

182 APPENDIX G. GLOSSARY

– GENEVE: A legacy, fortran77-based neutrino generator by F.Cavanna et al.

– GENIE: Generates Events for Neutrino Interaction Experiments.

– GiBUU: A fortran2003-based state-of-the-art particle transport simulation using the Boltzmann-
Uehling-Uhlenbeck (BUU) framework. Developed primarily by the theory group at Giessen
University (U.Mosel et al.)

– GNuMI: Geant3- and Geant4-based NuMI beamline simulation software.

– GSL: GNU Scientific Library

– gevdump: A GENIE application for printing-out event records.

– gevpick: A GENIE event topology cherry-picking application.

– gevgen: A simple, generic GENIE event generation application.

– gevgen_hadron: A GENIE hadron+nucleus event generation application.

– gevgen_atmo: A GENIE event generation application for atmospheric neutrinos.

– gevgen_ndcy: A GENIE nucleon decay event generation application.

– gevgen_t2k: A GENIE event generation application customized for T2K.

– gevgen_fnal: A GENIE event generation application customized for the NuMI beamline ex-
periments.

– gmkspl: A GENIE application for generating cross section spline files (evet generation inputs).

– gntpc: A GENIE ntuple conversion application.

– gspladd: A GENIE XML cross section spline file merging application.

– gspl2root: A GENIE XML to ROOT cross section spline file conversion utility.

– gevgen_numi: Alias for gevgen_fnal maintained for historical reasons.

• H

– hA: See INTRANUKE.

– hN: See INTRANUKE.

• I

– IMD: Inverse Muon Decay

– INTRANUKE: A home-grown intranuclear hadron transport MC. Intranuke was initially de-
veloped within NEUGEN for the Soudan-2 experiment by W.A.Mann, R.Merenyi, R.Edgecock,
H.Gallagher, G.F.Pearce and others. Since then it was significantly improved and is now ex-
tensively used by MINOS and other experiments. Current INTRANUKE development is led
by S.Dytman. INTRANUKE, in fact, contains two independent models (called ‘hN’ and ‘hA’).

• J

– JNUBEAM: Geant3-based JPARC neutrino beamline simulation software.

– JPARC: Japan Proton Accelerator Research Complex. Home of T2K neutrino beamline.

• K

– KNO: Koba, Nielsen and Olesen scaling law.

183

• L

– LHAPDF: Les Houches Accord PDF Interface.

– libxml2: The XML C parser and toolkit of Gnome (see http://xmlsoft.org).

– log4cpp: A library of C++ classes for fleible loggingto files, syslog, IDSA and other destinations
(see http://log4cpp.sourceforge.net).

• M

– MacPorts: An open-source community initiative to design an easy-to-use system for compiling,
installing, and upgrading either command-line, X11 or Aqua based open-source software on
the Mac OS X operating system.

– Mersenne Twistor: The default random number generator in GENIE (via ROOT TRandom3
whose implementation is based on M. Matsumoto and T. Nishimura, Mersenne Twistor: A 623-
diminsionally equidistributed uniform pseudorandom number generator ACM Transactions on
Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3–30.)

• N

– NeuGEN: A legacy, fortran77-based neutrino generator by H.Gallagher et al.

– NEUT: A legacy, fortran77-based neutrino generator by Y.Hayato et al.

– NUANCE: A legacy, fortran77-based neutrino generator by D.Casper et al.

– NUX: A legacy, fortran77-based neutrino generator by A.Rubbia et al.

– NuMI: Neutrinos at the Main Injector. A neutrino beamline at Fermilab.

• O

• P

– PREM: Preliminary Earth Model, The Encyclopedia of Solid Earth Geophysics, David E.
James, ed., Van Nostrand Reinhold, New York, 1989, p.331

– PYTHIA:

• Q

– QEL: Quasi-Elastic.

• R

– RES: Resonance.

– Registry:

– ROOT:

– RooTracker: A ROOT-only STDHEP-like event format (very similar to GHEP event format
but with no GENIE class dependencies) developed in GENIE as an evolution of the Tracker
format. See also Tracker.

– RS: Rein-Sehgal

– RSB: Rein-Sehgal-Berger

184 APPENDIX G. GLOSSARY

– RSD: Remote Software Deployment Tools. A system for automated software installation de-
veloped by Nick West (Oxford).

• S

– SF:

– SVN: See Subversion.

– SKDETSIM: The fortran77-based Super-Kamiokande detector simulation.

– Subversion:

• T

– THZ: Topocentric Horizontal Coordinate System (+z: Points towards the Local Zenith / +x:
On same plane as Local Meridian, pointing South / +y: as needed to make a right-handed
coordinate system / Origin: Detector centre).

– Tracker:

• U

• V

• W

• X

– XML: Extensible Markup Language.

• Y :

– Yum: Yellowdog Updater, Modified (YUM). An open-source command-line package-management
utility for RPM-compatible Linux operating systems.

• Z

Bibliography

[1] C. Andreopoulos et al. http://www.genie-mc.org.

[2] S. Agostinelli et al., “GEANT4: A simulation toolkit,” Nucl. Instrum. Meth., vol. A506, pp. 250–
303, 2003.

[3] M. Bahr et al., “Herwig++ Physics and Manual,” Eur. Phys. J., vol. C58, pp. 639–707, 2008.

[4] T. Sjostrand, S. Mrenna, and P. Skands, “A Brief Introduction to PYTHIA 8.1,” Comput. Phys.
Commun., vol. 178, pp. 852–867, 2008.

[5] R. Brun and F. Rademakers, “ROOT: An object oriented data analysis framework,” Nucl. Instrum.
Meth., vol. A389, pp. 81–86, 1997.

[6] H. Gallagher, “The neugen neutrino event generator,” Nucl. Phys. Proc. Suppl., vol. 112, pp. 188–
194, 2002.

[7] F. Cavanna and O. Palamara, “Geneve: A monte carlo generator for neutrino interactions in the
intermediate-energy range,” Nucl. Phys. Proc. Suppl., vol. 112, pp. 183–187, 2002.

[8] Y. Hayato, “Neut,” Nucl. Phys. Proc. Suppl., vol. 112, pp. 171–176, 2002.

[9] D. Casper, “The nuance neutrino physics simulation, and the future,” Nucl. Phys. Proc. Suppl.,
vol. 112, pp. 161–170, 2002.

[10] A. Rubbia, “Nux-neutrino generator,” Talk at the 1st Workshop on Neutrino-Nucleus Interactions
in the Few-GeV Region (NuINT01), vol. http://neutrino.kek.jp/nuint01/slide/Rubbia.1.pdf, p. 29,
2001.

[11] C. Juszczak, J. A. Nowak, and J. T. Sobczyk, “Simulations from a new neutrino event generator,”
Nucl. Phys. Proc. Suppl., vol. 159, pp. 211–216, 2006.

[12] T. Leitner, L. Alvarez-Ruso, and U. Mosel, “Charged current neutrino nucleus interactions at
intermediate energies,” Phys. Rev., vol. C73, p. 065502, 2006.

[13] A. Fasso et al., “The physics models of FLUKA: Status and recent development,” 2003.

[14] T. Ishida, “Charged-current inclusive distributions from K2K near detectors,” 2002. ,Prepared for
1st Workshop on Neutrino - Nucleus Interactions in the Few GeV Region (NuInt01), Tsukuba,
Japan, 13-16 Dec 2001.

[15] A. A. Aguilar-Arevalo et al., “Measurement of muon neutrino quasi-elastic scattering on carbon,”
Phys. Rev. Lett., vol. 100, p. 032301, 2008.

185

186 BIBLIOGRAPHY

[16] F. Sanchez, “Search for neutrino-induced charged current coherent pion production with carbon in
a 1.3-gev wide band muon neutrino beam,” Nucl. Phys. Proc. Suppl., vol. 155, pp. 239–241, 2006.

[17] A. A. Aguilar-Arevalo et al., “Unexplained Excess of Electron-Like Events From a 1-GeV Neutrino
Beam,” Phys. Rev. Lett., vol. 102, p. 101802, 2009.

[18] E. A. Paschos, A. Kartavtsev, and G. J. Gounaris, “Coherent pion production by neutrinos on
nuclei,” Phys. Rev., vol. D74, p. 054007, 2006.

[19] S. K. Singh, M. Sajjad Athar, and S. Ahmad, “Nuclear effects in neutrino induced coherent pion
production at k2k and miniboone,” Phys. Rev. Lett., vol. 96, p. 241801, 2006.

[20] L. Alvarez-Ruso, L. S. Geng, S. Hirenzaki, and M. J. Vicente Vacas, “Charged current neutrino
induced coherent pion production,” Phys. Rev., vol. C75, p. 055501, 2007.

[21] J. A. Harvey, C. T. Hill, and R. J. Hill, “Anomaly mediated neutrino-photon interactions at finite
baryon density,” Phys. Rev. Lett., vol. 99, p. 261601, 2007.

[22] O. Buss, T. Leitner, U. Mosel, and L. Alvarez-Ruso, “The influence of the nuclear medium on
inclusive electron and neutrino scattering off nuclei,” Phys. Rev., vol. C76, p. 035502, 2007.

[23] O. Benhar, N. Farina, H. Nakamura, M. Sakuda, and R. Seki, “Electron and neutrino nucleus
scattering in the impulse approximation regime,” Phys. Rev., vol. D72, p. 053005, 2005.

[24] J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and J. M. Udias, “Final-state
interactions and superscaling in the semi- relativistic approach to quasielastic electron and neutrino
scattering,” Phys. Rev., vol. C75, p. 034613, 2007.

[25] A. Bodek and J. L. Ritchie, “Further studies of fermi motion effects in lepton scattering from nuclear
targets,” Phys. Rev., vol. D24, p. 1400, 1981.

[26] E. J. Moniz et al., “Nuclear fermi momenta from quasielastic electron scattering,” Phys. Rev. Lett.,
vol. 26, pp. 445–448, 1971.

[27] H. De Vries, C. W. De Jager, and C. De Vries, “Nuclear charge and magnetization density distribu-
tion parameters from elastic electron scattering,” Atom. Data Nucl. Data Tabl., vol. 36, pp. 495–536,
1987.

[28] A. Bodek and U. K. Yang, “Higher twist, ξw scaling, and effective LO PDFs for lepton scattering
in the few GeV region,” J. Phys., vol. G29, pp. 1899–1906, 2003.

[29] H. Ejiri, “Nuclear deexcitations of nucleon holes associated with nucleon decays in nuclei,” Phys.
Rev., vol. C48, pp. 1442–1444, 1993.

[30] K. Kobayashi et al., “Detection of nuclear de-excitation gamma-rays in water Cherenkov detector,”
Nucl. Phys. Proc. Suppl., vol. 139, pp. 72–76, 2005.

[31] C. H. Llewellyn Smith, “Neutrino reactions at accelerator energies,” Phys. Rept., vol. 3, p. 261,
1972.

[32] R. G. Sachs, “High-Energy Behavior of Nucleon Electromagnetic Form Factors,” Phys. Rev.,
vol. 126, pp. 2256–2260, 1962.

[33] H. Budd, A. Bodek, and J. Arrington, “Modeling quasi-elastic form factors for electron and neutrino
scattering, hep-ex/0308005,” 2003.

BIBLIOGRAPHY 187

[34] R. Bradford, A. Bodek, H. S. Budd, and J. Arrington, “A new parameterization of the nucleon
elastic form factors,” Nucl. Phys. Proc. Suppl., vol. 159, pp. 127–132, 2006.

[35] L. A. Ahrens et al., “Measurement of Neutrino - Proton and anti-neutrino - Proton Elastic Scat-
tering,” Phys. Rev., vol. D35, p. 785, 1987.

[36] D. Rein and L. M. Sehgal, “Neutrino excitation of baryon resonances and single pion production,”
Ann. Phys., vol. 133, p. 79, 1981.

[37] R. P. Feynman, M. Kislinger, and F. Ravndal, “Current matrix elements from a relativistic quark
model,” Phys. Rev., vol. D3, pp. 2706–2732, 1971.

[38] K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, “Axial masses in quasielastic neutrino
scattering and single-pion neutrinoproduction on nucleons and nuclei,” Acta Phys. Polon., vol. B37,
pp. 2337–2348, 2006.

[39] D. Rein and L. M. Sehgal, “Coherent π0 production in neutrino reactions,” Nucl. Phys., vol. B223,
p. 29, 1983.

[40] W. M. Yao et al., “Review of particle physics,” J. Phys., vol. G33, pp. 1–1232, 2006.

[41] D. Rein and L. M. Sehgal, “PCAC and the deficit of forward muons in π+ production by neutrinos,”
Phys. Lett., vol. B657, pp. 207–209, 2007.

[42] L. W. Whitlow, S. Rock, A. Bodek, E. M. Riordan, and S. Dasu, “A Precise extraction of R =
σL/σT from a global analysis of the SLAC deep inelastic e p and e d scattering cross-sections,”
Phys. Lett., vol. B250, pp. 193–198, 1990.

[43] M. Gluck, E. Reya, and A. Vogt, “Dynamical parton distributions revisited,” Eur. Phys. J., vol. C5,
pp. 461–470, 1998.

[44] S. G. Kovalenko, “Quasielastic neutrino production of charmed baryons from the point of view of
local duality,” Sov. J. Nucl. Phys., vol. 52, pp. 934–936, 1990.

[45] M. Bischofberger, “Quasi elastic charm production in neutrino nucleon scattering,” UMI-C821490.

[46] M. A. G. Aivazis, F. I. Olness, and W.-K. Tung, “Leptoproduction of heavy quarks. 1. General
formalism and kinematics of charged current and neutral current production processes,” Phys.
Rev., vol. D50, pp. 3085–3101, 1994.

[47] G. De Lellis, F. Di Capua, and P. Migliozzi, “Prediction of charm-production fractions in neutrino
interactions. ((U)) ((V)),” Phys. Lett., vol. B550, pp. 16–23, 2002.

[48] C. Peterson, D. Schlatter, I. Schmitt, and P. M. Zerwas, “Scaling violations in inclusive e+ e-
annihilation spectra,” Phys. Rev., vol. D27, p. 105, 1983.

[49] P. D. B. Collins and T. P. Spiller, “The fragmentation of heavy quarks,” J. Phys., vol. G11, p. 1289,
1985.

[50] D. Y. Bardin and V. A. Dokuchaeva, “Muon energy spectrum in inverse muon decay,” Nucl. Phys.,
vol. B287, p. 839, 1987.

[51] W. J. Marciano and Z. Parsa, “Neutrino-electron scattering theory,” J. Phys., vol. G29, pp. 2629–
2645, 2003.

188 BIBLIOGRAPHY

[52] K. S. Kuzmin, V. V. Lyubushkin, and V. A. Naumov, “How to sum contributions into the total
charged-current neutrino nucleon cross section, hep-ph/0511308,” 2005.

[53] D. MacFarlane et al., “Nucleon Structure Functions from High-Energy Neutrino Interactions with
Iron and QCD Results,” Z. Phys., vol. C26, pp. 1–12, 1984.

[54] J. P. Berge et al., “Total neutrino and anti-neutrino charged current cross section measurements in
100 GeV, 160 GeV and 200 GeV narrow band beams,” Z. Phys., vol. C35, p. 443, 1987.

[55] S. Ciampolillo et al., “Total cross section for neutrino charged current interactions at 3 GeV and 9
GeV,” Phys. Lett., vol. B84, p. 281, 1979.

[56] D. C. Colley et al., “Cross sections for charged current neutrino and anti-neutrino interactions in
the energy range 10 GeV to 50 GeV,” Zeit. Phys., vol. C2, p. 187, 1979.

[57] P. Bosetti et al., “Total cross sections for muon-neutrino and anti-muon- neutrino charged current
interactions between 20 GeV and 200 GeV,” Phys. Lett., vol. B110, p. 167, 1982.

[58] A. I. Mukhin et al., “Energy dependence of total cross section for neutrino and anti-neutrino inter-
actions at energies below 35 GeV,” Sov. J. Nucl. Phys., vol. 30, p. 528, 1979.

[59] D. S. Baranov et al., “Measurements of the νµN total cross section at 2 GeV - 30 GeV in SKAT
neutrino experiment,” Phys. Lett., vol. B81, p. 255, 1979.

[60] S. J. Barish et al., “Study of Neutrino Interactions in Hydrogen and Deuterium: Inelastic Charged
Current Reactions,” Phys. Rev., vol. D19, p. 2521, 1979.

[61] N. J. Baker et al., “Total cross sections for νµn and ν̄µp charged current interactions in the 7-ft
bubble chamber,” Phys. Rev., vol. D25, pp. 617–623, 1982.

[62] T. Eichten et al., “Measurement of the neutrino - nucleon anti-neutrino - nucleon total cross sec-
tions,” Phys. Lett., vol. B46, pp. 274–280, 1973.

[63] W. Lerche et al., “Experimental Study of the Reaction νµp → µ−pπ+. GARGAMELLE Neutrino
Propane Experiment,” Phys. Lett., vol. B78, pp. 510–514, 1978.

[64] V. V. Ammosov et al., “Study of the reaction νµp → µ−∆++ at energies 3 GeV to 30 GeV,” Sov.
J. Nucl. Phys., vol. 50, pp. 67–69, 1989.

[65] H. J. Grabosch et al., “Cross section measurements of single pion production in charged current
neutrino and anti-neutrino interactions,” Z. Phys., vol. C41, p. 527, 1989.

[66] J. Bell et al., “Cross section measurements for the reactions νµp → µ−π+p and νµp → µ−K+p at
high energies,” Phys. Rev. Lett., vol. 41, p. 1008, 1978.

[67] T. Kitagaki et al., “Charged current exclusive pion production in neutrino deuterium interactions,”
Phys. Rev., vol. D34, pp. 2554–2565, 1986.

[68] P. Allen et al., “Single π+ production in charged current neutrino - hydrogen interactions,” Nucl.
Phys., vol. B176, p. 269, 1980.

[69] P. Allen et al., “A study of single meson production in neutrino and anti-neutrino charged current
interactions on protons,” Nucl. Phys., vol. B264, p. 221, 1986.

[70] D. Allasia et al., “Investigation of exclusive channels in neutrino / anti-neutrino deuteron charged
current interactions,” Nucl. Phys., vol. B343, pp. 285–309, 1990.

BIBLIOGRAPHY 189

[71] J. Campbell et al., “Study of the reaction νµp → µ−π+p,” Phys. Rev. Lett., vol. 30, pp. 335–339,
1973.

[72] G. M. Radecky et al., “Study of single pion production by weak charged currents in low energy
neutrino - deuterium interactions,” Phys. Rev., vol. D25, pp. 1161–1173, 1982.

[73] D. Day et al., “Study of neutrino - deuterium charged current two pion production in the threshold
region,” Phys. Rev., vol. D28, pp. 2714–2720, 1983.

[74] T. Yang, C. Andreopoulos, H. Gallagher, and P. Kehayias, “A hadronization model for the MINOS
experiment,” AIP Conf. Proc., vol. 967, pp. 269–275, 2007.

[75] H. Gallagher, “Using electron scattering data to tune neutrino Monte Carlos,” AIP Conf. Proc.,
vol. 698, pp. 153–157, 2004.

[76] S. Wood http://hallcweb.jlab.org/resdata.

[77] D. Bhattacharya, “Neutrino and antineutrino inclusive charged-current cross section measurement
with the MINOS near detector,” FERMILAB-THESIS-2009-11.

[78] M. R. Whalley, “A new neutrino cross section database,” Nucl. Phys. Proc. Suppl., vol. 139, pp. 241–
246, 2005.

[79] C. Andreopoulos and H. Gallagher, “Tools for neutrino interaction model validation,” Nucl. Phys.
Proc. Suppl., vol. 139, pp. 247–252, 2005.

[80] P. Adamson et al., “A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector
Neutrino Beam,” Phys. Rev., vol. D77, p. 072002, 2008.

[81] K. Hiraide, “Measurement of Charged Current Charged Single Pion Production in SciBooNE,”
2008.

[82] M. C. Sanchez, “Electron neutrino appearance in the MINOS experiment,” AIP Conf. Proc.,
vol. 981, pp. 148–150, 2008.

[83] D. Zieminska et al., “Charged particle multiplicity distributions in neutrino n and neutrino p charged
current interactions,” Phys. Rev., vol. D27, pp. 47–57, 1983.

[84] T. Sjostrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual,” JHEP, vol. 05, p. 026,
2006.

[85] C. Andreopoulos, “The GENIE universal, object-oriented neutrino generator,” Acta Phys. Polon.,
vol. B37, pp. 2349–2360, 2006.

[86] Z. Koba, H. B. Nielsen, and P. Olesen, “Scaling of multiplicity distributions in high-energy hadron
collisions,” Nucl. Phys., vol. B40, pp. 317–334, 1972.

[87] W. Wittek et al., “Production of pi0 mesons and charged hadrons in anti- neutrino neon and
neutrino neon charged current interactions,” Z. Phys., vol. C40, p. 231, 1988.

[88] S. Barlag et al., “CHARGED HADRON MULTIPLICITIES IN HIGH-ENERGY anti-muon neu-
trino n AND anti-muon neutrino p INTERACTIONS,” Zeit. Phys., vol. C11, p. 283, 1982.

[89] M. Derrick et al., “Properties of the Hadronic System Resulting from anti- Muon-neutrino p Inter-
actions,” Phys. Rev., vol. D17, p. 1, 1978.

190 BIBLIOGRAPHY

[90] A. M. Cooper-Sarkar, “Hadron final state results from BEBC,” 1982. Invited talk presented at
Neutrino ’82, Balatonfured, Hungary, Jun 14-19, 1982.

[91] A. B. Clegg and A. Donnachie, “A description of jet structure by pT limited phase space,” Zeit.
Phys., vol. C13, p. 71, 1982.

[92] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, “Parton Fragmentation and String
Dynamics,” Phys. Rept., vol. 97, pp. 31–145, 1983.

[93] P. Allen et al., “Multiplicity distributions in neutrino - hydrogen interactions,” Nucl. Phys.,
vol. B181, p. 385, 1981.

[94] A. Bodek and U. K. Yang, “Modeling neutrino and electron scattering cross sections in the few gev
region with effective lo pdfs,” 2003.

[95] A. A. Ivanilov et al., “Inclusive γ and π0 production in neutrino A and anti-neutrino A interacions
up to 30 GeV,” Yad. Fiz., vol. 41, pp. 1520–1534, 1985.

[96] H. Grassler et al., “Multiplicities of secondary hadrons produced in neutrino p and anti-neutrino p
charged current interactions,” Nucl. Phys., vol. B223, p. 269, 1983.

[97] D. Allasia et al., “Fragmentation in neutrino and anti-neutrino charged current interactions on
proton and neutron,” Z. Phys., vol. C24, pp. 119–131, 1984.

[98] J. P. Berge et al., “Inclusive Negative Hadron Production from High-Energy anti-neutrino Nucleus
Charged Current Interactions,” Phys. Rev., vol. D18, p. 3905, 1978.

[99] V. Ammosov et al., “A study of semi-inclusince gamma production in charged current anti-neutrino
- nucleon interactions,” Nuovo Cim., vol. A51, p. 539, 1979.

[100] D. Drakoulakos et al., “Proposal to perform a high-statistics neutrino scattering experiment using
a fine-grained detector in the numi beam,” 2004.

[101] P. Bosetti et al., “Strange particle production in neutrino and anti-neutrino neon interactions,”
Nucl. Phys., vol. B209, p. 29, 1982.

[102] N. J. Baker et al., “Strange particle production in neutrino - neon charged current interactions,”
Phys. Rev., vol. D34, pp. 1251–1264, 1986.

[103] D. DeProspo et al., “Neutral strange particle production in neutrino and anti-neutrino charged
current interactions on neon,” Phys. Rev., vol. D50, pp. 6691–6703, 1994.

[104] M. Derrick et al., “Hadron production mechanisms in anti-neutrino - proton charged current inter-
actions,” Phys. Rev., vol. D24, p. 1071, 1981.

[105] D. S. Baranov et al., “An estimate for the formation length of hadrons in neutrino interactions,”
PHE 84-04, 1984.

[106] R. Merenyi et al., “Determination of pion intranuclear rescattering rates in νµ Ne versus νµ D
interactions for the atmospheric neutrino flux,” Phys. Rev., vol. D45, pp. 743–751, 1992.

[107] G. D. Harp, “Extension of the isobar model for intranuclear cascades to 1 GeV,” Phys. Rev., vol. C10,
pp. 2387–2396, 1974.

[108] S. G. Mashnik, A. J. Sierk, K. K. Gudima, M. I. Baznat, and N. V. Mokhov LANL Report LA-UR-
05-7321 (2005), RSICC Code Package PSR-532.

BIBLIOGRAPHY 191

[109] S. G. Mashnik, A. J. Sierk, K. K. Gudima, and M. I. Baznat, “CEM03 and LAQGSM03: New
modeling tools for nuclear applications,” J. Phys. Conf. Ser., vol. 41, pp. 340–351, 2006.

[110] S.G.Mashnik, “Private communication,”

[111] A. Engel, W. Cassing, U. Mosel, M. Schafer, and G. Wolf, “Pion - nucleus reactions in a microscopic
transport model,” Nucl. Phys., vol. A572, pp. 657–681, 1994.

[112] G. Battistoni et al., “The FLUKA code: Description and benchmarking,” AIP Conf. Proc., vol. 896,
pp. 31–49, 2007.

[113] L. L. Salcedo, E. Oset, M. J. Vicente-Vacas, and C. Garcia-Recio, “COMPUTER SIMULATION
OF INCLUSIVE PION NUCLEAR REACTIONS,” Nucl. Phys., vol. A484, p. 557, 1988.

[114] D. Ashery et al., “True absorption and scattering of pions on nuclei,” Phys. Rev., vol. C23, pp. 2173–
2185, 1981.

[115] I. Navon et al., “True absorption and scattering of 50 MeV pions,” Phys. Rev., vol. C28, p. 2548,
1983.

[116] C. H. Q. Ingram et al., “Measurement of quasielastic scattering of pions from O16 at energies around
the ∆(1232) resonance,” Phys. Rev., vol. C27, pp. 1578–1601, 1983.

[117] J. D. Zumbro et al., “Inclusive scattering of 500-MeV pions from carbon,” Phys. Rev. Lett., vol. 71,
pp. 1796–1799, 1993.

[118] B. Kotlinski et al., “Pion absorption reactions on N, Ar and Xe,” Eur. Phys. J., vol. A9, pp. 537–552,
2000.

[119] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L. Workman, “Extended Partial-Wave Analysis
of piN Scattering Data,” Phys. Rev., vol. C74, p. 045205, 2006.

[120] G. web site http://gwdac.phys.gwu.edu.

[121] S. G. Mashnik, R. J. Peterson, A. J. Sierk, and M. R. Braunstein, “Pion induced transport of pi
mesons in nuclei,” Phys. Rev., vol. C61, p. 034601, 2000.

[122] A. S. Carroll et al., “Pion-Nucleus Total Cross-Sections in the (3,3) Resonance Region,” Phys. Rev.,
vol. C14, pp. 635–638, 1976.

[123] A. S. Clough et al., “Pion-Nucleus Total Cross-Sections from 88-MeV to 860- MeV,” Nucl. Phys.,
vol. B76, p. 15, 1974.

[124] W. Bauhoff At. Data and Nucl. Data Tables, vol. 35, p. 429, 1986.

[125] A.K.Ichikawa et al., “Private communication,”

[126] R.Hatcher, M.Messier, et al., “Private communication,”

[127] G. D. Barr, T. K. Gaisser, P. Lipari, S. Robbins, and T. Stanev, “A three-dimensional calculation
of atmospheric neutrinos,” Phys. Rev., vol. D70, p. 023006, 2004.

[128] G. Battistoni, A. Ferrari, T. Montaruli, and P. R. Sala, “Progresses in the validation of the FLUKA
atmospheric nu flux calculations,” Nucl. Phys. Proc. Suppl., vol. 110, pp. 336–338, 2002.

	Introduction
	GENIE project overview
	Neutrino Interaction Simulation: Challenges and Significance

	Neutrino Interaction Physics Modeling
	Introduction
	Nuclear Physics Model
	Cross section model
	Neutrino-induced Hadron Production
	Intranuclear Hadron Transport

	The GENIE Software Framework
	Downloading & Installing GENIE
	Understanding the versioning scheme
	Obtaining the source code
	3rd Party Sofwtare
	Preparing your environment
	Configuring GENIE
	Building GENIE
	Performing simple post-installation tests

	Generating Neutrino Event Samples
	Introduction
	Preparing event generation inputs: Cross-section splines
	The XML cross section splines file format
	Downloading pre-computed cross section splines
	Generating cross section splines
	Re-using splines for modified GENIE configurations
	Using cross section splines in your analysis program

	Simple event generation cases
	The gevgen generic event generation application

	Obtaining special samples
	Switching reaction modes on/off
	Event cherry-picking

	Using a Realistic Flux and Detector Geometry
	Introduction
	Components for building customized event generation applications
	The flux driver interface
	The geometry navigation driver interface
	Setting-up GENIE MC jobs using fluxes and geometries

	Built-in flux drivers
	JPARC neutrino flux driver specifics
	NuMI neutrino flux driver specific
	FLUKA and BGLRS atmospheric flux driver specifics
	Generic histogram-based flux specifics
	Generic ntuple-based flux specifics

	Built-in geometry navigation drivers
	ROOT geometry navigation driver specifics

	Built-in specialized event generation applications
	Event generation application for the T2K experiment
	Event generation application for Fermilab neutrino experiments
	Event generation application for atmospheric neutrinos

	Analyzing Output Event Samples
	Introduction
	The GHEP event structure
	GHEP information with event-wide scope
	Interaction summary
	GHEP particles
	Mother / daughter particle associations

	Printing-out events
	The gevdump utility

	Event loop skeleton program
	Extracting event information
	Event tree conversions
	The gntpc ntuple conversion utility
	Formats supported by gntpc

	Units

	Non-Neutrino Event Generation Modes
	Introduction
	Hadron (and Photon) - Nucleus scattering
	The gevgen_hadron event generation application

	Charged Lepton - Nucleus scattering
	Nucleon decay
	The gevgen_ndcy event generation application

	Event Reweighting
	Introduction
	Propagating neutrino-cross section uncertainties
	Propagating hadronization and resonance decay uncertainties
	Propagating intranuclear hadron transport uncertainties
	Event reweighting applications
	Built-in applications
	Writing a new reweighting application

	Adding a new event reweighting class

	Copyright Notice and Citation Guidelines
	Guidelines for Fair Academic Use
	Main references

	Special Topics, FAQs and Troubleshooting
	Installation / Versioning
	Making user-code conditional on the GENIE version

	Software framework
	Calling GENIE algorithms directly
	Plugging-in to the message logging system

	Particle decays
	Deciding which particles to decay
	Setting particle decay flags
	Inhibiting decay channels

	Numerical algorithms
	Random number periodicity
	Setting required numerical accurancy

	Summary of Important Physics Parameters
	Common Status and Particle Codes
	Status codes
	Particle codes
	Baryon resonance codes
	Ion codes
	GENIE pseudo-particle codes

	3rd Party Softw. Installation Instructions
	Finding More Information
	The GENIE web page
	Subscribing at the GENIE mailing lists
	The GENIE document database (DocDB)
	The GENIE issue tracker
	The GENIE Generator repository browser
	The GENIE doxygen documentation

	Glossary
	Bibliography

